U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data collection of the 3D Elevation Program (3DEP) consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected, with the original spatial reference and units preserved. These data may have been used as the source of updates to the 1/3-arcsecond, 1-arcsecond, and 2-arcsecond seamless 3DEP Digital Elevation Models (DEMs). The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Lidar (Light detection and ranging) discrete-return point cloud data are available in LAZ format. The LAZ format is a lossless compressed version of the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. Point Cloud data can be converted from LAZ to LAS or LAS to LAZ without the loss of any information. Either format stores 3-dimensional point cloud data and point ...
This web map allows for the download of KyFromAbove LiDAR data by 5k tile in LAZ format. This point cloud data was acquired during the typical leaf-off acquisition period (winter-spring) over a period of several years and may be provided as LAS version 1.1, 1.2, or 1.4 depending upon the acquisition period. Users will need to download the LAZIP.exe in order to decompress each tile. LiDAR data specifications adopted by the KyFromAbove Technical Advisory Committee can be found here. This is the source data used to create the Commonwealth's 5 foot digital elevation model (DEM) and its associated derivatives. More information regarding this data resource can be found on the KyGeoPortal.
The goal of the USGS 3D Elevation Program (3DEP) is to collect elevation data in the form of light detection and ranging (LiDAR) data over the conterminous United States, Hawaii, and the U.S. territories, with data acquired over an 8-year period. This dataset provides two realizations of the 3DEP point cloud data. The first resource is a public access organization provided in Entwine Point Tiles format, which a lossless, full-density, streamable octree based on LASzip (LAZ) encoding. The second resource is a Requester Pays of the original, Raw LAZ (Compressed LAS) 1.4 3DEP format, and more complete in coverage, as sources with incomplete or missing CRS, will not have an ETP tile generated. Resource names in both buckets correspond to the USGS project names.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Lidar point cloud data with classifications – unclassified (1), ground (2), low vegetation (3), medium vegetation (4), high vegetation (5), buildings (6), low point - noise (7), reserved – model keypoint (8), high noise (18).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This .las file contains sample LiDAR point cloud data collected by National Ecological Observatory Network's Airborne Observation Platform. The .las file format is a commonly used file format to store LIDAR point cloud data.This teaching data set is used for several tutorials on the NEON website (neonscience.org). The dataset is for educational purposes, data for research purposes can be obtained from the NEON Data Portal (data.neonscience.org).
3D point cloud representing all physical features (e.g. buildings, trees and terrain) across City of Melbourne. The data has been encoded into a .las file format containing geospatial coordinates and RGB values for each point. The download is a zip file containing compressed .las files for tiles across the city area.
The geospatial data has been captured in Map Grid of Australia (MGA) Zone 55 projection and is reflected in the xyz coordinates within each .las file.
Also included are RGB (Red, Green, Blue) attributes to indicate the colour of each point.
Capture Information
- Capture Date: May 2018
- Capture Pixel Size: 7.5cm ground sample distance
- Map Projection: MGA Zone 55 (MGA55)
- Vertical Datum: Australian Height Datum (AHD)
- Spatial Accuracy (XYZ): Supplied survey control used for control (Madigan Surveying) – 25 cm absolute accuracy
Limitations:
Whilst every effort is made to provide the data as accurate as possible, the content may not be free from errors, omissions or defects.
Sample Data:
For an interactive sample of the data please see the link below.
https://cityofmelbourne.maps.arcgis.com/apps/webappviewer3d/index.html?id=b3dc1147ceda46ffb8229117a2dac56d
Preview:
Download:
A zip file containing the .las files representing tiles of point cloud data across City of Melbourne area.
Download Point Cloud Data (4GB)
These light detection and ranging (lidar) point clouds (LPCs) were generated from lidar data collected during multiple field campaigns in three study areas near Winter Park, Colorado. Small, uncrewed aircraft systems (sUAS) collected lidar datasets to represent snow-covered and snow-free periods. More information regarding the sUAS used and data collection methods can be found in the Supplemental Information and process step sections of each study area metadata file.
This Datasets contains the Kitti Object Detection Benchmark, created by Andreas Geiger, Philip Lenz and Raquel Urtasun in the Proceedings of 2012 CVPR ," Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite". This Kernel contains the object detection part of their different Datasets published for Autonomous Driving. It contains a set of images with their bounding box labels and velodyne point clouds. For more information visit the Website they published the data on (http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Ontario Point Cloud (Lidar-Derived) consists of points containing elevation and intensity information derived from returns collected by an airborne topographic lidar sensor. The point cloud is structured into non-overlapping 1 km by 1 km tiles in LAZ format. The following classification codes are applied to the data: * unclassified * ground * water * high noise * low noise This dataset is a compilation of lidar data from multiple acquisition projects, so specifications, parameters, accuracy and sensors may vary by project. This data is for geospatial tech specialists, and is used by government, municipalities, conservation authorities and the private sector for land use planning and environmental analysis. Related data: Raster derivatives have been created from the point clouds. These products may meet your needs and are available for direct download. For a representation of bare earth, see the Ontario Digital Terrain Model (Lidar-Derived). For a model representing all surface features, see the Ontario Digital Surface Model (Lidar-Derived).
This data set provides 3 m gridded, bare-earth elevations (excluding trees) that are used as the baseline for the Airborne Snow Observatory (ASO) snow-on products. The data were collected during snow-free conditions as part of the NASA/JPL ASO aircraft survey campaigns.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Point-wise annotation was conducted on input point clouds to prepare a labeled dataset for segmenting different sorghum plant-organ. Each sorghum plant's leaf, stem, and panicle were manually labeled in 0, 1, and 2, respectively, using the segment module of the CloudCompare software.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a point cloud sampe data which was collected by a mobile Lidar system (MLS).
Industry standard .las LiDAR (Light Detection And Ranging) classified points. This LiDAR data was collected using Leica's ALS50 Phase I sensor. The raw data was verified in Merrick and Company's LiDAR software (MARS) for complete coverage of the project area, and boresighted to align the flightlines. Raw data files were parsed into manageable client-specific tiles. These tiles were then processed through automated filtering that separates the data into different classification groups: unclassified points, ground points, breakline proximity points, "noise" points and water. The data was next taken into MARS to reclassify the erroneous points that may remain in the LiDAR point cloud after auto-filter.
The horizontal datum used is the North American 1983 HARN. The vertical datum is the North American Vertical Datum of 1988. The projection is Illinois State Plane, Eastern Zone, using US Survey Feet as units.
In order to reduce the download times of these files we have compressed them with LASzip. A free decoder is available from the website http://www.laszip.org.
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information. This data set is a LAZ (compressed LAS) format file containing lidar point cloud data. Compression to an LAZ file was done with the LAStools 'laszip' program and can be unzipped with the same free program (laszip.org). LICENSE: US Government Public Domain https://www.usgs.gov/faqs/what-are-terms-uselicensing-map-services-and-data-national-map
These digital elevation models (DEMs) were generated from light detection and ranging (lidar) point clouds (LPCs) derived from lidar data collected during multiple field campaigns at three study areas near Winter Park, Colorado. Small, uncrewed aircraft systems (sUAS) were used to collect lidar datasets to represent snow-covered and snow-free periods.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
a 3-D image sensor
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information. This data set is a LAZ (compressed LAS) format file containing lidar point cloud data. Compression to an LAZ file was done with the LAStools 'laszip' program and can be unzipped with the same free program (laszip.org). LICENSE: US Government Public Domain https://www.usgs.gov/faqs/what-are-terms-uselicensing-map-services-and-data-national-map
This data set contains terrestrial LIDAR survey (TLS) point cloud data collected at Grand Mesa, Colorado as part of the 2017 SnowEx campaign. Data were collected in the fall (September and October) and winter (February) seasons. Each point contains X, Y, and Z coordinates (Easting, Northing, and Elevation), along with ancillary information, such as intensity (i) and color (R,G,B), where available. This is unprocessed data which has not been classified by land use (e.g. bare earth, low vegetation, trees).
Free-form description guided 3D visual graph network for 3D object grounding in point clouds
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information. This data set is a LAZ (compressed LAS) format file containing lidar point cloud data. Compression to an LAZ file was done with the LAStools 'laszip' program and can be unzipped with the same free program (laszip.org). LICENSE: US Government Public Domain https://www.usgs.gov/faqs/what-are-terms-uselicensing-map-services-and-data-national-map
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data collection of the 3D Elevation Program (3DEP) consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected, with the original spatial reference and units preserved. These data may have been used as the source of updates to the 1/3-arcsecond, 1-arcsecond, and 2-arcsecond seamless 3DEP Digital Elevation Models (DEMs). The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Lidar (Light detection and ranging) discrete-return point cloud data are available in LAZ format. The LAZ format is a lossless compressed version of the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. Point Cloud data can be converted from LAZ to LAS or LAS to LAZ without the loss of any information. Either format stores 3-dimensional point cloud data and point ...