Facebook
Twitteranalyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Along track temperature, Salinity, backscatter, Chlorophyll Fluoresence, and normalized water leaving radiance (nLw).
On the bow of the R/V Roger Revelle was a Satlantic SeaWiFS Aircraft Simulator (MicroSAS) system, used to estimate water-leaving radiance from the ship, analogous to to the nLw derived by the SeaWiFS and MODIS satellite sensors, but free from atmospheric error (hence, it can provide data below clouds).
The system consisted of a down-looking radiance sensor and a sky-viewing radiance sensor, both mounted on a steerable holder on the bow. A downwelling irradiance sensor was mounted at the top of the ship's meterological mast, on the bow, far from any potentially shading structures. These data were used to estimate normalized water-leaving radiance as a function of wavelength. The radiance detector was set to view the water at 40deg from nadir as recommended by Mueller et al. [2003b]. The water radiance sensor was able to view over an azimuth range of ~180deg across the ship's heading with no viewing of the ship's wake. The direction of the sensor was adjusted to view the water 90-120deg from the sun's azimuth, to minimize sun glint. This was continually adjusted as the time and ship's gyro heading were used to calculate the sun's position using an astronomical solar position subroutine interfaced with a stepping motor which was attached to the radiometer mount (designed and fabricated at Bigelow Laboratory for Ocean Sciences). Protocols for operation and calibration were performed according to Mueller [Mueller et al., 2003a; Mueller et al., 2003b; Mueller et al., 2003c]. Before 1000h and after 1400h, data quality was poorer as the solar zenith angle was too low. Post-cruise, the 10Hz data were filtered to remove as much residual white cap and glint as possible (we accept the lowest 5% of the data). Reflectance plaque measurements were made several times at local apparent noon on sunny days to verify the radiometer calibrations.
Within an hour of local apparent noon each day, a Satlantic OCP sensor was deployed off the stern of the R/V Revelle after the ship oriented so that the sun was off the stern. The ship would secure the starboard Z-drive, and use port Z-drive and bow thruster to move the ship ahead at about 25cm s-1. The OCP was then trailed aft and brought to the surface ~100m aft of the ship, then allowed to sink to 100m as downwelling spectral irradiance and upwelling spectral radiance were recorded continuously along with temperature and salinity. This procedure ensured there were no ship shadow effects in the radiometry.
Instruments include a WETLabs wetstar fluorometer, a WETLabs ECOTriplet and a SeaBird microTSG.
Radiometry was done using a Satlantic 7 channel microSAS system with Es, Lt and Li sensors.
Chl data is based on inter calibrating surface discrete Chlorophyll measure with the temporally closest fluorescence measurement and applying the regression results to all fluorescence data.
Data have been corrected for instrument biofouling and drift based on weekly purewater calibrations of the system. Radiometric data has been processed using standard Satlantic processing software and has been checked with periodic plaque measurements using a 2% spectralon standard.
Lw is calculated from Lt and Lsky and is "what Lt would be if the
sensor were looking straight down". Since our sensors are mounted at
40o, based on various NASA protocols, we need to do that conversion.
Lwn adds Es to the mix. Es is used to normalize Lw. Nlw is related to Rrs, Remote Sensing Reflectance
Techniques used are as described in:
Balch WM, Drapeau DT, Bowler BC, Booth ES, Windecker LA, Ashe A (2008) Space-time variability of carbon standing stocks and fixation rates in the Gulf of Maine, along the GNATS transect between Portland, ME, USA, and Yarmouth, Nova Scotia, Canada. J Plankton Res 30:119-139
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
analyze the survey of consumer finances (scf) with r the survey of consumer finances (scf) tracks the wealth of american families. every three years, more than five thousand households answer a battery of questions about income, net worth, credit card debt, pensions, mortgages, even the lease on their cars. plenty of surveys collect annual income, only the survey of consumer finances captures such detailed asset data. responses are at the primary economic unit-level (peu) - the economically dominant, financially interdependent family members within a sampled household. norc at the university of chicago administers the data collection, but the board of governors of the federal reserve pay the bills and therefore call the shots. if you were so brazen as to open up the microdata and run a simple weighted median, you'd get the wrong answer. the five to six thousand respondents actually gobble up twenty-five to thirty thousand records in the final pub lic use files. why oh why? well, those tables contain not one, not two, but five records for each peu. wherever missing, these data are multiply-imputed, meaning answers to the same question for the same household might vary across implicates. each analysis must account for all that, lest your confidence intervals be too tight. to calculate the correct statistics, you'll need to break the single file into five, necessarily complicating your life. this can be accomplished with the meanit sas macro buried in the 2004 scf codebook (search for meanit - you'll need the sas iml add-on). or you might blow the dust off this website referred to in the 2010 codebook as the home of an alternative multiple imputation technique, but all i found were broken links. perhaps it's time for plan c, and by c, i mean free. read the imputation section of the latest codebook (search for imputation), then give these scripts a whirl. they've got that new r smell. the lion's share of the respondents in the survey of consumer finances get drawn from a pretty standard sample of american dwellings - no nursing homes, no active-duty military. then there's this secondary sample of richer households to even out the statistical noise at the higher end of the i ncome and assets spectrum. you can read more if you like, but at the end of the day the weights just generalize to civilian, non-institutional american households. one last thing before you start your engine: read everything you always wanted to know about the scf. my favorite part of that title is the word always. this new github repository contains t hree scripts: 1989-2010 download all microdata.R initiate a function to download and import any survey of consumer finances zipped stata file (.dta) loop through each year specified by the user (starting at the 1989 re-vamp) to download the main, extract, and replicate weight files, then import each into r break the main file into five implicates (each containing one record per peu) and merge the appropriate extract data onto each implicate save the five implicates and replicate weights to an r data file (.rda) for rapid future loading 2010 analysis examples.R prepare two survey of consumer finances-flavored multiply-imputed survey analysis functions load the r data files (.rda) necessary to create a multiply-imputed, replicate-weighted survey design demonstrate how to access the properties of a multiply-imput ed survey design object cook up some descriptive statistics and export examples, calculated with scf-centric variance quirks run a quick t-test and regression, but only because you asked nicely replicate FRB SAS output.R reproduce each and every statistic pr ovided by the friendly folks at the federal reserve create a multiply-imputed, replicate-weighted survey design object re-reproduce (and yes, i said/meant what i meant/said) each of those statistics, now using the multiply-imputed survey design object to highlight the statistically-theoretically-irrelevant differences click here to view these three scripts for more detail about the survey of consumer finances (scf), visit: the federal reserve board of governors' survey of consumer finances homepage the latest scf chartbook, to browse what's possible. (spoiler alert: everything.) the survey of consumer finances wikipedia entry the official frequently asked questions notes: nationally-representative statistics on the financial health, wealth, and assets of american hous eholds might not be monopolized by the survey of consumer finances, but there isn't much competition aside from the assets topical module of the survey of income and program participation (sipp). on one hand, the scf interview questions contain more detail than sipp. on the other hand, scf's smaller sample precludes analyses of acute subpopulations. and for any three-handed martians in the audience, ther e's also a few biases between these two data sources that you ought to consider. the survey methodologists at the federal reserve take their job...
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitteranalyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D