100+ datasets found
  1. n

    Declassified Satellite Imagery 2 (2002)

    • cmr.earthdata.nasa.gov
    • gimi9.com
    • +5more
    Updated Jan 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Declassified Satellite Imagery 2 (2002) [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220567575-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Earth
    Description

    Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public.

    Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications.

    The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet.

    The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions.

    The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.

  2. The WorldStrat Dataset: Open High-Resolution Satellite Imagery With Paired...

    • zenodo.org
    application/gzip, csv +2
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julien Cornebise; Julien Cornebise; Ivan Oršolić; Ivan Oršolić; Freddie Kalaitzis; Freddie Kalaitzis (2024). The WorldStrat Dataset: Open High-Resolution Satellite Imagery With Paired Multi-Temporal Low-Resolution [Dataset]. http://doi.org/10.5281/zenodo.6810792
    Explore at:
    csv, application/gzip, txt, pdfAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Julien Cornebise; Julien Cornebise; Ivan Oršolić; Ivan Oršolić; Freddie Kalaitzis; Freddie Kalaitzis
    Description

    What is this dataset?

    Nearly 10,000 km² of free high-resolution and matched low-resolution satellite imagery of unique locations which ensure stratified representation of all types of land-use across the world: from agriculture to ice caps, from forests to multiple urbanization densities.

    Those locations are also enriched with typically under-represented locations in ML datasets: sites of humanitarian interest, illegal mining sites, and settlements of persons at risk.

    Each high-resolution image (1.5 m/pixel) comes with multiple temporally-matched low-resolution images from the freely accessible lower-resolution Sentinel-2 satellites (10 m/pixel).

    We accompany this dataset with a paper, datasheet for datasets and an open-source Python package to: rebuild or extend the WorldStrat dataset, train and infer baseline algorithms, and learn with abundant tutorials, all compatible with the popular EO-learn toolbox.

    Why make this?

    We hope to foster broad-spectrum applications of ML to satellite imagery, and possibly develop the same power of analysis allowed by costly private high-resolution imagery from free public low-resolution Sentinel2 imagery. We illustrate this specific point by training and releasing several highly compute-efficient baselines on the task of Multi-Frame Super-Resolution.

    Licences

    • The high-resolution Airbus imagery is distributed, with authorization from Airbus, under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
    • The labels, Sentinel2 imagery, and trained weights are released under Creative Commons with Attribution 4.0 International (CC BY 4.0).
    • The source code (will be shortly released on GitHub) under 3-Clause BSD license.
  3. G

    Data from: Satellite Image

    • open.canada.ca
    pdf
    Updated Mar 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Satellite Image [Dataset]. https://open.canada.ca/data/en/dataset/912a9d77-0a3f-5e0c-91f5-197ee5317e9f
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The satellite image of Canada is a composite of several individual satellite images form the Advanced Very High Resolution Radiometre (AVHRR) sensor on board various NOAA Satellites. The colours reflect differences in the density of vegetation cover: bright green for dense vegetation in humid southern regions; yellow for semi-arid and for mountainous regions; brown for the north where vegetation cover is very sparse; and white for snow and ice. An inset map shows a satellite image mosaic of North America with 35 land cover classes, based on data from the SPOT satellite VGT (vegetation) sensor.

  4. New Zealand 10m Satellite Imagery (2022-2023)

    • data.linz.govt.nz
    dwg with geojpeg +8
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Information New Zealand, New Zealand 10m Satellite Imagery (2022-2023) [Dataset]. https://data.linz.govt.nz/layer/116323-new-zealand-10m-satellite-imagery-2022-2023/
    Explore at:
    jpeg2000 lossless, geojpeg, jpeg2000, kea, geotiff, dwg with geojpeg, pdf, erdas imagine, kmlAvailable download formats
    Dataset authored and provided by
    Land Information New Zealandhttps://www.linz.govt.nz/
    License

    https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    This dataset provides a seamless cloud-free 10m resolution satellite imagery layer of the New Zealand mainland and offshore islands.

    The imagery was captured by the European Space Agency Sentinel-2 satellites between September 2022 - April 2023.

    Data comprises: • 450 ortho-rectified RGB GeoTIFF images in NZTM projection, tiled into the LINZ Standard 1:50000 tile layout. • Satellite sensors: ESA Sentinel-2A and Sentinel-2B • Acquisition dates: September 2022 - April 2023 • Spectral resolution: R, G, B • Spatial resolution: 10 meters • Radiometric resolution: 8-bits (downsampled from 12-bits)

    This is a visual product only. The data has been downsampled from 12-bits to 8-bits, and the original values of the images have been modified for visualisation purposes.

    Also available on: • BasemapsNZ Imagery - Registry of Open Data on AWS

  5. n

    USGS High Resolution Orthoimagery

    • cmr.earthdata.nasa.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +3more
    Updated Jan 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). USGS High Resolution Orthoimagery [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220567548-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Earth
    Description

    High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map.

    A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.

  6. n

    QuickBird full archive

    • cmr.earthdata.nasa.gov
    • eocat.esa.int
    • +2more
    not provided
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). QuickBird full archive [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1965336934-ESA.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    Apr 24, 2025
    Time period covered
    Nov 1, 2001 - Mar 31, 2015
    Area covered
    Earth
    Description

    QuickBird high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4, and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section.

    In particular, QuickBird offers archive panchromatic products up to 0.60 m GSD resolution and 4-Bands Multispectral products up to 2.4 m GSD resolution.

    Band Combination Data Processing Level Resolution Panchromatic and 4-bands Standard(2A)/View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12,000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm

    4-Bands being an option from:

    4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1) Natural Colour / Coloured Infrared (3-Band pan-sharpened) Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products: the initial special resolution (GSD) is unchanged but the HD technique intelligently increases the number of pixels and improves the visual clarity achieving aesthetically refined imagery with precise edges and well reconstructed details.

  7. S

    Land-Use Data Set Based on “Gaofen-1 Satellite” Data

    • scidb.cn
    Updated Dec 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    邹金秋; 中国农业科学院农业资源与农业区划研究所; zoujinqiu@caas.cn。陈佑启; 中国农业科学院农业资源与农业区划研究所; chenyouqi@caas.cn。 (2017). Land-Use Data Set Based on “Gaofen-1 Satellite” Data [Dataset]. http://doi.org/10.11922/sciencedb.538
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 2, 2017
    Dataset provided by
    Science Data Bank
    Authors
    邹金秋; 中国农业科学院农业资源与农业区划研究所; zoujinqiu@caas.cn。陈佑启; 中国农业科学院农业资源与农业区划研究所; chenyouqi@caas.cn。
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    "Gaofen-1 satellite" is the first earth observation system with high resolution, launched in April 2013. Its data is mainly used now in the fields of land, agriculture and environment. "Gaofeng-1" has three different resolutions such as 2 meters of panchromatic data, 8 meters and 16 meters of spectral data, combining. The Institute of agricultural resources and regionalization, Chinese academy of agricultural sciences, as the main application unit of the agricultural sector, can obtain relevant data for free and in real time. After the atmospheric and radiation correction, geometric correctionand projection transformation, and on the basis of "status of land use classification standard (GB - T21010-2015)" issued by the ministry of land and resources, for all types of land classification and summary statistics can be obtained through image analysis. At present, the land-use classification and extraction of 2016-2017 of 16 provinces have been preliminarily completed, which has formed a land-use map and statistics based on the administrative region. Comparing with the land-use data obtained by the Institute of Geographic Science and Resources, Chinese academy of sciences based on MODIS data, this data has a higher resolution and a characteristic of more up-to-date, and it can provide better service for all kinds of management and research departments.

  8. n

    WorldView-2 full archive and tasking

    • cmr.earthdata.nasa.gov
    • fedeo.ceos.org
    • +2more
    not provided
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). WorldView-2 full archive and tasking [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1965336963-ESA.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    Apr 24, 2025
    Time period covered
    Nov 1, 2009 - Present
    Area covered
    Earth
    Description

    WorldView-2 high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4, and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section.

    In particular, WorldView-2 offers archive and tasking panchromatic products up to 0.46 m GSD resolution, and 4-Bands/8-Bands Multispectral products up to 1.84 m GSD resolution.

    Band Combination Data Processing Level Resolution Panchromatic and 4-bands Standard (2A)/View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12.000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm 8-bands Standard(2A)/View Ready Standard (OR2A) 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12.000 Orthorectified 30 cm, 40 cm, 50/60 cm

    4-Bands being an optional from:

    4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1). 8-Bands being an optional from:

    8-Band Multispectral (COASTAL, BLUE, GREEN, YELLOW, RED, RED EDGE, NIR1, NIR2) 8-Band Bundle (PAN, COASTAL, BLUE, GREEN, YELLOW, RED, RED EDGE, NIR1, NIR2). Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products: the initial special resolution (GSD) is unchanged but the HD technique increases the number of pixels, improves the visual clarity and allows to obtain an aesthetically refined imagery with precise edges and well reconstructed details.

    As per ESA policy, very high-resolution imagery of conflict areas cannot be provided.

  9. N

    Nordics Satellite Imagery Services Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2024). Nordics Satellite Imagery Services Market Report [Dataset]. https://www.datainsightsmarket.com/reports/nordics-satellite-imagery-services-market-14598
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Nordic countries, Global
    Variables measured
    Market Size
    Description

    The Nordics satellite imagery services market is projected to grow from $0.22 million in 2025 to $0.96 million by 2033, exhibiting a CAGR of 13.62% during the forecast period. The increasing adoption of satellite imagery for various applications, such as geospatial data acquisition and mapping, natural resource management, and surveillance and security, is driving the market growth. Moreover, the expanding construction and transportation & logistics sectors in the region are further boosting the demand for satellite imagery services. Key trends shaping the Nordics satellite imagery services market include:

    Growing adoption of cloud-based platforms and services for satellite imagery processing and analysis: This trend is enabling end-users to access satellite imagery data and services without the need for significant upfront investments in infrastructure. Increasing availability of high-resolution satellite imagery: The launch of new satellites and the development of new image processing technologies are making it possible to obtain high-resolution satellite imagery, which is essential for a variety of applications, such as mapping and land use planning. Emergence of new applications for satellite imagery: Satellite imagery is increasingly being used for a variety of new applications, such as environmental monitoring, disaster management, and precision agriculture. These new applications are creating new opportunities for growth in the Nordics satellite imagery services market. Recent developments include: May 2023 - Business Finland granted EUR 30 million (USD 32.75 million) loan funding for ICEYE's product development project based on innovative new sensor and space technology that will provide real-time and reliable information to support decision-making worldwide. The project aims to create a unique information and software platform, design and develop technology for next-generation satellites, and apply the high-accuracy information from satellites globally for natural catastrophe analysis, modeling, and decision-making., March 2023 - Norway's International Climate and Forest Initiative (NICFI) announced that NICFI's satellite data program is extended until September 2023. Norway's International Climate and Forest Initiative (NICFI) grant free access to high-resolution satellite imagery of the tropics to anyone, anywhere, to monitor tropical deforestation. Through Norway's International Climate & Forests Initiative, users can access the planet's high-resolution, analysis-ready satellite images of the world's tropics to help reduce and combat climate change and reverse the loss of tropical forests.. Key drivers for this market are: Increasing Demand among Various End-user Industries, notablly in Forestry Sector, Adoption of Big Data and Imagery Analytics. Potential restraints include: High Cost of Satellite Imaging Data Acquisition and Processing. Notable trends are: Forestry and Agriculture is Analyzed to Hold Significant Market Share.

  10. r

    Keppel Islands Regional Maps (satellite imagery, habitat mapping and A0...

    • researchdata.edu.au
    Updated Apr 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric (2020). Keppel Islands Regional Maps (satellite imagery, habitat mapping and A0 maps) (AIMS) [Dataset]. http://doi.org/10.26274/MXKA-2B41
    Explore at:
    Dataset updated
    Apr 8, 2020
    Dataset provided by
    Australian Ocean Data Network
    Authors
    Lawrey, Eric
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Time period covered
    May 27, 2016 - Jul 17, 2019
    Area covered
    Description

    This dataset collection contains A0 maps of the Keppel Island region based on satellite imagery and fine-scale habitat mapping of the islands and marine environment. This collection provides the source satellite imagery used to produce these maps and the habitat mapping data.

    The imagery used to produce these maps was developed by blending high-resolution imagery (1 m) from ArcGIS Online with a clear-sky composite derived from Sentinel 2 imagery (10 m). The Sentinel 2 imagery was used to achieve full coverage of the entire region, while the high-resolution was used to provide detail around island areas.

    The blended imagery is a derivative product of the Sentinel 2 imagery and ArcGIS Online imagery, using Photoshop to to manually blend the best portions of each imagery into the final product. The imagery is provided for the sole purpose of reproducing the A0 maps.

    Methods:

    The high resolution satellite composite composite was developed by manual masking and blending of a Sentinel 2 composite image and high resolution imagery from ArcGIS Online World Imagery (2019).

    The Sentinel 2 composite was produced by statistically combining the clearest 10 images from 2016 - 2019. These images were manually chosen based on their very low cloud cover, lack of sun glint and clear water conditions. These images were then combined together to remove clouds and reduce the noise in the image.

    The processing of the images was performed using a script in Google Earth Engine. The script combines the manually chosen imagery to estimate the clearest imagery. The dates of the images were chosen using the EOBrowser (https://www.sentinel-hub.com/explore/eobrowser) to preview all the Sentinel 2 imagery from 2015-2019. The images that were mostly free of clouds, with little or no sun glint, were recorded. Each of these dates was then viewed in Google Earth Engine with high contrast settings to identify images that had high water surface noise due to algal blooms, waves, or re-suspension. These were excluded from the list. All the images were then combined by applying a histogram analysis of each pixel, with the final image using the 40th percentile of the time series of the brightness of each pixel. This approach helps exclude effects from clouds.

    The contrast of the image was stretched to highlight the marine features, whilst retaining detail in the land features. This was done by choosing a black point for each channel that would provide a dark setting for deep clear water. Gamma correction was then used to lighten up the dark water features, whilst not ove- exposing the brighter shallow areas.

    Both the high resolution satellite imagery and Sentinel 2 imagery was combined at 1 m pixel resolution. The resolution of the Sentinel 2 tiles was up sampled to match the resolution of the high-resolution imagery. These two sets of imagery were then layered in Photoshop. The brightness of the high-resolution satellite imagery was then adjusting to match the Sentinel 2 imagery. A mask was then used to retain and blend the imagery that showed the best detail of each area. The blended tiles were then merged with the overall area imagery by performing a GDAL merge, resulting in an upscaling of the Sentinel 2 imagery to 1 m resolution.


    Habitat Mapping:

    A 5 m resolution habitat mapping was developed based on the satellite imagery, aerial imagery available, and monitoring site information. This habitat mapping was developed to help with monitoring site selection and for the mapping workshop with the Woppaburra TOs on North Keppel Island in Dec 2019.

    The habitat maps should be considered as draft as they don't consider all available in water observations. They are primarily based on aerial and satellite images.

    The habitat mapping includes: Asphalt, Buildings, Mangrove, Cabbage-tree palm, Sheoak, Other vegetation, Grass, Salt Flat, Rock, Beach Rock, Gravel, Coral, Sparse coral, Unknown not rock (macroalgae on rubble), Marine feature (rock).

    This assumed layers allowed the digitisation of these features to be sped up, so for example, if there was coral growing over a marine feature then the boundary of the marine feature would need to be digitised, then the coral feature, but not the boundary between the marine feature and the coral. We knew that the coral was going to cut out from the marine feature because the coral is on top of the marine feature, saving us time in digitising this boundary. Digitisation was performed on an iPad using Procreate software and an Apple pencil to draw the features as layers in a drawing. Due to memory limitations of the iPad the region was digitised using 6000x6000 pixel tiles. The raster images were converted back to polygons and the tiles merged together.

    A python script was then used to clip the layer sandwich so that there is no overlap between feature types.

    Habitat Validation:

    Only limited validation was performed on the habitat map. To assist in the development of the habitat mapping, nearly every YouTube video available, at the time of development (2019), on the Keppel Islands was reviewed and, where possible, georeferenced to provide a better understanding of the local habitats at the scale of the mapping, prior to the mapping being conducted. Several validation points were observed during the workshop. The map should be considered as largely unvalidated.

    data/coastline/Keppels_AIMS_Coastline_2017.shp:
    The coastline dataset was produced by starting with the Queensland coastline dataset by DNRME (Downloaded from http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid={369DF13C-1BF3-45EA-9B2B-0FA785397B34} on 31 Aug 2019). This was then edited to work at a scale of 1:5000, using the aerial imagery from Queensland Globe as a reference and a high-tide satellite image from 22 Feb 2015 from Google Earth Pro. The perimeter of each island was redrawn. This line feature was then converted to a polygon using the "Lines to Polygon" QGIS tool. The Keppel island features were then saved to a shapefile by exporting with a limited extent.

    data/labels/Keppel-Is-Map-Labels.shp:
    This contains 70 named places in the Keppel island region. These names were sourced from literature and existing maps. Unfortunately, no provenance of the names was recorded. These names are not official. This includes the following attributes:
    - Name: Name of the location. Examples Bald, Bluff
    - NameSuffix: End of the name which is often a description of the feature type: Examples: Rock, Point
    - TradName: Traditional name of the location
    - Scale: Map scale where the label should be displayed.

    data/lat/Keppel-Is-Sentinel2-2016-19_B4-LAT_Poly3m_V3.shp:
    This corresponds to a rough estimate of the LAT contours around the Keppel Islands. LAT was estimated from tidal differences in Sentinel-2 imagery and light penetration in the red channel. Note this is not very calibrated and should be used as a rough guide. Only one rough in-situ validation was performed at low tide on Ko-no-mie at the edge of the reef near the education centre. This indicated that the LAT estimate was within a depth error range of about +-0.5 m.

    data/habitat/Keppels_AIMS_Habitat-mapping_2019.shp:
    This shapefile contains the mapped land and marine habitats. The classification type is recorded in the Type attribute.

    Format:

    GeoTiff (Internal JPEG format - 538 MB)
    PDF (A0 regional maps - ~30MB each)
    Shapefile (Habitat map, Coastline, Labels, LAT estimate)

    Data Location:

    This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\Keppels_AIMS_Regional-maps

  11. n

    GeoEye-1 full archive and tasking

    • cmr.earthdata.nasa.gov
    • eocat.esa.int
    • +2more
    not provided
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). GeoEye-1 full archive and tasking [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1965336913-ESA.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    Apr 24, 2025
    Time period covered
    Oct 1, 2008 - Present
    Area covered
    Earth
    Description

    GeoEye-1 high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4 and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section.

    In particular, GeoEye-1 offers archive and tasking panchromatic products up to 0.41 m GSD resolution and Multispectral products up to 1.65 m GSD resolution.

    Band Combination Data Processing Level Resolutions Panchromatic and 4-bands Standard (2A) / View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12,000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm

    The options for 4-Bands are the following:

    4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1). Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products the initial special resolution (GSD) is unchanged but the HD technique increases the number of pixels and improves the visual clarity achieving aesthetically refined imagery with precise edges and well-reconstructed details.

    As per ESA policy, very high-resolution imagery of conflict areas cannot be provided.

  12. d

    Data from: IKONOS-2

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOI/USGS/EROS (2025). IKONOS-2 [Dataset]. https://catalog.data.gov/dataset/ikonos-2
    Explore at:
    Dataset updated
    Aug 22, 2025
    Dataset provided by
    DOI/USGS/EROS
    Description

    Since its launch in September 1999, GeoEye's IKONOS satellite has provided a reliable stream of image data since January 2000, which has become the standard for commercial high-resolution satellite data products. With an altitude of 681 km and a revisit time of approximately 3 days, IKONOS produces one-meter panchromatic and four-meter multispectral imagery that can be combined to accommodate a wide range of high-resolution imagery applications.

  13. Gaofen-2 satellite images - Five Billion Pixels

    • kaggle.com
    Updated Mar 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AleTBM (2024). Gaofen-2 satellite images - Five Billion Pixels [Dataset]. https://www.kaggle.com/datasets/aletbm/gaofen-satellite-images-five-billion-pixels
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 23, 2024
    Dataset provided by
    Kaggle
    Authors
    AleTBM
    Description

    Context

    High-resolution satellite images can provide abundant, detailed spatial information for land cover classification, which is particularly important for studying the complicated built environment. However, due to the complex land cover patterns, the costly training sample collections, and the severe distribution shifts of satellite imageries caused by, e.g., geographical differences or acquisition conditions, few studies have applied high-resolution images to land cover mapping in detailed categories at large scale.

    Content

    We present a large-scale land cover dataset, Five-Billion-Pixels. It contains more than 5 billion labeled pixels of 150 high-resolution Gaofen-2 (4 m) satellite images, annotated in a 24-category system covering artificial-constructed, agricultural, and natural classes.

    How I used this dataset?

    Correspondence of colors (BGR) and categories:

    • 0, 0, 0: unlabeled
    • 200, 0, 0: industrial area
    • 0, 200, 0: paddy field
    • 150, 250, 0: irrigated field
    • 150, 200, 150: dry cropland
    • 200, 0, 200: garden land
    • 150, 0, 250: arbor forest
    • 150, 150, 250: shrub forest
    • 200, 150, 200: park
    • 250, 200, 0: natural meadow
    • 200, 200, 0: artificial meadow
    • 0, 0, 200: river
    • 250, 0, 150: urban residential
    • 0, 150, 200: lake
    • 0, 200, 250: pond
    • 150, 200, 250: fish pond
    • 250, 250, 250: snow
    • 200, 200, 200: bareland
    • 200, 150, 150: rural residential
    • 250, 200, 150: stadium
    • 150, 150, 0: square
    • 250, 150, 150: road
    • 250, 150, 0: overpass
    • 250, 200, 250: railway station
    • 200, 150, 0: airport

    Correspondence of indexes and categories:

    • 0: unlabeled
    • 1: industrial area
    • 2: paddy field
    • 3: irrigated field
    • 4: dry cropland
    • 5: garden land
    • 6: arbor forest
    • 7: shrub forest
    • 8: park
    • 9: natural meadow
    • 10: artificial meadow
    • 11: river
    • 12: urban residential
    • 13: lake
    • 14: pond
    • 15: fish pond
    • 16: snow
    • 17: bareland
    • 18: rural residential
    • 19: stadium
    • 20: square
    • 21: road
    • 22: overpass
    • 23: railway station
    • 24: airport

    Use the PIL library to read 8-bit data (which has been processed as normal images): image = Image.open(imgname).convert('CMYK').

    Citation

    @article{FBP2023,

    title={Enabling country-scale land cover mapping with meter-resolution satellite imagery},

    author={Tong, Xin-Yi and Xia, Gui-Song and Zhu, Xiao Xiang},

    journal={ISPRS Journal of Photogrammetry and Remote Sensing},

    volume={196},

    pages={178-196},

    year={2023}

    }

    Contact

    E-mail: xinyi.tong@tum.de

    Personal page: Xin-Yi Tong

  14. r

    Data from: Mapping Long Term Changes in Mangrove Cover and Predictions of...

    • researchdata.edu.au
    Updated May 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kumar Lalit; Ghosh Manoj; Manoj Kumer Ghosh; Lalit Kumar; Ghosh Manoj; Ghosh Manoj (2018). Mapping Long Term Changes in Mangrove Cover and Predictions of Future Change under Different Climate Change Scenarios in the Sundarbans, Bangladesh [Dataset]. https://researchdata.edu.au/mapping-long-term-sundarbans-bangladesh/1594527
    Explore at:
    Dataset updated
    May 22, 2018
    Dataset provided by
    University of New England, Australia
    Authors
    Kumar Lalit; Ghosh Manoj; Manoj Kumer Ghosh; Lalit Kumar; Ghosh Manoj; Ghosh Manoj
    Area covered
    Bangladesh, Sundarbans
    Description

    Ground-based readings of temperature and rainfall, satellite imagery, aerial photographs, ground verification data and Digital Elevation Model (DEM) were used in this study. Ground-based meteorological information was obtained from Bangladesh Meteorological Department (BMD) for the period 1977 to 2015 and was used to determine the trends of rainfall and temperature in this thesis. Satellite images obtained from the US Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) website (www.glovis.usgs.gov) in four time periods were analysed to assess the dynamics of mangrove population at species level. Remote sensing techniques, as a solution to lack of spatial data at a relevant scale and difficulty in accessing the mangroves for field survey and also as an alternative to the traditional methods were used in monitoring of the changes in mangrove species composition, . To identify mangrove forests, a number of satellite sensors have been used, including Landsat TM/ETM/OLI, SPOT, CBERS, SIR, ASTER, and IKONOS and Quick Bird. The use of conventional medium-resolution remote sensor data (e.g., Landsat TM, ASTER, SPOT) in the identification of different mangrove species remains a challenging task. In many developing countries, the high cost of acquiring high- resolution satellite imagery excludes its routine use. The free availability of archived images enables the development of useful techniques in its use and therefor Landsat imagery were used in this study for mangrove species classification. Satellite imagery used in this study includes: Landsat Multispectral Scanner (MSS) of 57 m resolution acquired on 1st February 1977, Landsat Thematic Mapper (TM) of 28.5 m resolution acquired on 5th February 1989, Landsat Enhanced Thematic Mapper (ETM+) of 28.5 m resolution acquired on 28th February 2000 and Landsat Operational Land Imager (OLI) of 30 m resolution acquired on 4th February 2015. To study tidal channel dynamics of the study area, aerial photographs from 1974 and 2011, and a satellite image from 2017 were used. Satellite images from 1974 with good spatial resolution of the area were not available, and therefore aerial photographs of comparatively high and fine resolution were considered adequate to obtain information on tidal channel dynamics. Although high-resolution satellite imagery was available for 2011, aerial photographs were used for this study due to their effectiveness in terms of cost and also ease of comparison with the 1974 photographs. The aerial photographs were sourced from the Survey of Bangladesh (SOB). The Sentinel-2 satellite image from 2017 was downloaded from the European Space Agency (ESA) website (https://scihub.copernicus.eu/). In this research, elevation data acts as the main parameter in the determination of the sea level rise (SLR) impacts on the spatial distribution of the future mangrove species of the Bangladesh Sundarbans. High resolution elevation data is essential for this kind of research where every centimeter counts due to the low-lying characteristics of the study area. The high resolution (less than 1m vertical error) DEM data used in this study was obtained from Water Resources Planning Organization (WRPO), Bangladesh. The elevation information used to construct the DEM was originally collected by a Finnish consulting firm known as FINNMAP in 1991 for the Bangladesh government.

  15. High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska,...

    • nsidc.org
    Updated Aug 1, 2002
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Snow and Ice Data Center (2002). High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://nsidc.org/data/arcss304/versions/1
    Explore at:
    Dataset updated
    Aug 1, 2002
    Dataset authored and provided by
    National Snow and Ice Data Center
    Area covered
    United States, Utqiagvik, Alaska
    Description

    an index map for the 62 QuickBird tiles (ESRI Shapefile format)

  16. G

    High Resolution Satellite Imagery

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    html
    Updated Aug 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Yukon (2025). High Resolution Satellite Imagery [Dataset]. https://open.canada.ca/data/dataset/0a14b357-8a89-6e98-720e-3a800022cb99
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 6, 2025
    Dataset provided by
    Government of Yukon
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    This image service contains high resolution satellite imagery for selected regions throughout the Yukon. Imagery is 1m pixel resolution, or better. Imagery was supplied by the Government of Yukon, and the Canadian Department of National Defense. All the imagery in this service is licensed. If you have any questions about Yukon government satellite imagery, please contact Geomatics.Help@gov.yk.can. This service is managed by Geomatics Yukon.

  17. g

    Ontario Imagery Web Map Service (OIWMS)

    • geohub.lio.gov.on.ca
    Updated Mar 31, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Information Ontario (2014). Ontario Imagery Web Map Service (OIWMS) [Dataset]. https://geohub.lio.gov.on.ca/maps/101295c5d3424045917bdd476f322c02
    Explore at:
    Dataset updated
    Mar 31, 2014
    Dataset authored and provided by
    Land Information Ontario
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Area covered
    Description

    The Ontario Imagery Web Map Service (OIWMS) is an open data service available to everyone free of charge. It provides instant online access to the most recent, highest quality, province wide imagery. GEOspatial Ontario (GEO) makes this data available as an Open Geospatial Consortium (OGC) compliant web map service or as an ArcGIS map service. Imagery was compiled from many different acquisitions which are detailed in the Ontario Imagery Web Map Service Metadata Guide linked below. Instructions on how to use the service can also be found in the Imagery User Guide linked below. Note: This map displays the Ontario Imagery Web Map Service Source, a companion ArcGIS web map service to the Ontario Imagery Web Map Service. It provides an overlay that can be used to identify acquisition relevant information such as sensor source and acquisition date. OIWMS contains several hierarchical layers of imagery, with coarser less detailed imagery that draws at broad scales, such as a province wide zooms, and finer more detailed imagery that draws when zoomed in, such as city-wide zooms. The attributes associated with this data describes at what scales (based on a computer screen) the specific imagery datasets are visible. Available Products Ontario Imagery OCG Web Map Service – public linkOntario Imagery ArcGIS Map Service – public linkOntario Imagery Web Map Service Source – public linkOntario Imagery ArcGIS Map Service – OPS internal linkOntario Imagery Web Map Service Source – OPS internal linkAdditional Documentation Ontario Imagery Web Map Service Metadata Guide (PDF)Ontario Imagery Web Map Service Copyright Document (PDF) Imagery User Guide (Word)StatusCompleted: Production of the data has been completed Maintenance and Update FrequencyAnnually: Data is updated every year ContactOntario Ministry of Natural Resources, Geospatial Ontario, imagery@ontario.ca

  18. n

    WorldView-1 Level 1B Panchromatic Satellite Imagery

    • cmr.earthdata.nasa.gov
    • s.cnmilf.com
    • +4more
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). WorldView-1 Level 1B Panchromatic Satellite Imagery [Dataset]. http://doi.org/10.57909/Maxar/WV01_Pan_L1B.001
    Explore at:
    Dataset updated
    Jul 19, 2023
    Time period covered
    Oct 10, 2007 - Present
    Area covered
    Earth
    Description

    The WorldView-1 Level 1B Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Panchromatic imagery is collected by the DigitalGlobe WorldView-1 satellite using the WorldView-60 camera across the global land surface from September 2007 to the present. Data have a spatial resolution of 0.5 meters at nadir and a temporal resolution of approximately 1.7 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.

  19. Global commercial satellite imagery data cost 2022, by cost per square...

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global commercial satellite imagery data cost 2022, by cost per square kilometer [Dataset]. https://www.statista.com/statistics/1293877/commercial-satellite-imagery-cost-worldwide/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    The cost of acquiring a satellite data was highest for the images from the GeoEye-1 satellite, at ** U.S. dollars per square kilometer of the image. Most of the satellite data have a minimum order quantities based on the company and the cost depends mostly on the spatial resolution of the satellite image. Most of the satellites are commercially owned and provide users with data as an end product based on the requirement. Processing smaller patches of the raw images obtained from a satellite to an end product are not profitable. Hence, there is a minimum order limit of ** to ** square kilometers based on the requested product.

  20. a

    European Commission

    • catalogue.arctic-sdi.org
    esri:rest, ogc:wms +1
    Updated Feb 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pan-European High Resolution Image Mosaic 2018 - True Colour, Coverage 1 (10 m), Sept. 2019 (2025). European Commission [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/api/records/f97a2763-748c-4687-a141-685e954eb2dd
    Explore at:
    ogc:wms, esri:rest, www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    Copernicus Land Monitoring Service helpdesk
    Pan-European High Resolution Image Mosaic 2018 - True Colour, Coverage 1 (10 m), Sept. 2019
    European Environment Agency
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Time period covered
    Jan 1, 2017 - Dec 31, 2019
    Area covered
    Description

    The pan-European High Resolution (HR) Image Mosaic 2018 provides cloud-free high resolution true colour imagery for EEA39 countries. The mosaic has been produced using Sentinel-2 data in 10 meter resolution, at a Sentinel 2 tile level, and consists of 1079 Sentinel-2 tiles. The imagery for each state is acquired within a predefined window corresponding to the vegetation season in 2018.

    The true colour (RGB) composite consists of a three band stack and includes the following bands: Band 4 – Red (0.665 μm) Band 3 – Green (0.560 μm) Band 2 – Blue (0.490 μm)

    The mosaic primarily is used as input data in the production of various Copernicus Land Monitoring Service (CLMS) datasets and services, such as land cover maps and high resolution layers on land cover characteristic and can be also useful for CLMS users for visualizations and classifications on land.

    Since the pan-European High Resolution Mosaic 2018 is created exclusively from Sentinel-2 data, the imagery can be downloaded from The Copernicus Open Access Hub (mission ongoing since 2015) at https://scihub.copernicus.eu/. Global Sentinel-2 Image Mosaics Hub at https://land.copernicus.eu/imagery-in-situ/global-image-mosaics/ can be also used to automatically create mosaics over the area of interest.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2016). Declassified Satellite Imagery 2 (2002) [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220567575-USGS_LTA.html

Declassified Satellite Imagery 2 (2002)

Declassified_Satellite_Imagery_2_2002_Not provided

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 29, 2016
Time period covered
Jan 1, 1970 - Present
Area covered
Earth
Description

Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public.

Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications.

The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet.

The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions.

The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.

Search
Clear search
Close search
Google apps
Main menu