Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statewide soil and land information can be discovered and viewed through eSPADE or SEED. Datasets include soil profiles, soil landscapes, soil and land resources, acid sulfate soil risk mapping, hydrogeological landscapes, land systems and land use. There are also various statewide coverages of specific soil and land characteristics, such as soil type, land and soil capability, soil fertility, soil regolith, soil hydrology and modelled soil properties.
Both eSPADE and SEED enable soil and land data to be viewed on a map. SEED focuses more on the holistic approach by enabling you to add other environmental layers such as mining boundaries, vegetation or water monitoring points. SEED also provides access to metadata and data quality statements for layers.
eSPADE provides greater functions and allows you to drill down into soil points or maps to access detailed information such as reports and images. You can navigate to a specific location, then search and select multiple objects and access detailed information about them. You can also export spatial information for use in other applications such as Google Earth™ and GIS software.
eSPADE is a free Internet information system and works on desktop computers, laptops and mobile devices such as smartphones and tablets and uses a Google maps-based platform familiar to most users. It has over 42,000 soil profile descriptions and approximately 4,000 soil landscape descriptions. This includes the maps and descriptions from the Soil Landscape Mapping program. eSPADE also includes the base maps underpinning Biophysical Strategic Agricultural Land (BSAL).
For more information on eSPADE visit: https://www.environment.nsw.gov.au/topics/land-and-soil/soil-data/espade
This data layer includes key performance metrics collected by the City and partners tracking the progress towards the goals of the Internet for All Seattle Initiative. Internet for All Seattle Dashboards. The data points reflect activities in five categories: 1) Affordable Connectivity Program, 2) Internet Connectivity, 3) Devices, 4) Digital Skills & Technical Support, and 5) Outreach & Assistance. The majority of the Internet for All Seattle Action Plan items and data fall under these five areas. Source data for Internet for All maps and dashboards.Updated quarterly. Last update: March 4, 2024. ATTRIBUTE NAME DEFINITION ADDITIONAL INFORMATION
Resource Organization or program providing metrics for this dashboard. Access for All Program - City of Seattle program to connect eligible organizations and locations in Seattle with free high speed internet service in partnership with Comcast, Astound Broadband, and Lumen. City of Seattle Facilities - City owned buildings, including Community Centers, City Hall, Seattle Center and others. Internet Essentials Program - Low-cost internet program provided by Comcast offering $9.95/month + tax for eligible households. Internet First Program - Low-cost internet program provided by Astound offering $50 Mbps Internet* to qualifying low-income households. Other Partners - Other organizations partnering with the City of Seattle. Seattle Housing Authority - An independent public corporation in the city of Seattle responsible for public housing for low-income, elderly, and disabled residents. Seattle IT Digital Equity - City of Seattle, Seattle Information Technology Department Digital Equity Program. Seattle IT Digital Navigator - Seattle IT grant program providing funding to community-based organizations to provide digital navigation services. Seattle IT Technology Matching Fund - City of Seattle grant program providing funding to community-based organizations to increase internet access and adoption. Seattle Public Library - The public library system serving the city of Seattle Seattle Public Schools - The public school district serving the city of Seattle. Simply Internet Program - Low-cost internet program provided by Astound offering for $9.95/month + tax for eligible households.
Location_Name Additional info about physical location.
Organization Nonprofit or community group funded by the City.
Project_Title Title of a project funded by the City.
Budget Budget value associated with a resource.
Date Date metrics were reported.
Award_Year Year a grant was awarded to a grantee.
Street_Address Address of physical location.
City City of physical location.
State State of physical location.
ZIP ZIP of physical location.
Council_District Council District resource is located in.
Longitude Longitude of physical location.
Latitude Latitude of physical location.
ISP An organization that provides services for accessing, using, or participating in the Internet.
Citywide_Y_N Is resource provided throughout City.
Devices_Distributed The number of devices that were provided to residents.
Devices_Distributed_Y_N Is there a value in Devices_Distributed field (used to create dashboards).
Devices_Loaned The number of devices that were loaned to residents for temporary use.
Devices_Loaned_Y_N Is there a value in Devices_Loaned field (used to create dashboards).
DSTS_TotalServed The number of residents served by digital skills training and technical support programs. DSTS refers to Digital Skills and Training Support
DSTS_TotalServed_Y_N Is there a value in DSTS_TotalServed field (used to create dashboards).
DSTS_Hours The number of hours of digital skills training and technical support provided.
DSTS_Hours_Y_N Is there a value in DSTS_Hours field (used to create dashboards).
IC_Hotspots_Sponsored Number of residents provided with hotspots or sponsored internet service. IC refers to Internet Connectivity
IC_Hotspots_Sponsored_Y_N Is there a value in IC_Hotspots_Sponsored field (used to create dashboards).
IC_PubWiFiConnections Number of Wi-Fi connections provided at public Wi-Fi sites.
IC_PubWiFiConnections_Y_N Is there a value in IC_PubWiFiConnections field (used to create dashboards).
IC_PubWiFiSites Number of sites providing public Wi-Fi.
IC_PubWiFiSites_Y_N Is there a value in IC_PubWiFiSites field (used to create dashboards).
IC_LowCostServices The number of residents enrolled in Low-cost internet programs offered by Comcast and Astound.
IC_LowCostServices_Y_N Is there a value in IC_LowCostServices field (used to create dashboards).
IC_Organizations Sites providing internet connectivity through their organization. Federal Subsidy Program Emergency Broadband Program (EBB) was a federal program to help low-income households afford broadband services and internet-connected devices during the pandemic. The program officially ended in early 2022 and was replaced by the Affordable Connectivity Program. The Affordable Connectivity Program (ACP) is a federal program to help low-income households afford broadband services and internet-connected devices during the pandemic. The Program provides a discount of up to $30 per month for broadband services for eligible consumers.
IC_Organizations_Y_N Is there a value in IC_Organizations field (used to create dashboards).
IC_FedSubsEBBACP Number of total households that participated in the EBB or ACP programs.
IC_FedSubsEBBACP_Y_N Is there a value in IC_FedSubsEBBACP field (used to create dashboards).
OA_InternetServReqs The number of requests from the public for information about internet service. These requests come to the City and are fulfilled by Seattle IT Digital Equity staff. OA refers to Outreach and Assistance
OA_InternetServReqs_Y_N Is there a value in OA_InternetServReqs field (used to create dashboards).
OA_LowInternetInfo The number of requests from the public for information about low-income internet service. These requests come to the City and are fulfilled by Seattle IT Digital Equity staff.
OA_LowInternetInfo_Y_N Is there a value in OA_LowInternetInfo field (used to create dashboards).
OA_LowInternetevent Number of residents provided with information about free or low-cost internet at outreach events. This outreach is conducted by Seattle IT Digital Equity staff.
OA_LowInternetevent_Y_N Is there a value in OA_LowInternetevent field (used to create dashboards)
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Abstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. This dataset was sourced from the Queensland Department of Natural Resources and Mines in 2012. Information provided by the Department describes the dataset as follows: This data was originally provided on DVD and contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology …Show full descriptionAbstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. This dataset was sourced from the Queensland Department of Natural Resources and Mines in 2012. Information provided by the Department describes the dataset as follows: This data was originally provided on DVD and contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology and structural framework map. The maps were done in ArcGIS 9.3.1 and the data stored in file geodatabases, topology created and validated. This provides greater data quality by performing topological validation on the feature's spatial relationships. For the purposes of the DVD, shapefiles were created from the file geodatabases and for MapInfo users MapInfo .tab and .wor files. The shapefiles on the DVD are a revision of the 1975 Queensland geology data, and are both are available for display, query and download on the department's online GIS application. The Queensland geology map is a digital representation of the distribution or extent of geological units within Queensland. In the GIS, polygons have a range of attributes including unit name, type of unit, age, lithological description, dominant rock type, and an abbreviated symbol for use in labelling the polygons. The lines in this dataset are a digital representation of the position of the boundaries of geological units and other linear features such as faults and folds. The lines are attributed with a description of the type of line represented. Approximately 2000 rock units were grouped into the 250 map units in this data set. The digital data was generalised and simplified from the Department's detailed geological data and was captured at 1:500 000 scale for output at 1:2 000 000 scale. In the ESRI version, a layer file is provided which presents the units in the colours and patterns used on the printed hard copy map. For Map Info users, a simplified colour palette is provided without patterns. However a georeferenced image of the hard copy map is included and can be displayed as a background in both Arc Map and Map Info. The geological framework of Queensland is classified by structural or tectonic unit (provinces and basins) in which the rocks formed. These are referred to as basins (or in some cases troughs and depressions) where the original form and structure are still apparent. Provinces (and subprovinces) are generally older basins that have been strongly tectonised and/or metamorphosed so that the original basin extent and form are no longer preserved. Note that intrusive and some related volcanic rocks that overlap these provinces and basins have not been included in this classification. The map was compiled using boundaries modified and generalised from the 1:2 000 000 Queensland Geology map (2012). Outlines of subsurface basins are also shown and these are based on data and published interpretations from petroleum exploration and geophysical surveys (seismic, gravity and magnetics). For the structural framework dataset, two versions are provided. In QLD_STRUCTURAL_FRAMEWORK, polygons are tagged with the name of the surface structural unit, and names of underlying units are imbedded in a text string in the HIERARCHY field. In QLD_STRUCTURAL_FRAMEWORK_MULTI_POLYS, the data is structured into a series of overlapping, multi-part polygons, one for each structural unit. Two layer files are provided with the ESRI data, one where units are symbolised by name. Because the dataset has been designed for units display in the order of superposition, this layer file assigns colours to the units that occur at the surface with concealed units being left uncoloured. Another layer file symbolises them by the orogen of which they are part. A similar set of palettes has been provided for Map Info. Dataset History Details on the source data can be found in the xml file associated with data layer. Data in this release *ESRI.shp and MapInfo .tab files of rock unit polygons and lines with associated layer attributes of Queensland geology *ESRI.shp and MapInfo .tab files of structural unit polygons and lines with associated layer attributes of structural framework *ArcMap .mxd and .lyr files and MapInfo .wor files containing symbology *Georeferenced Queensland geology map, gravity and magnetic images *Queensland geology map, structural framework and schematic diagram PDF files *Data supplied in geographical coordinates (latitude/longitude) based on Geocentric Datum of Australia - GDA94 Accessing the data Programs exist for the viewing and manipulation of the digital spatial data contained on this DVD. Accessing the digital datasets will require GIS software. The following GIS viewers can be downloaded from the internet. ESRI ArcExplorer can be found by a search of www.esriaustralia.com.au and MapInfo ProViewer by a search on www.pbinsight.com.au collectively ("the websites"). Metadata Metadata is contained in .htm files placed in the root folder of each vector data folder. For ArcMap users metadata for viewing in ArcCatalog is held in an .xml file with each shapefile within the ESRI Shapefile folders. Disclaimer The State of Queensland is not responsible for the privacy practices or the content of the websites and makes no statements, representations, or warranties about the content or accuracy or completeness of, any information or products contained on the websites. Despite our best efforts, the State of Queensland makes no warranties that the information or products available on the websites are free from infection by computer viruses or other contamination. The State of Queensland disclaims all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs you might incur as a result of accessing the websites or using the products available on the websites in any way, and for any reason. The State of Queensland has included the websites in this document as an information source only. The State of Queensland does not promote or endorse the websites or the programs contained on them in any way. WARNING: The Queensland Government and the Department of Natural Resources and Mines accept no liability for and give no undertakings, guarantees or warranties concerning the accuracy, completeness or fitness for the purposes of the information provided. The consumer must take all responsible steps to protect the data from unauthorised use, reproduction, distribution or publication by other parties. Please view the 'readme.html' and 'licence.html' file for further, more complete information Dataset Citation Geological Survey of Queensland (2012) Queensland geology and structural framework - GIS data July 2012. Bioregional Assessment Source Dataset. Viewed 07 December 2018, http://data.bioregionalassessments.gov.au/dataset/69da6301-04c1-4993-93c1-4673f3e22762.
The "Map Imager Layer - Administrative Boundaries" is a Map Image Layer of Administrative Boundaries. It has been designed specifically for use in ArcGIS Online (and will not directly work in ArcMap or ArcPro). This data has been modified from the original source data to serve a specific business purpose. This data is for cartographic purposes only.The Administrative Boundaries Data Group contains the following layers: Populated Places (USGS)US Census Urbanized Areas and Urban Clusters (USCB)US Census Minor Civil Divisions (USCB)PLSS Townships (MnDNR, MnGeo)Counties (USCB)American Indian, Alaska Native, Native Hawaiian (AIANNH) Areas (USCB)States (USCB)Countries (MPCA)These datasets have not been optimized for fast display (but rather they maintain their original shape/precision), therefore it is recommend that filtering is used to show only the features of interest. For more information about using filters please see "Work with map layers: Apply Filters": https://doc.arcgis.com/en/arcgis-online/create-maps/apply-filters.htmFor additional information about the Administrative Boundary Dataset please see:United States Census Bureau TIGER/Line Shapefiles and TIGER/Line Files Technical Documentation: https://www.census.gov/programs-surveys/geography/technical-documentation/complete-technical-documentation/tiger-geo-line.htmlUnited States Census Bureau Census Mapping Files: https://www.census.gov/geographies/mapping-files.htmlUnited States Census Bureau TIGER/Line Shapefiles: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html and https://www.census.gov/cgi-bin/geo/shapefiles/index.php
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2023 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2023.Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryWhat can you do with this layer?Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. This layer can also be used in analyses that require land use/land cover input. For example, the Zonal toolset allows a user to understand the composition of a specified area by reporting the total estimates for each of the classes. NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Class definitionsValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.
Explore the geographic context of Isaac’s Storm by Erik Larson and Their Eyes Were Watching God by Zora Neale Hurston. THE GEOINQUIRIES™ COLLECTION FOR AMERICAN LITERATUREhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for American Literature contains 15 free, standards-based activities that correspond and extend map-based concepts found in course texts frequently used in high school literature. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core ELA national curriculum standards. Activities include:· Beyond religion: Scarlet Letter · Virus of fear: Witchcraft in Salem· Poe and the Red Death· The Red Badge of Courage· Twain: Travel blogger· Hurricane warning· Gatsby: Then and now· Our town, your town· The mockingbird sings for freedom· Depression, dust and Steinbeck· Hiroshima· Dr. King's road to a Birmingham aail· Finding Mango Street· F451: Ban or burn the books· Surviving the wild
Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
CanVec contains more than 60 topographic features classes organized into 8 themes: Transport Features, Administrative Features, Hydro Features, Land Features, Manmade Features, Elevation Features, Resource Management Features and Toponymic Features. This multiscale product originates from the best available geospatial data sources covering Canadian territory. It offers quality topographic information in vector format complying with international geomatics standards. CanVec can be used in Web Map Services (WMS) and geographic information systems (GIS) applications and used to produce thematic maps. Because of its many attributes, CanVec allows for extensive spatial analysis. Related Products: Constructions and Land Use in Canada - CanVec Series - Manmade Features Lakes, Rivers and Glaciers in Canada - CanVec Series - Hydrographic Features Administrative Boundaries in Canada - CanVec Series - Administrative Features Mines, Energy and Communication Networks in Canada - CanVec Series - Resources Management Features Wooded Areas, Saturated Soils and Landscape in Canada - CanVec Series - Land Features Transport Networks in Canada - CanVec Series - Transport Features Elevation in Canada - CanVec Series - Elevation Features Map Labels - CanVec Series - Toponymic Features
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Please note that this dataset is not an official City of Toronto land use dataset. It was created for personal and academic use using City of Toronto Land Use Maps (2019) found on the City of Toronto Official Plan website at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/official-plan-maps-copy, along with the City of Toronto parcel fabric (Property Boundaries) found at https://open.toronto.ca/dataset/property-boundaries/ and Statistics Canada Census Dissemination Blocks level boundary files (2016). The property boundaries used were dated November 11, 2021. Further detail about the City of Toronto's Official Plan, consolidation of the information presented in its online form, and considerations for its interpretation can be found at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/ Data Creation Documentation and Procedures Software Used The spatial vector data were created using ArcGIS Pro 2.9.0 in December 2021. PDF File Conversions Using Adobe Acrobat Pro DC software, the following downloaded PDF map images were converted to TIF format. 9028-cp-official-plan-Map-14_LandUse_AODA.pdf 9042-cp-official-plan-Map-22_LandUse_AODA.pdf 9070-cp-official-plan-Map-20_LandUse_AODA.pdf 908a-cp-official-plan-Map-13_LandUse_AODA.pdf 978e-cp-official-plan-Map-17_LandUse_AODA.pdf 97cc-cp-official-plan-Map-15_LandUse_AODA.pdf 97d4-cp-official-plan-Map-23_LandUse_AODA.pdf 97f2-cp-official-plan-Map-19_LandUse_AODA.pdf 97fe-cp-official-plan-Map-18_LandUse_AODA.pdf 9811-cp-official-plan-Map-16_LandUse_AODA.pdf 982d-cp-official-plan-Map-21_LandUse_AODA.pdf Georeferencing and Reprojecting Data Files The original projection of the PDF maps is unknown but were most likely published using MTM Zone 10 EPSG 2019 as per many of the City of Toronto's many datasets. They could also have possibly been published in UTM Zone 17 EPSG 26917 The TIF images were georeferenced in ArcGIS Pro using this projection with very good results. The images were matched against the City of Toronto's Centreline dataset found here The resulting TIF files and their supporting spatial files include: TOLandUseMap13.tfwx TOLandUseMap13.tif TOLandUseMap13.tif.aux.xml TOLandUseMap13.tif.ovr TOLandUseMap14.tfwx TOLandUseMap14.tif TOLandUseMap14.tif.aux.xml TOLandUseMap14.tif.ovr TOLandUseMap15.tfwx TOLandUseMap15.tif TOLandUseMap15.tif.aux.xml TOLandUseMap15.tif.ovr TOLandUseMap16.tfwx TOLandUseMap16.tif TOLandUseMap16.tif.aux.xml TOLandUseMap16.tif.ovr TOLandUseMap17.tfwx TOLandUseMap17.tif TOLandUseMap17.tif.aux.xml TOLandUseMap17.tif.ovr TOLandUseMap18.tfwx TOLandUseMap18.tif TOLandUseMap18.tif.aux.xml TOLandUseMap18.tif.ovr TOLandUseMap19.tif TOLandUseMap19.tif.aux.xml TOLandUseMap19.tif.ovr TOLandUseMap20.tfwx TOLandUseMap20.tif TOLandUseMap20.tif.aux.xml TOLandUseMap20.tif.ovr TOLandUseMap21.tfwx TOLandUseMap21.tif TOLandUseMap21.tif.aux.xml TOLandUseMap21.tif.ovr TOLandUseMap22.tfwx TOLandUseMap22.tif TOLandUseMap22.tif.aux.xml TOLandUseMap22.tif.ovr TOLandUseMap23.tfwx TOLandUseMap23.tif TOLandUseMap23.tif.aux.xml TOLandUseMap23.tif.ov Ground control points were saved for all georeferenced images. The files are the following: map13.txt map14.txt map15.txt map16.txt map17.txt map18.txt map19.txt map21.txt map22.txt map23.txt The City of Toronto's Property Boundaries shapefile, "property_bnds_gcc_wgs84.zip" were unzipped and also reprojected to EPSG 26917 (UTM Zone 17) into a new shapefile, "Property_Boundaries_UTM.shp" Mosaicing Images Once georeferenced, all images were then mosaiced into one image file, "LandUseMosaic20211220v01", within the project-generated Geodatabase, "Landuse.gdb" and exported TIF, "LandUseMosaic20211220.tif" Reclassifying Images Because the original images were of low quality and the conversion to TIF made the image colours even more inconsistent, a method was required to reclassify the images so that different land use classes could be identified. Using Deep learning Objects, the images were re-classified into useful consistent colours. Deep Learning Objects and Training The resulting mosaic was then prepared for reclassification using the Label Objects for Deep Learning tool in ArcGIS Pro. A training sample, "LandUseTrainingSamples20211220", was created in the geodatabase for all land use types as follows: Neighbourhoods Insitutional Natural Areas Core Employment Areas Mixed Use Areas Apartment Neighbourhoods Parks Roads Utility Corridors Other Open Spaces General Employment Areas Regeneration Areas Lettering (not a land use type, but an image colour (black), used to label streets). By identifying the letters, it then made the reclassification and vectorization results easier to clean up of unnecessary clutter caused by the labels of streets. Reclassification Once the training samples were created and saved, the raster was then reclassified using the Image Classification Wizard tool in ArcGIS Pro, using the Support...
Total file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from multiple the Queensland geology and structural framework dataset. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
This dataset contains a polygon shapefile of the Belyando Basin province boundary. The Belyando Basin underlies the eastern margin of the Galilee subregion. Extracted from the QLD Geology and Structural Framework of 2012 - the abstract of which is below.
The data on this DVD contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology and structural framework map. The maps were done in ArcGIS 9.3.1 and the data stored in file geodatabases, topology created and validated. This provides greater data quality by performing topological validation on the feature's spatial relationships. For the purposes of the DVD, shapefiles were created from the file geodatabases and for MapInfo users MapInfo .tab and .wor files. The shapefiles on the DVD are a revision of the 1975 Queensland geology data, and are both are available for display, query and download on the department's online GIS application.
The Queensland geology map is a digital representation of the distribution or extent of geological units within Queensland. In the GIS, polygons have a range of attributes including unit name, type of unit, age, lithological description, dominant rock type, and an abbreviated symbol for use in labelling the polygons. The lines in this dataset are a digital representation of the position of the boundaries of geological units and other linear features such as faults and folds. The lines are attributed with a description of the type of line represented. Approximately 2000 rock units were grouped into the 250 map units in this data set. The digital data was generalised and simplified from the Department's detailed geological data and was captured at 1:500 000 scale for output at 1:2 000 000 scale.
The geological framework of Queensland is classified by structural or tectonic unit (provinces and basins) in which the rocks formed. These are referred to as basins (or in some cases troughs and depressions) where the original form and structure are still apparent. Provinces (and subprovinces) are generally older basins that have been strongly tectonised and/or metamorphosed so that the original basin extent and form are no longer preserved. Note that intrusive and some related volcanic rocks that overlap these provinces and basins have not been included in this classification. The map was compiled using boundaries modified and generalised from the 1:2 000 000 Queensland Geology map (2012). Outlines of subsurface basins are also shown and these are based on data and published interpretations from petroleum exploration and geophysical surveys (seismic, gravity and magnetics).
For the structural framework dataset, two versions are provided. In QLD_STRUCTURAL_FRAMEWORK, polygons are tagged with the name of the surface structural unit, and names of underlying units are imbedded in a text string in the HIERARCHY field. In QLD_STRUCTURAL_FRAMEWORK_MULTI_POLYS, the data is structured into a series of overlapping, multi-part polygons, one for each structural unit. Two layer files are provided with the ESRI data, one where units are symbolised by name. Because the dataset has been designed for units display in the order of superposition, this layer file assigns colours to the units that occur at the surface with concealed units being left uncoloured. Another layer file symbolises them by the orogen of which they are part. A similar set of palettes has been provided for Map Info.
This dataset provides a single, merged representation of the Belyando Basin as interpreted by the QLD Geology and Structural Framework of 2012
This dataset has been extracted directly from the QLD Geology and Structural Framework: QLD_STRUCTURAL_FRAMEWORK.shp.
a) Galilee Basin>Drummond Basin>Belyando Basin>Thomson Orogen
b) Eromanga Basin>Galilee Basin>Drummond Basin>Belyando Basin>Thomson Orogen
c) Drummond Basin>Belyando Basin>Thomson Orogen
d) Galilee Basin>Drummond Basin>Belyando Basin>Thomson Orogen
The lineage of the QLD Geology and Structural Framework is below:
Data in this release
\*ESRI.shp and MapInfo .tab files of rock unit polygons and lines with associated layer attributes of Queensland geology
\*ESRI.shp and MapInfo .tab files of structural unit polygons and lines with associated layer attributes of structural framework
\*ArcMap .mxd and .lyr files and MapInfo .wor files containing symbology
\*Georeferenced Queensland geology map, gravity and magnetic images
\*Queensland geology map, structural framework and schematic diagram PDF files
\*Data supplied in geographical coordinates (latitude/longitude) based on Geocentric Datum of Australia - GDA94
Accessing the data
Programs exist for the viewing and manipulation of the digital spatial data contained on this DVD. Accessing the digital datasets will require GIS software. The following GIS viewers can be downloaded from the internet. ESRI ArcExplorer can be found by a search of www.esriaustralia.com.au and MapInfo ProViewer by a search on www.pbinsight.com.au collectively ("the websites").
Metadata
Metadata is contained in .htm files placed in the root folder of each vector data folder. For ArcMap users metadata for viewing in ArcCatalog is held in an .xml file with each shapefile within the ESRI Shapefile folders.
Disclaimer
The State of Queensland is not responsible for the privacy practices or the content of the websites and makes no statements, representations, or warranties about the content or accuracy or completeness of, any information or products contained on the websites.
Despite our best efforts, the State of Queensland makes no warranties that the information or products available on the websites are free from infection by computer viruses or other contamination.
The State of Queensland disclaims all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs you might incur as a result of accessing the websites or using the products available on the websites in any way, and for any reason.
The State of Queensland has included the websites in this document as an information source only. The State of Queensland does not promote or endorse the websites or the programs contained on them in any way.
WARNING: The Queensland Government and the Department of Natural Resources and Mines accept no liability for and give no undertakings, guarantees or warranties concerning the accuracy, completeness or fitness for the purposes of the information provided. The consumer must take all responsible steps to protect the data from unauthorised use, reproduction, distribution or publication by other parties.
Bioregional Assessment Programme (XXXX) Belyando Basin Boundary - QLD Structural Framework. Bioregional Assessment Derived Dataset. Viewed 07 December 2018, http://data.bioregionalassessments.gov.au/dataset/4add856a-eb40-4bb2-bd41-f89788884782.
Mineral resource occurrence data covering the world, most thoroughly within the U.S. This database contains the records previously provided in the Mineral Resource Data System (MRDS) of USGS and the Mineral Availability System/Mineral Industry Locator System (MAS/MILS) originated in the U.S. Bureau of Mines, which is now part of USGS. The MRDS is a large and complex relational database developed over several decades by hundreds of researchers and reporters. While database records describe mineral resources worldwide, the compilation of information was intended to cover the United States completely, and its coverage of resources in other countries is incomplete. The content of MRDS records was drawn from reports previously published or made available to USGS researchers. Some of those original source materials are no longer available. The information contained in MRDS was intended to reflect the reports used as sources and is current only as of the date of those source reports. Consequently MRDS does not reflect up-to-date changes to the operating status of mines, ownership, land status, production figures and estimates of reserves and resources, or the nature, size, and extent of workings. Information on the geological characteristics of the mineral resource are likely to remain correct, but aspects involving human activity are likely to be out of date.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SIS SOIL:The new Irish Soil Information System concludes a 5 year programme, supported by the Irish Environmental Protection Agency (STRIVE Research Programme 2007-2013) and Teagasc, to develop a new 1:250,000 scale national soil map (http://soils.teagasc.ie). The Irish Soil Information System adopted a unique methodology combining digital soil mapping techniques with traditional soil survey application. Developing earlier work conducted by An Foras Talúntais, the project generated soil-landscape models for previously surveyed counties. These soil-landscape (‘soilscape’) models formed the basis for training statistical ‘inference engines’ for predicting soil mapping units, checked during field survey. 213 soil series are identified, each with differing characteristics, having contrasting environmental and agronomic responses. Properties were recorded in a database able to satisfy national and EU policy requirements. The Irish soil map and related soil property data will also serve public interest, providing the means to learn online about Irish soil resources. Use the Symbology layer file 'SOIL_SISNationalSoil.lyr' based on Value Field 'Association_Unit'. SIS SOIL DRAINAGE:In Ireland, soil drainage category is considered to have a predominant influence on soil processes (Schulte et al., 2012). The maritime climate of Ireland drives wet soil conditions, such that excess soil moisture in combination with heavy textured soils is considered a key constraint in relation to achieving productivity and environmental targets. Both soil moisture content and the rate at which water drains from the soil are critical indicators of soil physical quality and the overall functional capacity of soil. Therefore, a natural extension to the Irish Soil Information System included the development of an indicative soil drainage map for Ireland. The soil subgroup map was used to develop the indicative drainage map, based on diagnostic criteria relating to the subgroup categorization. Use the Symbology layer file 'SOIL_SISSoilDrainage.lyr' based on Value Field 'Drainage'. SIS SOIL DEPTH: Soil depth is a measure of the thickness of the soil cover and reflects the relationship between parent material and length of soil forming processes. Soil depth determines the potential rooting depth of plants and any restrictions within the soil that may hinder rooting depth. Plants derive nearly 80 per cent of their water needs from the upper part of the soil solum, i.e. where the root system is denser. The rooting depths depend on plant physiology, type of soil and water availability. Generally, vegetables (beans, tomatoes, potatoes, parsnip, carrots, leek, broccoli, etc.) are shallow rooted, about 50–60 cm; fruit trees and some other plants have medium rooting depths, 70–120 cm and other crops such as barley, wheat, oats, and maize may have deeper roots. Furthermore, rooting depths vary according to the age of the plants. The exact soil depth is difficult to define accurately due to its high variability across the landscape. The effective soil depth can be reduced by the presence of bedrock or impermeable layers. Use the Symbology layer file 'SOIL_SISSoilDepth.lyr' based on Valued Field 'Depth'. SIS SOIL TEXTURE:Soil texture is an important soil characteristic that influences processes such as water infiltration rates, rootability, gas exchanges, leaching, chemical activity, susceptibility to erosion and water holding capacity. The soil textural class is determined by the percentage of sand, silt, and clay. Soil texture also influences how much water is available to the plant; clay soils have a greater water holding capacity than sandy soils. Use the Symbology layer file 'SOIL_SISSoilTexture.lyr' based on Value Field 'Texture'. SIS SOIL SOC:In the previous national soil survey conducted by An Foras Taluntais, 14 counties were described in detail with soil profile descriptions provided for the representative soil series found within a county. Soil samples were taken at each soil horizon to a depth of 1 meter and analyses performed for a range of measurements, including soil organic carbon, texture, cation exchange capacity, pH; however in most cases no bulk density measurements were taken. This meant that while soil organic carbon concentrations were available this could not be related to a stock for a given soil series. In 2012/2013, 246 profile pits were sampled and analysed as part of the Irish Soil Information System project to fill in gaps in the description of representative profile data for Ireland. Use the Symbology layer file 'SOIL_SISSoilSOC.lyr' based on Value Field 'SOC'.
Smart Office Solutions Market Size 2025-2029
The smart office solutions market size is forecast to increase by USD 5.05 billion, at a CAGR of 17.1% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing number of startups innovating in this space and the integration of advanced technologies such as artificial intelligence (AI) and machine learning algorithms. These technologies enable automation and optimization of various office functions, leading to increased efficiency and productivity. However, the high upfront costs associated with implementing office solutions can be a challenge for some organizations, particularly smaller businesses. This trend is expected to continue as the demand for more agile and technologically advanced workspaces grows.
Companies seeking to capitalize on this market opportunity should focus on offering cost-effective solutions that provide quick returns on investment, while also ensuring seamless integration with existing office infrastructure and software. Additionally, partnerships and collaborations with technology providers and system integrators can help streamline implementation processes and reduce costs for clients. Overall, the market presents significant growth potential for companies that can effectively address the challenges of cost and complexity while delivering innovative and efficient solutions to meet the evolving needs of modern workplaces.
What will be the Size of the Smart Office Solutions Market during the forecast period?
Request Free Sample
The market is experiencing strong growth, driven by the increasing adoption of sensor networks and IoT connections to enhance energy effectiveness, safety and security in commercial buildings. Government regulations, particularly those related to energy management and safety, are also fueling market expansion. According to the OECD, over 80% of businesses in developed economies have adopted cloud technology, enabling the implementation of data management software, mapping software, and yield mapping software for optimizing office operations. Additionally, the integration of unmanned aerial vehicles (drones) and workforce skill enhancement through retraining programs are key trends shaping the market.
Multinational corporations are increasingly embracing the hybrid working model, requiring advanced network monitoring and energy management systems (EMS) to ensure productivity and efficiency. The market's geographical coverage is expanding, with smart office solutions gaining traction in both urban and rural areas due to increasing internet penetration. Overall, the market is poised for significant growth as businesses prioritize energy management, safety, and productivity In the digital age.
How is this Smart Office Solutions Industry segmented?
The smart office solutions industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Smart security systems
Smart EMS
HVAC control systems
Smart lighting systems
Audio-video conferencing systems
Technology
Wireless technologies
Wired technologies
Component
Hardware
Software
Service
Type
Retrofit
New construction
Geography
APAC
China
India
Japan
South Korea
North America
US
Canada
Europe
France
Germany
Italy
UK
South America
Middle East and Africa
By Product Insights
The smart security systems segment is estimated to witness significant growth during the forecast period. In 2024, the market witnessed significant advancements in security systems. Access control systems evolved with biometric technologies, such as facial recognition and fingerprint scanning, RFID cards, and digital locks, which offer enhanced encryption and mobile integration. Surveillance cameras were upgraded with AI-powered analytics for detecting anomalous activities and high-resolution imaging for clearer footage. Fire and safety controls incorporated intelligent detectors that distinguish real threats from false alarms and automated response systems that integrate with building management for fire suppression and emergency alerts.
The integration of cloud technology, IoT sensors, energy management systems, and collaborative tools further enhanced the functionality of office solutions. The market covers geographical regions such as North America, Europe, Asia Pacific, and the Middle East and Africa, with government regulations ensuring compliance and safety standards. Data management software, mapping software, yield mapping software, unmanned aerial vehicles, drones, workforce skill enhancement, and retraining are additional components of the market. The hybrid working model, energ
Measure the distance between two rain gauges to estimate how much precipitation an intervening town receives by deriving a linear function. THE GEOINQUIRIES™ COLLECTION FOR MATHEMATICShttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core math national curriculum standards. Activities include:· Rates & Proportions: A lost beach· D=R x T· Linear rate of change: Steady growth· How much rain? Linear equations· Rates of population change· Distance and midpoint· The coordinate plane· Euclidean vs Non-Euclidean· Area and perimeter at the mall· Measuring crop circles· Area of complex figures· Similar triangles· Perpendicular bisectors· Centers of triangles· Volume of pyramids
Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
https://www.geologyontario.mndm.gov.on.ca/terms_of_use.htmlhttps://www.geologyontario.mndm.gov.on.ca/terms_of_use.html
Get the latest news on mineral sector activity in Ontario. These reports contain monthly and year-to-date listings of mineral sector activity, and new information available at the Ontario Geological Surveys 8 Resident Geologist District Offices.
Site a water tower shared by two towns at the midpoint and determine the costs involved using the Pythagorean theorem. THE GEOINQUIRIES™ COLLECTION FOR MATHEMATICShttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core math national curriculum standards. Activities include:· Rates & Proportions: A lost beach· D=R x T· Linear rate of change: Steady growth· How much rain? Linear equations· Rates of population change· Distance and midpoint· The coordinate plane· Euclidean vs Non-Euclidean· Area and perimeter at the mall· Measuring crop circles· Area of complex figures· Similar triangles· Perpendicular bisectors· Centers of triangles· Volume of pyramids
Teachers, GeoMentors, and school administrators can learn more at http://www.esri.com/geoinquiries.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.