The Access Network Map of England
is a national composite dataset of Access layers, showing analysis of extent of
Access provision for each Lower Super Output Area (LSOA), as a percentage or
area coverage of access in England. The ‘Access Network Map’ was developed by
Natural England to inform its work to improve opportunities for people to enjoy
the natural environment. This map shows, across England, the
relative abundance of accessible land in relation to where people
live. Due to issues explained below, the map does not, and cannot, provide
a definitive statement of where intervention is necessary. Rather,
it should be used to identify areas of interest which require further
exploration. Natural England believes that places where
people can enjoy the natural environment should be improved and created where
they are most wanted. Access Network Maps help support this work by
providing means to assess the amount of accessible land available in relation
to where people live. They combine all the available good quality data on
access provision into a single dataset and relate this to population.
This provides a common foundation for regional and national teams to use when
targeting resources to improve public access to greenspace, or projects that
rely on this resource. The Access Network Maps are compiled from the
datasets available to Natural England which contain robust, nationally
consistent data on land and routes that are normally available to the public
and are free of charge. Datasets contained in the aggregated
data:•
Agri-environment
scheme permissive access (routes and open access)•
CROW access land
(including registered common land and Section 16)•
Country Parks•
Cycleways (Sustrans
Routes) including Local/Regional/National and Link Routes•
Doorstep Greens•
Local Nature
Reserves•
Millennium Greens•
National Nature
Reserves (accessible sites only)•
National Trails•
Public Rights of
Way•
Forestry Commission
‘Woods for People’ data•
Village Greens –
point data only Due to the quantity and complexity of data
used, it is not possible to display clearly on a single map the precise
boundary of accessible land for all areas. We therefore selected a
unit which would be clearly visible at a variety of scales and calculated the
total area (in hectares) of accessible land in each. The units we
selected are ‘Lower Super Output Areas’ (LSOAs), which represent where
approximately 1,500 people live based on postcode. To calculate the
total area of accessible land for each we gave the linear routes a notional
width of 3 metres so they could be measured in hectares. We then
combined together all the datasets and calculated the total hectares of
accessible land in each LSOA. For further information about this data see the following links:Access Network Mapping GuidanceAccess Network Mapping Metadata Full metadata can be viewed on data.gov.uk.
This dataset is wholly owned by Ordnance Survey (OS) and licenced for use by Natural Resources Wales (NRW) via an open data licence issued by OS. OS open data products (OS OpenData) are a set of free digital maps of Great Britain, available for anyone to use, for any purpose. The maps include data on roads, rivers and boundaries. This dataset includes layers derived from those available from OS.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
A collection of 1:250 000 scale geophysical maps in the Universal Transverse Mercator (UTM) projection, covering the United Kingdom and continental shelf areas between 1975 – 1990. Mapping is divided into squares which cover 1 degree by 1 degree of latitude / longitude. A geophysical map is a graphical representation of data collected through various geophysical methods to investigate the subsurface characteristics of the Earth. Geophysics is the study of the physical properties and processes of the Earth using measurements of physical quantities such as gravity, magnetic fields, seismic waves, electrical resistivity, and others. The collection includes aeromagnetic anomaly maps (1975 – 1990), Bouguer gravity anomaly maps (1975 – 1989) and a small number of free air anomaly maps (1981 – 1989). These maps are hard-copy paper records stored in the National Geoscience Data Centre (NGDC) and are delivered as digital scans through the BGS website.
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A PDF map that shows the counties and unitary authorities in the United Kingdom as at 1 April 2023. (File Size - 583 KB)
Comprehensive dataset of 115 Map stores in United Kingdom as of July, 2025. Includes verified contact information (email, phone), geocoded addresses, customer ratings, reviews, business categories, and operational details. Perfect for market research, lead generation, competitive analysis, and business intelligence. Download a complimentary sample to evaluate data quality and completeness.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Statutory Main Rivers Map is a spatial (polyline) dataset that defines statutory watercourses in England designated as Main Rivers by the Environment Agency.
Watercourses designated as ‘main river’ are generally the larger arterial watercourses. The Environment Agency has permissive powers, but not a duty, to carry out maintenance, improvement or construction work on designated main rivers.
All other open water courses in England are determined by statute as an ‘ordinary watercourse’. On these watercourses the Lead Local flood Authority or, if within an Internal Drainage District, the Internal Drainage Board have similar permissive powers to maintain and improve.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The England Peat Map is a map of England's peaty soils. It models the extent, depth, and condition of our peat including vegetation and upland peat erosion & drainage features (grips, gullies, bare peat and peat hagging). See NERR149 England Peat Map Final Report, Natural England, 2025.
The map and, where possible, the associated data, are available openly and free to use for any purpose. This map is funded by the Nature for Climate Fund and the Natural Capital and Ecosystem Assessment (NCEA) programme, both part of the Department for the Environment, Food and Rural Affairs (DEFRA).
Free Ordnance Survey maps for UK schools, including: 1:50,000 1:25,000 Mastermap
This is the land parcels (polygon) dataset for the UKCEH Land Cover Map of 2019 (LCM2019) representing Great Britain. It describes Great Britain's land cover in 2019 using UKCEH Land Cover Classes, which are based on UK Biodiversity Action Plan broad habitats. This dataset was derived from the corresponding LCM2019 20m classified pixels dataset. All further LCM2019 datasets for Great Britain are derived from this land parcel product. A range of land parcel attributes are provided. These include the dominant UKCEH Land Cover Class given as an integer value, and a range of per-parcel pixel statistics to help to assess classification confidence and accuracy; for a full explanation please refer to the dataset documentation. LCM2019 represents a suite of geospatial land cover datasets (raster and polygon) describing the UK land surface in 2019. These were produced at the UK Centre for Ecology & Hydrology by classifying satellite images from 2019. LCM2019 was simultaneously released with LCM2017 and LCM2018. These are the latest in a series of UKCEH land cover maps, which began with the 1990 Land Cover Map of Great Britain (now usually referred to as LCM1990) followed by UK-wide land cover maps LCM2000, LCM2007 and LCM2015. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.
APISCRAPY, your premier provider of Map Data solutions. Map Data encompasses various information related to geographic locations, including Google Map Data, Location Data, Address Data, and Business Location Data. Our advanced Google Map Data Scraper sets us apart by extracting comprehensive and accurate data from Google Maps and other platforms.
What sets APISCRAPY's Map Data apart are its key benefits:
Accuracy: Our scraping technology ensures the highest level of accuracy, providing reliable data for informed decision-making. We employ advanced algorithms to filter out irrelevant or outdated information, ensuring that you receive only the most relevant and up-to-date data.
Accessibility: With our data readily available through APIs, integration into existing systems is seamless, saving time and resources. Our APIs are easy to use and well-documented, allowing for quick implementation into your workflows. Whether you're a developer building a custom application or a business analyst conducting market research, our APIs provide the flexibility and accessibility you need.
Customization: We understand that every business has unique needs and requirements. That's why we offer tailored solutions to meet specific business needs. Whether you need data for a one-time project or ongoing monitoring, we can customize our services to suit your needs. Our team of experts is always available to provide support and guidance, ensuring that you get the most out of our Map Data solutions.
Our Map Data solutions cater to various use cases:
B2B Marketing: Gain insights into customer demographics and behavior for targeted advertising and personalized messaging. Identify potential customers based on their geographic location, interests, and purchasing behavior.
Logistics Optimization: Utilize Location Data to optimize delivery routes and improve operational efficiency. Identify the most efficient routes based on factors such as traffic patterns, weather conditions, and delivery deadlines.
Real Estate Development: Identify prime locations for new ventures using Business Location Data for market analysis. Analyze factors such as population density, income levels, and competition to identify opportunities for growth and expansion.
Geospatial Analysis: Leverage Map Data for spatial analysis, urban planning, and environmental monitoring. Identify trends and patterns in geographic data to inform decision-making in areas such as land use planning, resource management, and disaster response.
Retail Expansion: Determine optimal locations for new stores or franchises using Location Data and Address Data. Analyze factors such as foot traffic, proximity to competitors, and demographic characteristics to identify locations with the highest potential for success.
Competitive Analysis: Analyze competitors' business locations and market presence for strategic planning. Identify areas of opportunity and potential threats to your business by analyzing competitors' geographic footprint, market share, and customer demographics.
Experience the power of APISCRAPY's Map Data solutions today and unlock new opportunities for your business. With our accurate and accessible data, you can make informed decisions, drive growth, and stay ahead of the competition.
[ Related tags: Map Data, Google Map Data, Google Map Data Scraper, B2B Marketing, Location Data, Map Data, Google Data, Location Data, Address Data, Business location data, map scraping data, Google map data extraction, Transport and Logistic Data, Mobile Location Data, Mobility Data, and IP Address Data, business listings APIs, map data, map datasets, map APIs, poi dataset, GPS, Location Intelligence, Retail Site Selection, Sentiment Analysis, Marketing Data Enrichment, Point of Interest (POI) Mapping]
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The Historic Flood Map is a GIS layer showing the maximum extent of individual Recorded Flood Outlines from river, the sea and groundwater springs that meet a set criteria. It shows areas of land that have previously been subject to flooding in England. This excludes flooding from surface water, except in areas where it is impossible to determine whether the source is fluvial or surface water but the dominant source is fluvial.
The majority of records began in 1946 when predecessor bodies to the Environment Agency started collecting detailed information about flooding incidents, although we hold limited details about flooding incidents prior to this date.
If an area is not covered by the Historic Flood Map it does not mean that the area has never flooded, only that we do not currently have records of flooding in this area that meet the criteria for inclusion. It is also possible that the pattern of flooding in this area has changed and that this area would now flood or not flood under different circumstances. Outlines that don’t meet this criteria are stored in the Recorded Flood Outlines dataset.
The Historic Flood Map takes into account the presence of defences, structures, and other infrastructure where they existed at the time of flooding. It will include flood extents that may have been affected by overtopping, breaches or blockages.
Flooding is shown to the land and does not necessarily indicate that properties were flooded internally.
Click here to open the ArcGIS Online 3D Map Viewer and work through the examples shown belowTo add 3D data to ArcGIS Online you will need a login for an ArcGIS Online account. We would recommend that you use a free schools subscription (full functionality) or the free public account (reduced functionality).Login to ArcGIS OnlineFind Mount Everest and save the 3D map so that it opens with an amazing view of the mountainShare your 3D map with a friend or colleague and get some feed back
Using a range of different data sources Natural England has collated a map showing the extent of peatlands in England. For the purposes of this project, peatlands have been classified into three types based on the source of the information but assumed to have the following general characteristics:■ Deep peaty soils: Areas covered with a majority of peat >40cm deep.■ Shallow peaty soils: Areas with a majority of soils with peat 10–40cm deep.■ Soils with peaty pockets: Areas of mostly non-peat soils, supporting smaller pockets of deep peat (such as flushes or exposures of buried peat) too small to map at a national scale.Reported in Natural England's publication England's Peatland - carbon storage and greenhouse gases (NE257).We have have shared this data with permission from Natural England. You can request a download of the full dataset from enquiries@naturalengland.org.uk. It is available free of charge for non-commercial purposes. If you want to use the data for a Commercial purpose you must obtain a licence from Natural England.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 1885 UK parliamentary constituencies for Ireland were re-created in 2017 as part of a conference paper delivered at the Southern Irish Loyalism in Context conference at Maynooth University. The intial map only included the territory of the Irish Free State and was created by Martin Charlton and Jack Kavanagh. The remaining six counties of Ulster were completed by Eoin McLaughlin in 2018-19, the combined result is a GIS map of all the parliamentary constituecies across the island of Ireland for the period 1885-1918. The map is available in both ESRI Shapefile format and as a GeoPackage (GPKG). The methodology for creating the constituencies is outlined in detail below.
A map showing the outlines of the 1855 – 1918 Constituency boundaries can be found on page 401 of Parliamentary Elections in Ireland, 1801-1922 (Dublin, 1978) by Brian Walker. This forms the basis for the creation of a set of digital boundaries which can then be used in a GIS. The general workflow involves allocating an 1885 Constituency identifier to each of the 309 Electoral Divisions present in the boundaries made available for the 2011 Census of Population data release by CSO. The ED boundaries are available in ‘shapefile’ format (a de facto standard for spatial data transfer). Once a Constituency identifier has been given to each ED, the GIS operation known as ‘dissolve’ is used to remove the boundaries between EDs in the same Constituency. To begin with Walker’s map was scanned at 1200 dots per inch in JPEG form. A scanned map cannot be linked to other spatial data without undergoing a process known as georeferencing. The CSO boundaries are available with spatial coordinates in the Irish National Grid system. The goal of georeferencing is to produce a rectified version of the map together with a world file. Rectification refers to the process of recomputing the pixel positions in the scanned map so that they are oriented with the ING coordinate system; the world file contains the extent in both the east-west and north-south directions of each pixel (in metres) and the coordinates of the most north-westerly pixel in the rectified image.
Georeferencing involves the identification of Ground Control Points – these are locations on the scanned map for which the spatial coordinates in ING are known. The Georeferencing option in ArcGIS 10.4 makes this a reasonably pain free task. For this map 36 GCPs were required for a local spline transformation. The Redistribution of Seats Act 1885 provides the legal basis for the constituencies to be used for future elections in England, Wales, Scotland and Ireland. Part III of the Seventh Schedule of the Act defines the Constituencies in terms of Baronies, Parishes (and part Parishes) and Townlands for Ireland. Part III of the Sixth Schedule provides definitions for the Boroughs of Belfast and Dublin.
The CSO boundary collection also includes a shapefile of Barony boundaries. This makes it possible code a barony in two ways: (i) allocated completely to a Division or (ii) split between two Divisions. For the first type, the code is just the division name, and for the second the code includes both (or more) division names. Allocation of these names to the data in the ED shapefile is accomplished by a spatial join operation. Recoding the areas in the split Baronies is done interactively using the GIS software’s editing option. EDs or groups of EDs can be selected on the screen, and the correct Division code updated in the attribute table. There are a handful of cases where an ED is split between divisions, so a simple ‘majority’ rule was used for the allocation. As the maps are to be used at mainly for displaying data at the national level, a misallocation is unlikely to be noticed. The final set of boundaries was created using the dissolve operation mentioned earlier. There were a dozen ED that had initially escaped being allocated a code, but these were quickly updated. Similarly, a few of the EDs in the split divisions had been overlooked; again updating was painless. This meant that the dissolve had to be run a few more times before all the errors have been corrected.
For the Northern Ireland districts, a slightly different methodology was deployed which involved linking parishes and townlands along side baronies, using open data sources from the OSM Townlands.ie project and OpenData NI.
Data identifying landscape areas (shown as polygons) attributed with geological names and rock type descriptions. The scale of the data is 1:625 000 scale providing a simplified interpretation of the geology. Onshore coverage is provided for all of England, Wales, Scotland, the Isle of Man and Northern Ireland. Bedrock geology describes the main mass of solid rocks forming the earth's crust. Bedrock is present everywhere, whether exposed at surface in outcrops or concealed beneath superficial deposits or water bodies. The bedrock geology of the UK is very diverse and includes three broad classes based on their mode of origin: igneous, metamorphic and sedimentary. The data includes attribution to identify each rock type (in varying levels of detail) as described in the BGS Rock Classification Scheme (volumes 1-3 ). The bedrock has formed over long periods of geological time, from the Archean eon some 7500 million years ago, to the relatively young Pliocene, 58 million years ago. The age of the rocks is identified in the data through their BGS lexicon name (published for each deposit at the time of the original survey or subsequent digital data creation). For stratified rocks i.e. arranged in sequence, this will usually be of a lithostratigraphic type. Other rock types for example intrusive igneous bodies will be of a lithodemic type. More information on the formal naming of UK rocks is available in the BGS Lexicon of Named Rock Units. Geological names are based on the lithostratigraphic or lithodemic hierarchy. The lithostratigraphic scheme arranges rock bodies into units based on rock-type and geological time of formation. Where rock-types do not fit into the lithostratigraphic scheme, for example intrusive, deformed rocks subjected to heat and pressure resulting in new or changed rock types; then their classification is based on their rock-type or lithological composition using visible features such as texture, structure, mineralogy. The data are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are delivered free of charge under the terms of the Open Government Licence.
The Crop Map of England (CROME) is a polygon vector dataset mainly containing the crop types of England. The dataset contains approximately 32 million hexagonal cells classifying England into over 15 main crop types, grassland, and non-agricultural land covers, such as Woodland, Water Bodies, Fallow Land and other non-agricultural land covers. The classification was created automatically using supervised classification (Random Forest Classification) from the combination of Sentinel-1 Radar and Sentinel-2 Optical Satellite images during the period late October 2020 – September 2021. The dataset was created to aid the classification of crop types from optical imagery, which can be affected by cloud cover. The results were checked against survey data collected by field inspectors and visually validated. The data has been split into the Ordnance Survey Ceremonial Counties and each county is given a three letter code. Please refer to the CROME specification document to see which county each CODE label represents.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
High resolution scanned images of Ordnance Survey maps from 1932 and 1933 in .tif file format, and corresponding .pdf format versions of these.These show parts of Salford, including the former docks, and the western side of Manchester city centre. A0 sized poster prints of these maps were used as part of the Undiscovered Salford display in the Community Science Showcase at Manchester Science Festival's GameLab event. The event took place on 20/21 October 2018 at the University of Salford's MediaCityUK campus.Original files kindly provided by the Salford Local History Library from their archives held at the Salford Art Gallery & Museum.OS Copyright expires 50 years from the date of publication, hence these maps are copyright free.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
This layer of the GeoIndex shows the location of available 1:10000 scale digital geological maps within Great Britain. The Digital Geological Map of Great Britain project (DiGMapGB) has prepared 1:625 000, 1:250 000 and 1:50 000 scale datasets for England, Wales and Scotland. The datasets themselves are available as vector data in a variety of formats in which they are structured into themes primarily for use in geographical information systems (GIS) where they can be integrated with other types of spatial data for analysis and problem solving in many earth-science-related issues. The DiGMapGB-10 dataset is as yet incomplete, current work is concentrated on extending the geographical cover, especially to cover high priority urban areas.
Data from the British Geological Survey's GeoIndex Map products theme are made available for viewing here. GeoIndex is a website that allows users to search for information about BGS data collections covering the UK and other areas world wide. Access is free, the interface is easy to use, and it has been developed to enable users to check coverage of different types of data and find out some background information about the data. More detailed information can be obtained by further enquiry via the web site: www.bgs.ac.uk/geoindex.
Official statistics are produced impartially and free from political influence.
The Access Network Map of England
is a national composite dataset of Access layers, showing analysis of extent of
Access provision for each Lower Super Output Area (LSOA), as a percentage or
area coverage of access in England. The ‘Access Network Map’ was developed by
Natural England to inform its work to improve opportunities for people to enjoy
the natural environment. This map shows, across England, the
relative abundance of accessible land in relation to where people
live. Due to issues explained below, the map does not, and cannot, provide
a definitive statement of where intervention is necessary. Rather,
it should be used to identify areas of interest which require further
exploration. Natural England believes that places where
people can enjoy the natural environment should be improved and created where
they are most wanted. Access Network Maps help support this work by
providing means to assess the amount of accessible land available in relation
to where people live. They combine all the available good quality data on
access provision into a single dataset and relate this to population.
This provides a common foundation for regional and national teams to use when
targeting resources to improve public access to greenspace, or projects that
rely on this resource. The Access Network Maps are compiled from the
datasets available to Natural England which contain robust, nationally
consistent data on land and routes that are normally available to the public
and are free of charge. Datasets contained in the aggregated
data:•
Agri-environment
scheme permissive access (routes and open access)•
CROW access land
(including registered common land and Section 16)•
Country Parks•
Cycleways (Sustrans
Routes) including Local/Regional/National and Link Routes•
Doorstep Greens•
Local Nature
Reserves•
Millennium Greens•
National Nature
Reserves (accessible sites only)•
National Trails•
Public Rights of
Way•
Forestry Commission
‘Woods for People’ data•
Village Greens –
point data only Due to the quantity and complexity of data
used, it is not possible to display clearly on a single map the precise
boundary of accessible land for all areas. We therefore selected a
unit which would be clearly visible at a variety of scales and calculated the
total area (in hectares) of accessible land in each. The units we
selected are ‘Lower Super Output Areas’ (LSOAs), which represent where
approximately 1,500 people live based on postcode. To calculate the
total area of accessible land for each we gave the linear routes a notional
width of 3 metres so they could be measured in hectares. We then
combined together all the datasets and calculated the total hectares of
accessible land in each LSOA. For further information about this data see the following links:Access Network Mapping GuidanceAccess Network Mapping Metadata Full metadata can be viewed on data.gov.uk.