Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Total file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This land cover data set is derived from the original raster based Globcover global archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (22 classes worldwide). The database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.
The data set is intended for free public access.
The shape file's attributes contain the following fields: -Area (sqm) -Perimeter (m) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)
You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend table (.xls)
Supplemental Information:
This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Antonio Martucci
Data lineage:
This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based global archive, Globcover. Globcover database has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (24 classes globally); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).
Online resources:
Measure the distance between two rain gauges to estimate how much precipitation an intervening town receives by deriving a linear function. THE GEOINQUIRIES™ COLLECTION FOR MATHEMATICShttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core math national curriculum standards. Activities include:· Rates & Proportions: A lost beach· D=R x T· Linear rate of change: Steady growth· How much rain? Linear equations· Rates of population change· Distance and midpoint· The coordinate plane· Euclidean vs Non-Euclidean· Area and perimeter at the mall· Measuring crop circles· Area of complex figures· Similar triangles· Perpendicular bisectors· Centers of triangles· Volume of pyramids
Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Site a water tower shared by two towns at the midpoint and determine the costs involved using the Pythagorean theorem. THE GEOINQUIRIES™ COLLECTION FOR MATHEMATICShttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core math national curriculum standards. Activities include:· Rates & Proportions: A lost beach· D=R x T· Linear rate of change: Steady growth· How much rain? Linear equations· Rates of population change· Distance and midpoint· The coordinate plane· Euclidean vs Non-Euclidean· Area and perimeter at the mall· Measuring crop circles· Area of complex figures· Similar triangles· Perpendicular bisectors· Centers of triangles· Volume of pyramids
Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2023 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2023.Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryWhat can you do with this layer?Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. This layer can also be used in analyses that require land use/land cover input. For example, the Zonal toolset allows a user to understand the composition of a specified area by reporting the total estimates for each of the classes. NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Class definitionsValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Please note that this dataset is not an official City of Toronto land use dataset. It was created for personal and academic use using City of Toronto Land Use Maps (2019) found on the City of Toronto Official Plan website at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/official-plan-maps-copy, along with the City of Toronto parcel fabric (Property Boundaries) found at https://open.toronto.ca/dataset/property-boundaries/ and Statistics Canada Census Dissemination Blocks level boundary files (2016). The property boundaries used were dated November 11, 2021. Further detail about the City of Toronto's Official Plan, consolidation of the information presented in its online form, and considerations for its interpretation can be found at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/ Data Creation Documentation and Procedures Software Used The spatial vector data were created using ArcGIS Pro 2.9.0 in December 2021. PDF File Conversions Using Adobe Acrobat Pro DC software, the following downloaded PDF map images were converted to TIF format. 9028-cp-official-plan-Map-14_LandUse_AODA.pdf 9042-cp-official-plan-Map-22_LandUse_AODA.pdf 9070-cp-official-plan-Map-20_LandUse_AODA.pdf 908a-cp-official-plan-Map-13_LandUse_AODA.pdf 978e-cp-official-plan-Map-17_LandUse_AODA.pdf 97cc-cp-official-plan-Map-15_LandUse_AODA.pdf 97d4-cp-official-plan-Map-23_LandUse_AODA.pdf 97f2-cp-official-plan-Map-19_LandUse_AODA.pdf 97fe-cp-official-plan-Map-18_LandUse_AODA.pdf 9811-cp-official-plan-Map-16_LandUse_AODA.pdf 982d-cp-official-plan-Map-21_LandUse_AODA.pdf Georeferencing and Reprojecting Data Files The original projection of the PDF maps is unknown but were most likely published using MTM Zone 10 EPSG 2019 as per many of the City of Toronto's many datasets. They could also have possibly been published in UTM Zone 17 EPSG 26917 The TIF images were georeferenced in ArcGIS Pro using this projection with very good results. The images were matched against the City of Toronto's Centreline dataset found here The resulting TIF files and their supporting spatial files include: TOLandUseMap13.tfwx TOLandUseMap13.tif TOLandUseMap13.tif.aux.xml TOLandUseMap13.tif.ovr TOLandUseMap14.tfwx TOLandUseMap14.tif TOLandUseMap14.tif.aux.xml TOLandUseMap14.tif.ovr TOLandUseMap15.tfwx TOLandUseMap15.tif TOLandUseMap15.tif.aux.xml TOLandUseMap15.tif.ovr TOLandUseMap16.tfwx TOLandUseMap16.tif TOLandUseMap16.tif.aux.xml TOLandUseMap16.tif.ovr TOLandUseMap17.tfwx TOLandUseMap17.tif TOLandUseMap17.tif.aux.xml TOLandUseMap17.tif.ovr TOLandUseMap18.tfwx TOLandUseMap18.tif TOLandUseMap18.tif.aux.xml TOLandUseMap18.tif.ovr TOLandUseMap19.tif TOLandUseMap19.tif.aux.xml TOLandUseMap19.tif.ovr TOLandUseMap20.tfwx TOLandUseMap20.tif TOLandUseMap20.tif.aux.xml TOLandUseMap20.tif.ovr TOLandUseMap21.tfwx TOLandUseMap21.tif TOLandUseMap21.tif.aux.xml TOLandUseMap21.tif.ovr TOLandUseMap22.tfwx TOLandUseMap22.tif TOLandUseMap22.tif.aux.xml TOLandUseMap22.tif.ovr TOLandUseMap23.tfwx TOLandUseMap23.tif TOLandUseMap23.tif.aux.xml TOLandUseMap23.tif.ov Ground control points were saved for all georeferenced images. The files are the following: map13.txt map14.txt map15.txt map16.txt map17.txt map18.txt map19.txt map21.txt map22.txt map23.txt The City of Toronto's Property Boundaries shapefile, "property_bnds_gcc_wgs84.zip" were unzipped and also reprojected to EPSG 26917 (UTM Zone 17) into a new shapefile, "Property_Boundaries_UTM.shp" Mosaicing Images Once georeferenced, all images were then mosaiced into one image file, "LandUseMosaic20211220v01", within the project-generated Geodatabase, "Landuse.gdb" and exported TIF, "LandUseMosaic20211220.tif" Reclassifying Images Because the original images were of low quality and the conversion to TIF made the image colours even more inconsistent, a method was required to reclassify the images so that different land use classes could be identified. Using Deep learning Objects, the images were re-classified into useful consistent colours. Deep Learning Objects and Training The resulting mosaic was then prepared for reclassification using the Label Objects for Deep Learning tool in ArcGIS Pro. A training sample, "LandUseTrainingSamples20211220", was created in the geodatabase for all land use types as follows: Neighbourhoods Insitutional Natural Areas Core Employment Areas Mixed Use Areas Apartment Neighbourhoods Parks Roads Utility Corridors Other Open Spaces General Employment Areas Regeneration Areas Lettering (not a land use type, but an image colour (black), used to label streets). By identifying the letters, it then made the reclassification and vectorization results easier to clean up of unnecessary clutter caused by the labels of streets. Reclassification Once the training samples were created and saved, the raster was then reclassified using the Image Classification Wizard tool in ArcGIS Pro, using the Support...
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
CanVec contains more than 60 topographic features classes organized into 8 themes: Transport Features, Administrative Features, Hydro Features, Land Features, Manmade Features, Elevation Features, Resource Management Features and Toponymic Features. This multiscale product originates from the best available geospatial data sources covering Canadian territory. It offers quality topographic information in vector format complying with international geomatics standards. CanVec can be used in Web Map Services (WMS) and geographic information systems (GIS) applications and used to produce thematic maps. Because of its many attributes, CanVec allows for extensive spatial analysis. Related Products: Constructions and Land Use in Canada - CanVec Series - Manmade Features Lakes, Rivers and Glaciers in Canada - CanVec Series - Hydrographic Features Administrative Boundaries in Canada - CanVec Series - Administrative Features Mines, Energy and Communication Networks in Canada - CanVec Series - Resources Management Features Wooded Areas, Saturated Soils and Landscape in Canada - CanVec Series - Land Features Transport Networks in Canada - CanVec Series - Transport Features Elevation in Canada - CanVec Series - Elevation Features Map Labels - CanVec Series - Toponymic Features
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
The 3 combined land cover databases:
Far North Land Cover v1.4 Southern Ontario Land Resource Information System (SOLRIS) v1.2 the Provincial Land Cover 2000 Edition
While each of these source products has differing pixel resolutions, projections and classifications, the resulting OLCC database is a standardized product with a:
pixel resolution of 15 metres coordinate system of Ontario Lambert Conformal Conic class structure of 29 land cover classes.
The standardized classification has been accomplished at the expense of the more detailed class structures in the source land cover products. Where possible, the original land cover products should be used for analysis.
This is an update to OLCC v1.0. In this version the Far North Land Cover component has been updated and extends further south into the Area of Undertaking (AOU) and into Manitoba than the previous version.Now also available through a web service which exposes the data for visualization and geoprocessing.The service is best accessed through the ArcGIS REST API, either directly or by setting up an ArcGIS server connection using the REST endpoint URL. The service draws using the Web Mercator projection.For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Land Information Ontario (LIO) at lio@ontario.ca.Service Endpointshttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Thematic/Ontario_Land_Cover_Compilation_v2/ImageServerhttps://intra.ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Thematic/Ontario_Land_Cover_Compilation_v2/ImageServer (Government of Ontario Internal Users)
Additional Documentation
Data Specification Document - Ontario Land Cover Compilation Version 2 (PDF)
Data Specification Document - Far North Land Cover Version 1.4 (PDF)
Data Specification Document - SOLRIS Version 1.2 (PDF)
Data Specification Document - Provincial Land Cover (2000 Edition) (PDF)
Status
Completed: Production of the data has been completed
Maintenance and Update Frequency
As needed: Data is updated as deemed necessary
Contact
Joel Mostoway, Forest Resources Inventory Program, Science and Research Branch, joel.mostoway@ontario.ca
The Military Bases dataset was last updated on October 23, 2024 and are defined by Fiscal Year 2023 data, from the Office of the Assistant Secretary of Defense for Energy, Installations, and Environment and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The dataset depicts the authoritative locations of the most commonly known Department of Defense (DoD) sites, installations, ranges, and training areas world-wide. These sites encompass land which is federally owned or otherwise managed. This dataset was created from source data provided by the four Military Service Component headquarters and was compiled by the Defense Installation Spatial Data Infrastructure (DISDI) Program within the Office of the Assistant Secretary of Defense for Energy, Installations, and Environment. Only sites reported in the BSR or released in a map supplementing the Foreign Investment Risk Review Modernization Act of 2018 (FIRRMA) Real Estate Regulation (31 CFR Part 802) were considered for inclusion. This list does not necessarily represent a comprehensive collection of all Department of Defense facilities. For inventory purposes, installations are comprised of sites, where a site is defined as a specific geographic location of federally owned or managed land and is assigned to military installation. DoD installations are commonly referred to as a base, camp, post, station, yard, center, homeport facility for any ship, or other activity under the jurisdiction, custody, control of the DoD.
While every attempt has been made to provide the best available data quality, this data set is intended for use at mapping scales between 1:50,000 and 1:3,000,000. For this reason, boundaries in this data set may not perfectly align with DoD site boundaries depicted in other federal data sources. Maps produced at a scale of 1:50,000 or smaller which otherwise comply with National Map Accuracy Standards, will remain compliant when this data is incorporated. Boundary data is most suitable for larger scale maps; point locations are better suited for mapping scales between 1:250,000 and 1:3,000,000.
If a site is part of a Joint Base (effective/designated on 1 October, 2010) as established under the 2005 Base Realignment and Closure process, it is attributed with the name of the Joint Base. All sites comprising a Joint Base are also attributed to the responsible DoD Component, which is not necessarily the pre-2005 Component responsible for the site.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This land cover data set is derived from the original raster based Globcover global archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (22 classes worldwide). The database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.
The data set is intended for free public access.
The shape file's attributes contain the following fields: -Area (sqm) -Perimeter (m) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)
You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend table (.xls)
Supplemental Information:
This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Antonio Martucci
Data lineage:
This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based global archive, Globcover. Globcover database has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (24 classes globally); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).
Online resources:
Download Land cover of Zambia 22 classes - Shape file format
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset, produced by Impact Observatory, Microsoft, and Esri, displays a global map of land use and land cover (LULC) derived from ESA Sentinel-2 imagery at 10 meter resolution for the years 2017 - 2023. Each map is a composite of LULC predictions for 9 classes throughout the year in order to generate a representative snapshot of each year. This dataset was generated by Impact Observatory, which used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. Each global map was produced by applying this model to the Sentinel-2 annual scene collections from the Mircosoft Planetary Computer. Each of the maps has an assessed average accuracy of over 75%. These maps have been improved from Impact Observatory’s previous release and provide a relative reduction in the amount of anomalous change between classes, particularly between “Bare” and any of the vegetative classes “Trees,” “Crops,” “Flooded Vegetation,” and “Rangeland”. This updated time series of annual global maps is also re-aligned to match the ESA UTM tiling grid for Sentinel-2 imagery. Data can be accessed directly from the Registry of Open Data on AWS, from the STAC 1.0.0 endpoint, or from the IO Store for a specific Area of Interest (AOI).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Benchmark set at 77.1% O.A at: https://doi.org/10.1117/1.JRS.14.048503
The dataset consists of 60,000 images, corresponding to Landsat patches of 33x33 pixels with 102 bands. Randomly selected from Mexico (country). Each patch is labeled with one of 12 Land Use and Vegetation classes according to the classification described at https://doi.org/10.3390/rs6053923.
The zip file contains 12 folders numbered 1-12 and each contains 5,000 .npy python files (can be loaded with the NumPy library).
The labeled classes correspond to the following identifier.
1, Temperate Coniferous forest
2, Temperate Decidius Forest
3, Temperate Mixed Forest
4, Tropical Evergreen Forest
5, Tropical Deciduous Forest
6, Scrubland
7, Wetland Vegetation
8, Agriculture
9, Grassland
10, Water body
11, Barren Land
12, Urban Area
To build that dataset, we take the information of the National Continuum of Land Use and Vegetation series number 5 generated by the National Institute of Statistics and Geography from Mexico (INEGI) from The National Commission for the Knowledge and Use of Biodiversity (CONABIO) web page (http://geoportal.conabio.gob.mx/metadatos/doc/html/usv250s5ugw.html).
The file used for this dataset construction is the shape format file with geographic coordinates located in http://www.conabio.gob.mx/informacion/gis/maps/geo/usv250s5ugw.zip.
Later, a transformation to Albers equal-area conic projection was done with the followings parameters:
Fake east: 2500000.0
Fake North: 0.0
Origin longitude: -102.0º
Origin latitude: 12.0º
First standard parallel: 17.5º
Second standard parallel: 29.5º
Linear unit: Meter (1.0)
Reference ellipsoid: GRS80
Once the data was projected, using the classes identified in the National Continuum of Land Use and Vegetation, correspondence was applied to the classes identified in https://doi.org/10.3390/rs6053923, these classes being: Agriculture, Barren land, Grassland, Scrubland, Temperate coniferous forest, Temperate deciduous forest, Temperate mixed forest, Tropical deciduous forest, Tropical evergreen forest, Urban area, Waterbody and Wetland vegetation.
Once the information layer was generated with the 12 classes indicated above, the reference layer was rasterized.
Thus, a national grid of 1,975,940 regions of 1 x 1 kilometers was generated and the percentage of pixels of the dominant class in each corresponding 1 km region was associated.
A total of cells with 70% or more pixels from one dominant class corresponds to 1,640,827 which represents a total of 83% of the Mexican territory. That means, only 17% of cells have less than 70% of their pixels from one dominant class.
Then, 5000 regions were randomly selected from each land cover class at the national level. For this random selection only were selected the regions in which cells have 70% or more of their pixels from one dominant class. The above, for looking to have consistent and reliable data for the automatic classification task. This random selection generates a total of 60,000 regions selected.
Image patches were extracted from the selected regions in the sample.
The image used is the result of the application of multiple time series analysis algorithms on a cube of image data with mainly Tier 1 (T1) quality and a few Tier 2 (T2) as described in https: // www. usgs.gov/land-resources/nli/landsat/landsat-collection-1. An Open Data Cube (ODC, https://www.opendatacube.org/) was constructed from 3,515 Landsat 5 and 7 images corresponding to the year 2011, which is the same reference year of the National Continuum of Land Use and Vegetation Series 5.
From the analysis of the ODC images, the Geomedian (https://doi.org/10.1109/TGRS.2017.2723896) was calculated, which generated a national cloud-free mosaic from 2011, pixels at 30 meters resolution and 6 spectral bands (blue, green, red, nir, swir 1, swir 2). Finally, 15 spectral indices were calculated for each pixel in the image. This resulted in 15 national mosaics from the analysis of the time series of each pixel available for the year 2011 using all the combinations of normalized difference indices, which were possible with the 6 bands that were incorporated into the data cube, with which resulted in 102 information channels. Since Landsat images have a resolution of 30 meters, we have images of 33 pixels x 33 pixels for each region of 1 km x 1 km.
The 102 channels in the patches correspond to:
Geomedian Bands (6): blue, green, red, nir, swir 1, swir 2
Geomedian Based Indexes (15): evi, bu, sr, arvi, ui, ndbi, ibi, ndvi, ndwi, mndwi, nbi, brba, nbai, baei, bi
Geomedian Based Tasseled cap transformation (6): brightness, greenness, wetness, fourth, fifth, sixth
2011 Landsat Time Analysis Series by Pixel
(red-swir 1)/(red+swir 1); (5): min, mean, max, std, median
(red-nir)/( red+nir); (5): min, mean, max, std, median
(swir 1-swir 2)/( swir 1+swir 2); (5): min, mean, max, std, median
(nir-swir 2)/(nir+swir 2); (5): min, mean, max, std, median
(nir-swir 1)/( nir+swir 1); (5): min, mean, max, std, median
(red-swir 2)/( red+swir 2); (5): min, mean, max, std, median
(green-swir 2)/(green+swir 2); (5): min, mean, max, std, median
(green-swir 1)/(green+swir 1); (5): min, mean, max, std, median
(green-red)/(green+red); (5): min, mean, max, std, median
(green-nir)/(green+nir); (5): min, mean, max, std, median
(blue-swir 2)/(blue+swir 2); (5): min, mean, max, std, median
(blue-swir 1)/(blue+swir 1); (5): min, mean, max, std, median
(blue-red)/(blue+red); (5): min, mean, max, std, median
(blue-nir)/(blue+nir); (5): min, mean, max, std, median
(blue-green)/( blue+green); (5): min, mean, max, std, median
Explore the effects of the Reformation and Counter-Reformation. THE GEOINQUIRIES™ COLLECTION FOR WORLD HISTORYhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for World History contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory world history classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the C3 Framework for social studies curriculum standards. Activities include:· Cradles of Civilization· Silk Roads: Then and now· Medieval Europe: Invasions· The Crusades· Trade and the Black Death· Russian expansion to the sea· Early European exploration· The Reformation· The first European Industrial Revolution· Latin American independence· Age of Napoleon· Africa's bounty and borders· Post-WWI and The League of Nations· African independence
Cooperation since 1945Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Determine the rate of coastal erosion by estimating changes in historical aerial photos.THE GEOINQUIRIES™ COLLECTION FOR MATHEMATICShttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core math national curriculum standards. Activities include:· Rates & Proportions: A lost beach· D=R x T· Linear rate of change: Steady growth· How much rain? Linear equations· Rates of population change· Distance and midpoint· The coordinate plane· Euclidean vs Non-Euclidean· Area and perimeter at the mall· Measuring crop circles· Area of complex figures· Similar triangles· Perpendicular bisectors· Centers of triangles· Volume of pyramids
Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Explore the geographic similarities and differences of the locations of the early river valley civilizations. THE GEOINQUIRIES™ COLLECTION FOR WORLD HISTORYhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for World History contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory world history classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the C3 Framework for social studies curriculum standards. Activities include:· Cradles of Civilization· Silk Roads: Then and now· Medieval Europe: Invasions· The Crusades· Trade and the Black Death· Russian expansion to the sea· Early European exploration· The Reformation· The first European Industrial Revolution· Latin American independence· Age of Napoleon· Africa's bounty and borders· Post-WWI and The League of Nations· African independence
Cooperation since 1945Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Examine Viking, Magyar, and Islamic invasions and their impact on the development of Europe. THE GEOINQUIRIES™ COLLECTION FOR WORLD HISTORYhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for World History contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory world history classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the C3 Framework for social studies curriculum standards. Activities include:· Cradles of Civilization· Silk Roads: Then and now· Medieval Europe: Invasions· The Crusades· Trade and the Black Death· Russian expansion to the sea· Early European exploration· The Reformation· The first European Industrial Revolution· Latin American independence· Age of Napoleon· Africa's bounty and borders· Post-WWI and The League of Nations· African independence
Cooperation since 1945Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Explore the factors leading to the independence movement of Latin American colonies.THE GEOINQUIRIES™ COLLECTION FOR WORLD HISTORYhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for World History contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory world history classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the C3 Framework for social studies curriculum standards. Activities include:· Cradles of Civilization· Silk Roads: Then and now· Medieval Europe: Invasions· The Crusades· Trade and the Black Death· Russian expansion to the sea· Early European exploration· The Reformation· The first European Industrial Revolution· Latin American independence· Age of Napoleon· Africa's bounty and borders· Post-WWI and The League of Nations· African independence
Cooperation since 1945Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
While population growth is often associated with exponential functions, this activity explores a linear model for one Michigan county. THE GEOINQUIRIES™ COLLECTION FOR MATHEMATICShttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core math national curriculum standards. Activities include:· Rates & Proportions: A lost beach· D=R x T· Linear rate of change: Steady growth· How much rain? Linear equations· Rates of population change· Distance and midpoint· The coordinate plane· Euclidean vs Non-Euclidean· Area and perimeter at the mall· Measuring crop circles· Area of complex figures· Similar triangles· Perpendicular bisectors· Centers of triangles· Volume of pyramids
Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.