These are topographic maps produced and managed by the cadastre and topography administration, particularly for scales 1:5000, 1:20000, 1:50000, 1:100000 and 1:250000. The maps are originally made in the national datum LUREF (projection TM)
These maps are derived from cartographic databases at different scales, based on an overflight followed by a field check.
The rate of update varies from 6 to 7 years for large scales to 10 years for small scales.
The current editions are:
— 1:5000 -> 2015 (2013 overview) — 1:20.000 -> 2015 (2013 overview) — 1:50.000 -> 2007 — 1:100.000 -> 2011 — 1:250,000 -> 2010
They are available as WMS and WMTS web services.
This site provides free access to Iowa geographic map data, including aerial photography, orthophotos, elevation maps, and historical maps. The data is available through an on-line map viewer and through Web Map Service (WMS) connections for GIS. The site was developed by the Iowa State University Geographic Information Systems Support and Research Facility in cooperation with the Iowa Department of Natural Resources, the USDA Natural Resources Conservation Service, and the Massachusetts Institute of Technology. This site was first launched in March 1999.
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
The eAtlas delivers its mapping products via two Web Mapping Services, a legacy server (from 2008-2011) and a newer primary server (2011+) to which all new content it added. This record describes the primary WMS.
This service delivers map layers associated with the eAtlas project (http://eatlas.org.au), which contains map layers of environmental research focusing on the Great Barrier Reef and its neighbouring coast, the Wet Tropics rainforests and Torres Strait. It also includes lots of reference datasets that provide context for the research data. These reference datasets are sourced mostly from state and federal agencies. In addition to this a number of reference basemaps and associated layers are developed as part of the eAtlas and these are made available through this service.
This services also delivers map layers associated with the Torres Strait eAtlas.
This web map service is predominantly set up and maintained for delivery of visualisations through the eAtlas mapping portal (http://maps.eatlas.org.au) and the Australian Ocean Data Network (AODN) portal (http://portal.aodn.org.au). Other portals are free to use this service with attribution, provided you inform us with an email so we can let you know of any changes to the service.
This WMS is implemented using GeoServer version 2.3 software hosted on a server at the Australian Institute of Marine Science. Associated with each WMS layer is a corresponding cached tiled service which is much faster then the WMS. Please use the cached version when possible.
The layers that are available can be discovered by inspecting the GetCapabilities document generated by the GeoServer. This XML document lists all the layers, their descriptions and available rendering styles. Most WMS clients should be able to read this document allowing easy access to all the layers from this service.
For ArcMap use the following steps to add this service: 1. "Add Data" then choose GIS Servers from the "Look in" drop down. 2. Click "Add WMS Server" then set the URL to "http://maps.eatlas.org.au/maps/wms?"
Note: this service has over 1000 layers and so retrieving the capabilities documents can take a while.
This services is operated by the Australian Institute of Marine Science and co-funded by the National Environmental Research Program Tropical Ecosystems hub.
OpenStreetMap WMS, bereitgestellt durch terrestris GmbH und Co. KG. Beschleunigt mit MapProxy (http://mapproxy.org/)
https://www.cuzk.gov.cz/Predpisy/Podminky-poskytovani-prostor-dat-a-sitovych-sluzeb/Podminky-poskytovani-sitovych-sluzeb-CUZK.aspxhttps://www.cuzk.gov.cz/Predpisy/Podminky-poskytovani-prostor-dat-a-sitovych-sluzeb/Podminky-poskytovani-sitovych-sluzeb-CUZK.aspx
View service (WMS), which enables viewing of cadastral map both in digital and analogue form. For analogue form georeferenced scaned maps (raster form) and centroids of parcels are displayed, furthermore it enables to display layer of approved survey sketches. The service is publicly available, free-of-charge and covers the whole territory of the Czech Republic. The service fulfils the OGC WMS 1.1.1 and 1.3.0 standards.
Hazard-free wells in Pas-de-Calais
Source: —NR- vintage: 08/08/19 Dissemination: Restricted
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains areas exempt from flooding (area protected from natural flooding by the existence of a set of dikes and sections), produced for reporting purposes for the European Flood Directive.The European Directive 2007/60/EC of 23 October 2007 on the assessment and management of flood risks (OJ 2007 L 288, 06-11-2007, p. 27) influences the flood prevention strategy in Europe. It requires the production of flood risk management plans aimed at reducing the negative consequences of flooding on human health, the environment, cultural heritage and economic activity.The objectives and requirements for implementation are given by the Law of 12 July 2010 on the National Commitment for the Environment (LENE) and the Decree of 2 March 2011. Within this framework, the primary objective of flood area mapping and flood risk mapping for IRRs is to contribute, by homogenising and objecting knowledge of flood exposure, to the development of Flood Risk Management Plans (FRPs).This dataset is used to produce flood surface maps and flood risk maps that represent flood hazards and issues at an appropriate scale, respectively. Their objective is to provide quantitative elements to assess the vulnerability of a territory more accurately for the three levels of flood probability (high, medium, low).
https://www.cuzk.gov.cz/Predpisy/Podminky-poskytovani-prostor-dat-a-sitovych-sluzeb/Podminky-poskytovani-sitovych-sluzeb-CUZK.aspxhttps://www.cuzk.gov.cz/Predpisy/Podminky-poskytovani-prostor-dat-a-sitovych-sluzeb/Podminky-poskytovani-sitovych-sluzeb-CUZK.aspx
View service (WMS) for extended Administrative Units theme - Units eXtended (UX). Service is a non-harmonized extension of INSPIRE theme Administrative units (AU) by identification units, statistical units and historical units. The service is publicly available and free-of-charge and covers the whole territory of the Czech Republic. The service is operated online. Data is based on RÚIAN data (Register of Territorial Identification, Addresses and Real Estates). The service fulfils both technical instructions for INSPIRE view services v. 3.11 and the OGC WMS 1.1.1 and 1.3.0 standards.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.
This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.
The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).
Most of the imagery in the composite imagery from 2017 - 2021.
Method: The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (not yet published) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.
The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.
The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.
To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.
Single merged composite GeoTiff: The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.
The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.
The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif
.
Change Log: 2023-03-02: Eric Lawrey Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.
22 Nov 2023: Eric Lawrey Added the data and maps for close up of Mer. - 01-data/TS_DNRM_Mer-aerial-imagery/ - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.
Source datasets: Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5
Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895
Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302 Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
AIMS Coral Sea Features (2022) - DRAFT This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose. CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp
Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland This is the high resolution imagery used to create the map of Mer.
Marine satellite imagery (Sentinel 2 and Landsat 8) (AIMS), https://eatlas.org.au/data/uuid/5d67aa4d-a983-45d0-8cc1-187596fa9c0c - World_AIMS_Marine-satellite-imagery
Data Location: This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.
The digital topographic maps are presented as a free web map service in the area of Saxony-Anhalt. In terms of content, the ATKIS DTK100 spatial data set at a scale of 1:100,000 is accessed.
https://www.cuzk.gov.cz/Predpisy/Podminky-poskytovani-prostor-dat-a-sitovych-sluzeb/Podminky-poskytovani-sitovych-sluzeb-CUZK.aspxhttps://www.cuzk.gov.cz/Predpisy/Podminky-poskytovani-prostor-dat-a-sitovych-sluzeb/Podminky-poskytovani-sitovych-sluzeb-CUZK.aspx
View service (WMS) for Cadastral Parcels theme (CP) according to the INSPIRE Directive. The service is publicly available and free-of-charge and covers the whole territory of the Czech Republic. The service is operated online. The service fulfils both technical instructions for INSPIRE view services v. 3.11 and the OGC WMS 1.1.1 and 1.3.0 standards.
https://www.cuzk.cz/Predpisy/Podminky-poskytovani-prostor-dat-a-sitovych-sluzeb/Podminky-poskytovani-sitovych-sluzeb-CUZK.aspxhttps://www.cuzk.cz/Predpisy/Podminky-poskytovani-prostor-dat-a-sitovych-sluzeb/Podminky-poskytovani-sitovych-sluzeb-CUZK.aspx
View service (WMS) for Addresses theme (AD) according to the INSPIRE Directive. The service is publicly available and free-of-charge and covers the whole territory of the Czech Republic. The service is operated online. The service fulfils both technical instructions for INSPIRE view services v. 3.11 and the OGC WMS 1.1.1 and 1.3.0 standards.
The Watershed Boundary Dataset (WBD) from The National Map (TNM) defines the perimeter of drainage areas formed by the terrain and other landscape characteristics. The drainage areas are nested within each other so that a large drainage area, such as the Upper Mississippi River, will be composed of multiple smaller drainage areas, such as the Wisconsin River. Each of these smaller areas can further be subdivided into smaller and smaller drainage areas. The WBD uses six different levels in this hierarchy, with the smallest averaging about 30,000 acres. The WBD is made up of polygons nested into six levels of data respectively defined by Regions, Subregions, Basins, Subbasins, Watersheds, and Subwatersheds. For additional information on the WBD, go to https://nhd.usgs.gov/wbd.html. The USGS National Hydrography Dataset (NHD) service is a companion dataset to the WBD. The NHD is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000-scale maps and referred to as high resolution NHD, and the other based on 1:100,000-scale maps and referred to as medium resolution NHD. Additional selected areas in the United States are available based on larger scales, such as 1:5,000-scale or greater, and referred to as local resolution NHD. For more information on the NHD, go to https://nhd.usgs.gov/index.html. Hydrography data from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. Hydrography data is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain WBD and NHD data in either Esri File or Personal Geodatabase, or Shapefile formats.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Law of 14 November 1996 implementing the City Recovery Pact (PRV) distinguished three levels of intervention: sensitive urban areas, urban revitalisation zones (ZRUs), urban free zones (ZFU). These three levels of intervention ZUS, ZRU and ZFU, characterised by devices of increasing importance, were intended to respond to different degrees of difficulties encountered in those neighbourhoods. Since then, the Planning Law for City and Urban Cohesion of 21 February 2014 has laid down (Article 5) the modalities for the reform of the priority geography of city policy. Two decrees issued in 2014 (No 2014-767 of 3 July 2014 and No 2014-1575 of 22 December 2014) set out these arrangements for the metropolis and for the ultramarine territories respectively. Thus, the national list of priority neighbourhoods of the city policy (Decrees n°2014-1750 and n° 2014-1751 of 30 December 2014) was produced and the national mapping of their perimeters was published. These perimeters replace sensitive urban areas (SEZs) and urban social cohesion contract (CUCS) neighbourhoods as of 1 January 2015.
This site is part of pilot effort at the US Department of Energy (DOE) - Office of NEPA Policy and Compliance to evaluate providing IT web services as a shared service, hosted on the cloud, and using only Free and Open Source Software (FOSS). The site is an integrated component of the larger NEPAnode project but is a stand alone service. The site allows users to upload static map images with no geographic data so that they can be accurately referenced/rectified on an webmap. This site allows for the revitalizing of otherwise unusable/archived maps such as historic maps, site surveys, site plans, etc. turning them into usable geographic data which is subsequently made available as a KML file for use in Google Earth/Maps and as a Web Mapping Service (WMS) for using in web-based webmapping application such as NEPAnode or in desktop GIS software.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises all basement boreholes which have reached bedrock by passing through sedimentary sequences used for bore control of Free Air (FA) gravity data. These boreholes have been used to give better control for interpolating to FA gravity data.
The dataset was compiled by GHD to inform the report 'Potential Influences of Geological Structures on Groundwater Flow Systems' for DEPI's Secure Allocation Future Entitlements (SAFE) Project.
The Law of 14 November 1996 implementing the City Recovery Pact (PRV) distinguished three levels of intervention: sensitive urban areas, urban revitalisation zones (ZRUs), urban free zones (ZFU). These three levels of intervention ZUS, ZRU and ZFU, characterised by mechanisms of increasing importance, were intended to respond to different degrees of difficulties encountered in these neighbourhoods. Since then, the Planning Law for City and Urban Cohesion of 21 February 2014 laid down (Article 5) the modalities for the reform of the priority geography of city policy. Two decrees issued in 2014 (No 2014-767 of 3 July 2014 and No 2014-1575 of 22 December 2014) set out these arrangements for the metropolis and for the ultramarine territories respectively. Thus, the national list of priority neighbourhoods of the city policy (Decrees n°2014-1750 and n° 2014-1751 of 30 December 2014) was produced and the national mapping of their perimeters was published. These perimeters replace sensitive urban areas (SEZs) and urban social cohesion contract (CUCS) neighbourhoods as of 1 January 2015.
Dates of Images:Pre-Event: April 2024Post-Event: 5/18/2024, 5/19/2024, 5/20/2024Date of Next Image:UnknownSummary:The Black Marble High-Definition (BMHD) images were created by the NASA Black Marble Science team, with directed funding the NASA-Google Partnership program. The images map the impact of extreme heat in Houston, Texas on electric grids. The baseline image is from April 2024, a cloud-free, moon-free composite, and the “after" image is from May 18, 2024 - May 20, 2024. There is a layer to display where clouds are present in the "after" images. This comparison between the images is meant as a visual assessment of outage impacts from the extreme heat to aid various partners who are working to deliver emergency aids to local communities. Power outage maps like these help disaster response efforts in the short-term as well as long-term monitoring during the crucial stages of disaster recovery.From the BMHD data, zonal statistics were collated with FEMA's National Risk Index (NRI) Social Vulnerability score to identify areas where vulnerable populations were affected by power outages. Higher (red) census tract areas indicate a higher amount of power lost relative to the second date listed. For example, a red polygon in the Baseline (April) - May 18th layer indicates that specific area lost disproportionately more power and is in an area with high social vulnerability risk when comparing the normal power available (baseline) to when the disaster occurred.Suggested Use:NOTE: Black Marble HD images are downscaled from NASA’s Black Marble nighttime lights product (VNP46), and as such are a “modelled” or “best guess” estimate of how lights are distributed at a 30m resolution. These images should be used for visualization purposes, not for quantitative analysis.The image is in a yellow-red color scale. Red indicates more severe impacts. Grey polygons are acquired from cloud cover and represent areas where no data was available on a given day.Satellite/Sensor:The primary data source, NASA’s Black Marble nighttime lights product suite (VNP46), utilized to generate this product is derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP) along with high resolution base layers - Landsat derived normalized index products (NDVI and NDWI) and OpenStreetMap (OSM) derived road layerResolution:Scaled resolution of 30 metersCredits:NASA Black Marble Science teamFEMA National Risk Index (NRI) TeamPlease cite the following two references when using this data:Román MO, Stokes EC, Shrestha R, Wang Z, Schultz L, Carlo EA, Sun Q, Bell J, Molthan A, Kalb V, Ji C. Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria. PloS one. 2019 Jun 28;14(6):e0218883.Román MO, Wang Z, Sun Q, Kalb V, Miller SD, Molthan A, Schultz L, Bell J, Stokes EC, Pandey B, Seto KC. NASA's Black Marble nighttime lights product suite. Remote Sensing of Environment. 2018 Jun 1;210:113-43.Point of Contact:Ranjay ShresthaNASA Goddard Space Flight CenterE-mail: ranjay.m.shrestha@nasa.govAdditional Links:NASA’s Black Marble Product SuiteRomán, M.O. et al. (2019) Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria. PLoS One, 14 (6).Román, M.O. et al. (2018) NASA’s Black Marble nighttime lights product suite. Remote Sensing of Environment. 210, 113–143.FEMA's National Risk Index Map: https://hazards.fema.gov/nri/data-resources#shpDownloadEsri REST Endpoint:See URL section on right side of page.WMS Endpoint:https://maps.disasters.nasa.gov/ags03/services/texas_extremeheat_202405/Relative_Power_Loss_Web_Map/MapServer/WMSServer?request=GetCapabilities&service=WMSData Download:https://maps.disasters.nasa.gov/download/gis_products/event_specific/2024/texas_extremeheat_202405/blackmarble_hd/
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Law of 14 November 1996 implementing the City Recovery Pact (PRV) distinguished three levels of intervention: sensitive urban areas, urban revitalisation zones (ZRUs), urban free zones (ZFU). These three levels of intervention ZUS, ZRU and ZFU, characterised by devices of increasing importance, were intended to respond to different degrees of difficulties encountered in those neighbourhoods. Since then, the Planning Law for City and Urban Cohesion of 21 February 2014 has laid down (Article 5) the modalities for the reform of the priority geography of city policy. Two decrees issued in 2014 (No 2014-767 of 3 July 2014 and No 2014-1575 of 22 December 2014) set out these arrangements for the metropolis and for the ultramarine territories respectively. Thus, the national list of priority neighbourhoods of the city policy (Decrees n°2014-1750 and n° 2014-1751 of 30 December 2014) was produced and the national mapping of their perimeters was published. These perimeters replace sensitive urban areas (SEZs) and urban social cohesion contract (CUCS) neighbourhoods as of 1 January 2015.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Right of way to areas affected by the regulatory zoning of submersible surface plans (PSS) of the department of Meurthe-et-Moselle. This perimeter, approved by Decree of 10 December 1976, is a public utility easement and is included in the PM1 easement. Submersible Surface Planes (PSS) are the first mapping documents regulating land cover in flooding areas for federal watercourses. They were created by the Decree-Law of 30 October 1935 and its implementing decree of 20 October 1937. The Barnier Law of 2 February 1995 gives PSS a risk prevention plan (PPR) status, making them enforceable against third parties. The PSS is a document that establishes a utility easement affecting land use. It allows the administration to oppose any action or work likely to impede the free flow of water or the conservation of flood fields (Article R425-21 of the Urban Code). The filing of a declaration before carrying out works likely to affect the natural flow of water (digues, embankments, depots, fences, plantations, constructions) is therefore necessary. Although having the same legal value, PSS and PPR are technically different. SSPs “merely” map a flood hazard in contrast to PPRs that represent a risk taking into account the vulnerability of the territories (regulatory zoning plan). Finally, the PSS mapped a so-called “average” flood less than the reference flood used as the basis for the development of PPRs (the highest known flood corresponding to the highest known waters (PHEC) and, in the event that it was lower than a centennial flood, the latter). Pursuant to Article L562-6 of the Code de l’Environnement, the PSS are to be PPR pending their repeal by a PPR on the municipalities concerned.
These are topographic maps produced and managed by the cadastre and topography administration, particularly for scales 1:5000, 1:20000, 1:50000, 1:100000 and 1:250000. The maps are originally made in the national datum LUREF (projection TM)
These maps are derived from cartographic databases at different scales, based on an overflight followed by a field check.
The rate of update varies from 6 to 7 years for large scales to 10 years for small scales.
The current editions are:
— 1:5000 -> 2015 (2013 overview) — 1:20.000 -> 2015 (2013 overview) — 1:50.000 -> 2007 — 1:100.000 -> 2011 — 1:250,000 -> 2010
They are available as WMS and WMTS web services.