100+ datasets found
  1. Geographic Information System (GIS) Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Geographic Information System (GIS) Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/geographic-information-system-gis-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Market Outlook



    The Geographic Information System (GIS) market is witnessing robust growth with its global market size projected to reach USD 25.7 billion by 2032, up from USD 8.7 billion in 2023, at a compound annual growth rate (CAGR) of 12.4% during the forecast period. This growth is primarily driven by the increasing integration of GIS technology across various industries to improve spatial data visualization, enhance decision-making, and optimize operations. The benefits offered by GIS in terms of accuracy, efficiency, and cost-effectiveness are convincing more sectors to adopt these systems, thereby expanding the market size significantly.



    A major growth factor contributing to the GIS market expansion is the escalating demand for location-based services. As businesses across different sectors recognize the importance of spatial data analytics in driving strategic decisions, the reliance on GIS applications is becoming increasingly pronounced. The rise in IoT devices, coupled with the enhanced capabilities of AI and machine learning, has further fueled the demand for GIS solutions. These technologies enable the processing and analysis of large volumes of spatial data, thereby providing valuable insights that businesses can leverage for competitive advantage. In addition, government initiatives promoting the adoption of digital infrastructure and smart city projects are playing a crucial role in the growth of the GIS market.



    The advancement in satellite imaging and remote sensing technologies is another key driver of the GIS market growth. With enhanced satellite capabilities, the precision and quality of geospatial data have significantly improved, making GIS applications more reliable and effective. The availability of high-resolution satellite imagery has opened new avenues in various sectors including agriculture, urban planning, and disaster management. Moreover, the decreasing costs of satellite data acquisition and the proliferation of drone technology are making GIS more accessible to small and medium enterprises, further expanding the market potential.



    The advent of 3D Geospatial Technologies is revolutionizing the way industries utilize GIS data. By providing a three-dimensional perspective, these technologies enhance spatial analysis and visualization, offering more detailed and accurate representations of geographical areas. This advancement is particularly beneficial in urban planning, where 3D models can simulate cityscapes and infrastructure, allowing planners to visualize potential developments and assess their impact on the environment. Moreover, 3D geospatial data is proving invaluable in sectors such as construction and real estate, where it aids in site analysis and project planning. As these technologies continue to evolve, they are expected to play a pivotal role in the future of GIS, expanding its applications and driving further market growth.



    Furthermore, the increasing application of GIS in environmental monitoring and management is bolstering market growth. With growing concerns over climate change and environmental degradation, GIS is being extensively used for resource management, biodiversity conservation, and natural disaster risk management. This trend is expected to continue as more organizations and governments prioritize sustainability, thereby driving the demand for advanced GIS solutions. The integration of GIS with other technologies such as big data analytics, and cloud computing is also expected to enhance its capabilities, making it an indispensable tool for environmental management.



    Regionally, North America is currently leading the GIS market, driven by the widespread adoption of advanced technologies and the presence of major GIS vendors. The regionÂ’s focus on infrastructure development and smart city projects is further propelling the market growth. Europe is also witnessing significant growth owing to the increasing adoption of GIS in various industries such as agriculture and transportation. The Asia Pacific region is anticipated to exhibit the highest CAGR during the forecast period, attributed to rapid urbanization, government initiatives for digital transformation, and increasing investments in infrastructure development. In contrast, the markets in Latin America and the Middle East & Africa are growing steadily as these regions continue to explore and adopt GIS technologies.



    <a href="https://dataintelo.com/report/geospatial-data-fusion-market" target="_blank&quo

  2. a

    Future Land Use

    • hub.arcgis.com
    • capecoral-capegis.opendata.arcgis.com
    Updated Jul 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cape Coral GIS (2016). Future Land Use [Dataset]. https://hub.arcgis.com/maps/CapeGIS::future-land-use
    Explore at:
    Dataset updated
    Jul 19, 2016
    Dataset authored and provided by
    Cape Coral GIS
    Area covered
    Description

    This feature class was developed to represent future land use and their associated attributes for the purpose of mapping, analysis, and planning. The accuracy of this data varies and should not be used for precise measurements or calculations.

  3. a

    Town of Blacksburg GIS Future Land Use 201711

    • geospatial-data-repository-for-virginia-tech-virginiatech.hub.arcgis.com
    Updated Dec 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Tech (2020). Town of Blacksburg GIS Future Land Use 201711 [Dataset]. https://geospatial-data-repository-for-virginia-tech-virginiatech.hub.arcgis.com/content/3044a593a3654b869d743d2b38fa2475
    Explore at:
    Dataset updated
    Dec 10, 2020
    Dataset authored and provided by
    Virginia Tech
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Polygon layer depicting future land use plans in Blacksburg November 2017. This data was created by the GIS team from the Town of Blacksburg and has been curated by Virginia Tech University Libraries in order to provide access to the data. This data is meant for general use only. Virginia Tech’s University Library is acting as a steward for this data and any questions about its use should refer to our Terms of Use Page.

  4. G

    Geographic Information System Analytics Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Geographic Information System Analytics Market Report [Dataset]. https://www.marketreportanalytics.com/reports/geographic-information-system-analytics-market-10612
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 18, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) Analytics market is experiencing robust growth, projected to reach $15.10 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 12.41% from 2025 to 2033. This expansion is fueled by several key drivers. Increasing adoption of cloud-based GIS solutions enhances accessibility and scalability for diverse industries. The growing need for data-driven decision-making across sectors like retail, real estate, government, and telecommunications is a significant catalyst. Furthermore, advancements in artificial intelligence (AI) and machine learning (ML) integrated with GIS analytics are revolutionizing spatial data analysis, enabling more sophisticated predictive modeling and insightful interpretations. The market's segmentation reflects this broad adoption, with retail and real estate, government and utilities, and telecommunications representing key end-user segments, each leveraging GIS analytics for distinct applications such as location optimization, infrastructure management, and network planning. Competitive pressures are shaping the market landscape, with established players like Esri, Trimble, and Autodesk innovating alongside emerging tech companies focusing on AI and specialized solutions. The North American market currently holds a significant share, driven by early adoption and technological advancements. However, Asia-Pacific is expected to witness substantial growth due to rapid urbanization and increasing investment in infrastructure projects. Market restraints primarily involve the high cost of implementation and maintenance of advanced GIS analytics solutions and the need for skilled professionals to effectively utilize these technologies. However, the overall outlook remains extremely positive, driven by continuous technological innovation and escalating demand across multiple sectors. The future trajectory of the GIS analytics market hinges on several factors. Continued investment in research and development, especially in AI and ML integration, will be crucial for unlocking new possibilities. Furthermore, the simplification of GIS analytics software and the development of user-friendly interfaces will broaden accessibility beyond specialized technical experts. Growing data volumes from various sources (IoT, remote sensing) present both opportunities and challenges; efficient data management and analytics techniques will be paramount. The market's success also depends on addressing cybersecurity concerns related to sensitive geospatial data. Strong partnerships between technology providers and end-users will be vital in optimizing solution implementation and maximizing return on investment. Government initiatives promoting the use of GIS technology for smart city development and infrastructure planning will also play a significant role in market expansion. Overall, the GIS analytics market is poised for sustained growth, driven by technological advancements, increasing data availability, and heightened demand for location-based intelligence across a wide range of industries.

  5. G

    Geospatial Analytics Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Jan 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Geospatial Analytics Market Report [Dataset]. https://www.marketresearchforecast.com/reports/geospatial-analytics-market-1650
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jan 10, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geospatial Analytics Market size was valued at USD 79.06 USD billion in 2023 and is projected to reach USD 202.74 USD billion by 2032, exhibiting a CAGR of 14.4 % during the forecast period. The growing adoption of location-based technologies and the increasing need for data-driven decision-making in various industries are key factors driving market growth. Geospatial analytics captures, produces and displays GIS (geographic information system)-maps and pictures that may be weather maps, GPS or satellite photos. The geospatial analysis as a tool works with state of art technology in every formats namely; the GPS, sensors that locates, social media, mobile devices, multi of the satellite imagery to produce data visualizations that are facilitating trend-finding in complex relations between people and places as well are the situations' understanding. Visualizations are depicted through the use of maps, graphs, figures, and cartograms that illustrate the entire historical picture as well as a current changing trend. This is why the forecast becomes more confident and the situation is anticipated better. Recent developments include: February 2024: Placer.ai and Esri, a Geographic Information System (GIS) technology provider, partnered to empower customers with enhanced analytics capabilities, integrating consumer behavior analysis. Additionally, the agreement will foster collaborations to unlock further features by synergizing our respective product offerings., December 2023: CKS and Esri India Technologies Pvt Ltd teamed up to introduce the 'MMGEIS' program, focusing on students from 8th grade to undergraduates, to position India as a global leader in geospatial technology through skill development and innovation., December 2023: In collaboration with Bayanat, the UAE Space Agency revealed the initiation of the operational phase of the Geospatial Analytics Platform during its participation in organizing the Space at COP28 initiatives., November 2023: USAID unveiled its inaugural Geospatial Strategy, designed to harness geospatial data and technology for more targeted international program delivery. The strategy foresees a future where geographic methods enhance the effectiveness of USAID's efforts by pinpointing development needs, monitoring program implementation, and evaluating outcomes based on location., May 2023: TomTom International BV, a geolocation technology specialist, expanded its partnership with Alteryx, Inc. Through this partnership, Alteryx will use TomTom’s Maps APIs and location data to integrate spatial data into Alteryx’s products and location insights packages, such as Alteryx Designer., May 2023: Oracle Corporation announced the launch of Oracle Spatial Studio 23.1, available in the Oracle Cloud Infrastructure (OCI) marketplace and for on-premises deployment. Users can browse, explore, and analyze geographic data stored in and managed by Oracle using a no-code mapping tool., May 2023: CAPE Analytics, a property intelligence company, announced an enhanced insurance offering by leveraging Google geospatial data. Google’s geospatial data can help CAPE create appropriate solutions for insurance carriers., February 2023: HERE Global B.V. announced a collaboration with Cognizant, an information technology, services, and consulting company, to offer digital customer experience using location data. In this partnership, Cognizant will utilize the HERE location platform’s real-time traffic data, weather, and road attribute data to develop spatial intelligent solutions for its customers., July 2022: Athenium Analytics, a climate risk analytics company, launched a comprehensive tornado data set on the Esri ArcGIS Marketplace. This offering, which included the last 25 years of tornado insights from Athenium Analytics, would extend its Bronze partner relationship with Esri. . Key drivers for this market are: Advancements in Technologies to Fuel Market Growth. Potential restraints include: Lack of Standardization Coupled with Shortage of Skilled Workforce to Limit Market Growth. Notable trends are: Rise of Web-based GIS Platforms Will Transform Market.

  6. G

    Geographic Information System Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Geographic Information System Market Report [Dataset]. https://www.marketreportanalytics.com/reports/geographic-information-system-market-10231
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Mar 18, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    North America
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) market is experiencing robust growth, projected to reach $5.15 billion in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 20.55% from 2025 to 2033. This expansion is fueled by several key drivers. Increasing urbanization and the need for efficient urban planning are creating significant demand for GIS solutions. Furthermore, advancements in technology, particularly in cloud computing and artificial intelligence (AI), are enhancing GIS capabilities, leading to wider adoption across various sectors. The integration of GIS with other technologies like IoT (Internet of Things) and big data analytics is enabling more sophisticated spatial analysis and decision-making. Industries like transportation, utilities, and agriculture are leveraging GIS for improved asset management, infrastructure planning, and precision farming. The market is segmented by component (software, data, services) and deployment (on-premise, cloud), with the cloud-based deployment model experiencing faster growth due to its scalability and cost-effectiveness. The competitive landscape is characterized by a mix of established players like Esri, Autodesk, and Trimble, and emerging technology providers, creating a dynamic market with significant innovation. However, factors like high initial investment costs and the need for skilled professionals to implement and manage GIS systems pose challenges to market growth. Despite these restraints, the long-term outlook for the GIS market remains positive. The increasing availability of geospatial data, coupled with declining hardware costs and improvements in user interfaces, is making GIS technology more accessible to a wider range of users. The integration of GIS into mobile applications and the rise of location-based services further broaden the market's potential. Government initiatives promoting smart cities and digital infrastructure development are also contributing to market growth. The North American region, particularly the United States, currently holds a significant market share due to early adoption and a robust technology ecosystem. However, other regions, especially in Asia-Pacific and Europe, are experiencing rapid growth, driven by increasing infrastructure investments and the adoption of advanced technologies. Future growth will be influenced by continued technological innovation, the availability of skilled workforce, and government regulations related to geospatial data management.

  7. G

    Geographic Information System (GIS) Services Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Geographic Information System (GIS) Services Report [Dataset]. https://www.archivemarketresearch.com/reports/geographic-information-system-gis-services-54697
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 9, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) Services market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, we can infer substantial expansion based on the identified market drivers and trends. The burgeoning adoption of GIS technology in environmental management, infrastructure development, and precision agriculture is fueling market expansion. The integration of GIS with advanced analytics, such as AI and machine learning, is further enhancing its capabilities and broadening its applications. This leads to increased efficiency, improved decision-making, and cost optimization across various industries. The market's segmentation, encompassing diverse application areas like environmental agencies, utility companies, and telecommunications, highlights its widespread utility. Furthermore, the geographical distribution across North America, Europe, Asia Pacific, and other regions underscores a global market with significant growth potential in both developed and emerging economies. Given the rapid technological advancements and increasing data availability, the GIS services market is projected to maintain a strong growth trajectory in the coming years, surpassing previous estimates for market size. We estimate the market size in 2025 to be approximately $15 Billion, with a conservative CAGR of 8% projected through 2033. This growth will be fueled by continued technological advancements and increasing reliance on data-driven decision making in various sectors. The competitive landscape is marked by a mix of established players and emerging technology providers. Companies like Intellias, EnviroScience, and Infosys BPM are leading the charge, leveraging their expertise in GIS technology and data analytics. The presence of numerous regional players also reflects the market's geographically diverse growth. The market's future growth will likely hinge on factors such as the development of more sophisticated GIS software and analytics tools, the increased adoption of cloud-based GIS solutions, and the continuous integration of GIS with other technologies like IoT and blockchain. Addressing potential restraints, such as high initial investment costs for some organizations, will be crucial for sustained market growth.

  8. O

    Future Land Use

    • data.sanantonio.gov
    • opendata-cosagis.opendata.arcgis.com
    • +1more
    Updated Apr 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Data (2025). Future Land Use [Dataset]. https://data.sanantonio.gov/dataset/future-land-use
    Explore at:
    arcgis geoservices rest api, zip, html, gdb, csv, geojson, xlsx, kml, gpkg, txtAvailable download formats
    Dataset updated
    Apr 7, 2025
    Dataset provided by
    City of San Antonio
    Authors
    GIS Data
    Description

    This is a graphical polygon dataset which depicts a future land use overlay of communities throughout the City of San Antonio to complete 30 sub-area plans over the next five to six years as part of implementing the SA Tomorrow Comprehensive Plan.

  9. Future April 1 snow water equivalent (CONUS) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Future April 1 snow water equivalent (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/future-april-1-snow-water-equivalent-conus-image-service-9564c
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Snow residence time (in days) and April 1 snow water equivalent (in mm) were modeled using the spatial analog models of Luce et al., 2014 (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013WR014844); see also Lute and Luce, 2017 (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR020752). These models are built on precipitation and snow data from Snowpack Telemetry (SNOTEL) stations across the western United States and temperature data from the TopoWx dataset (https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.4127). They were calculated for the historical (1975-2005) and future (2071-2090) time periods, along with absolute and percent change.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  10. O

    Future Land Use

    • data.brla.gov
    • gisdata.brla.gov
    • +3more
    Updated Jul 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City-Parish Planning Commission (2025). Future Land Use [Dataset]. https://data.brla.gov/Housing-and-Development/Future-Land-Use/jbhe-zjm4
    Explore at:
    csv, application/rdfxml, tsv, xml, application/rssxml, kml, application/geo+json, kmzAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    City-Parish Planning Commission
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Polygon geometry with attributes displaying future land use as designated by the City of Baton Rouge and Parish of East Baton Rouge comprehensive plan (FUTUREBR).

    https://city.brla.gov/gis/metadata/FUTURE_LAND_USE.html" STYLE="text-decoration:underline;">Metadata

  11. Historical and future precipitation trends (Map Service)

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +7more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical and future precipitation trends (Map Service) [Dataset]. https://catalog.data.gov/dataset/historical-and-future-precipitation-trends-map-service-f7d6d
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.\Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  12. G

    GIS Data Collector Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Data Collector Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-data-collector-21401
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 22, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS data collector market is experiencing robust growth, driven by increasing adoption of precision agriculture, expanding infrastructure development projects, and the rising demand for accurate geospatial data across various industries. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $4.2 billion by 2033. Key drivers include the increasing availability of affordable and high-precision GPS technology, coupled with advancements in data processing and cloud-based solutions. The integration of GIS data collectors with other technologies, such as drones and IoT sensors, is further fueling market expansion. The demand for high-precision GIS data collectors is particularly strong in sectors like surveying, mapping, and construction, where accuracy is paramount. While the market faces challenges such as high initial investment costs and the need for specialized expertise, the overall growth trajectory remains positive. The market is segmented by application (agriculture, industrial, forestry, and others) and by type (general precision and high precision). North America and Europe currently hold significant market shares, but the Asia-Pacific region is anticipated to experience rapid growth in the coming years due to substantial infrastructure development and increasing government investments in geospatial technologies. The competitive landscape is characterized by both established players like Trimble, Garmin, and Hexagon (Leica Geosystems) and emerging companies offering innovative solutions. These companies are constantly innovating, integrating advanced technologies like AI and machine learning to enhance data collection and analysis capabilities. This competition is driving down prices and improving product quality, benefiting end-users. The increasing use of mobile GIS and cloud-based data management solutions is also transforming the industry, making data collection and analysis more accessible and efficient. Future growth will be largely influenced by the advancement of 5G networks, enabling faster data transmission and real-time applications, and the increasing adoption of automation and AI in data processing workflows. Furthermore, government regulations promoting the use of accurate geospatial data for sustainable development and environmental monitoring are creating new opportunities for the market’s expansion.

  13. d

    One hundred seventy environmental GIS data layers for the circumpolar Arctic...

    • search.dataone.org
    • arcticdata.io
    Updated Dec 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arctic Data Center (2020). One hundred seventy environmental GIS data layers for the circumpolar Arctic Ocean region [Dataset]. https://search.dataone.org/view/f63d0f6c-7d53-46ce-b755-42a368007601
    Explore at:
    Dataset updated
    Dec 18, 2020
    Dataset provided by
    Arctic Data Center
    Time period covered
    Jan 1, 1950 - Dec 31, 2100
    Area covered
    Arctic Ocean,
    Description

    This dataset represents a unique compiled environmental data set for the circumpolar Arctic ocean region 45N to 90N region. It consists of 170 layers (mostly marine, some terrestrial) in ArcGIS 10 format to be used with a Geographic Information System (GIS) and which are listed below in detail. Most layers are long-term average raster GRIDs for the summer season, often by ocean depth, and represent value-added products easy to use. The sources of the data are manifold such as the World Ocean Atlas 2009 (WOA09), International Bathimetric Chart of the Arctic Ocean (IBCAO), Canadian Earth System Model 2 (CanESM2) data (the newest generation of models available) and data sources such as plankton databases and OBIS. Ocean layers were modeled and predicted into the future and zooplankton species were modeled based on future data: Calanus hyperboreus (AphiaID104467), Metridia longa (AphiaID 104632), M. pacifica (AphiaID 196784) and Thysanoessa raschii (AphiaID 110711). Some layers are derived within ArcGIS. Layers have pixel sizes between 1215.819573 meters and 25257.72929 meters for the best pooled model, and between 224881.2644 and 672240.4095 meters for future climate data. Data was then reprojected into North Pole Stereographic projection in meters (WGS84 as the geographic datum). Also, future layers are included as a selected subset of proposed future climate layers from the Canadian CanESM2 for the next 100 years (scenario runs rcp26 and rcp85). The following layer groups are available: bathymetry (depth, derived slope and aspect); proximity layers (to,glaciers,sea ice, protected areas, wetlands, shelf edge); dissolved oxygen, apparent oxygen, percent oxygen, nitrogen, phosphate, salinity, silicate (all for August and for 9 depth classes); runoff (proximity, annual and August); sea surface temperature; waterbody temperature (12 depth classes); modeled ocean boundary layers (H1, H2, H3 and Wx).This dataset is used for a M.Sc. thesis by the author, and freely available upon request. For questions and details we suggest contacting the authors. Process_Description: Please contact Moritz Schmid for the thesis and detailed explanations. Short version: We model predicted here for the first time ocean layers in the Arctic Ocean based on a unique dataset of physical oceanography. Moreover, we developed presence/random absence models that indicate where the studied zooplankton species are most likely to be present in the Arctic Ocean. Apart from that, we develop the first spatially explicit models known to science that describe the depth in which the studied zooplankton species are most likely to be at, as well as their distribution of life stages. We do not only do this for one present day scenario. We modeled five different scenarios and for future climate data. First, we model predicted ocean layers using the most up to date data from various open access sources, referred here as best-pooled model data. We decided to model this set of stratification layers after discussions and input of expert knowledge by Professor Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks. We predicted those stratification layers because those are the boundaries and layers that the plankton has to cross for diel vertical migration and a change in those would most likely affect the migration. I assigned 4 variables to the stratification layers. H1, H2, H3 and Wx. H1 is the lower boundary of the mixed layer depth. Above this layer a lot of atmospheric disturbance is causing mixing of the water, giving the mixed layer its name. H2, the middle of the halocline is important because in this part of the ocean a strong gradient in salinity and temperature separates water layers. H3, the isotherm is important, because beneath it flows denser and colder Atlantic water. Wx summarizes the overall width of the described water column. Ocean layers were predicted using machine learning algorithms (TreeNet, Salford Systems). Second, ocean layers were included as predictors and used to predict the presence/random absence, most likely depth and life stage layers for the zooplankton species: Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanoessa raschii, This process was repeated for future predictions based on the CanESM2 data (see in the data section). For zooplankton species the following layers were developed and for the future. C. hyperboreus: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100.For parameters: Presence/random absence, most likely depth and life stage layers M. longa: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100. For parameters: Presence/rand... Visit https://dataone.org/datasets/f63d0f6c-7d53-46ce-b755-42a368007601 for complete metadata about this dataset.

  14. b

    Future Land Use

    • newgis.brla.gov
    • gisdata.brla.gov
    • +3more
    Updated Aug 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    East Baton Rouge GIS Map Portal (2023). Future Land Use [Dataset]. https://newgis.brla.gov/datasets/future-land-use-1/api
    Explore at:
    Dataset updated
    Aug 25, 2023
    Dataset authored and provided by
    East Baton Rouge GIS Map Portal
    Area covered
    Description

    Polygon geometry with attributes displaying future land use as designated in the comprehensive plan, FUTUREBR, for property in the City of Baton Rouge and unincorporated area of East Baton Rouge Parish.Metadata

  15. t

    Future Land Use - August 2023

    • opendata.townofmorrisville.org
    csv, excel, geojson +1
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Future Land Use - August 2023 [Dataset]. https://opendata.townofmorrisville.org/explore/dataset/future-land-use-august-2023/
    Explore at:
    geojson, json, csv, excelAvailable download formats
    Dataset updated
    Aug 24, 2023
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Town of Morrisville - Future Land Use - August 2023GIS Data Disclaimer: The Geographic Information System (GIS) data provided by the Town of Morrisville is intended to be used for reference purposes only. The data is provided "as is" without warranty of any kind, either express or implied. The Town of Morrisville does not guarantee the accuracy, completeness, or usefulness of the information contained herein.The GIS data is collected from various sources, which may contain errors or inconsistencies. Users are advised to verify the data independently before relying on it for any purpose.The GIS data is provided for informational purposes only and should not be used for legal, engineering, or surveying purposes. The data is not intended to be a substitute for professional advice or judgment. Users should consult with appropriate professionals before making decisions based on the GIS data.By using the GIS data provided by the Town of Morrisville, users acknowledge and agree to the terms and conditions set forth in this disclaimer.

  16. m

    Ultrahigh Voltage Gis Market Size, Share & Future Trends Analysis 2033

    • marketresearchintellect.com
    Updated May 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Intellect (2025). Ultrahigh Voltage Gis Market Size, Share & Future Trends Analysis 2033 [Dataset]. https://www.marketresearchintellect.com/product/global-ultrahigh-voltage-gis-market-size-and-forecast/
    Explore at:
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    Market Research Intellect
    License

    https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy

    Area covered
    Global
    Description

    Check out Market Research Intellect's Ultrahigh Voltage Gis Market Report, valued at USD 12.5 billion in 2024, with a projected growth to USD 22.8 billion by 2033 at a CAGR of 8.3% (2026-2033).

  17. s

    Future Land Use (Sarpy County, NE)

    • gis.sarpy.gov
    • gohub.mapacog.org
    • +1more
    Updated Jul 23, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarpy County, Nebraska (2014). Future Land Use (Sarpy County, NE) [Dataset]. https://gis.sarpy.gov/datasets/future-land-use-sarpy-county-ne
    Explore at:
    Dataset updated
    Jul 23, 2014
    Dataset authored and provided by
    Sarpy County, Nebraska
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The proposed land use classification identified during community planning activies and sometimes defined at the parcel level, but typically proposed land use units are larger than the parcel.Data current as of the last business day.

  18. a

    Future Land Use

    • data-ral.opendata.arcgis.com
    • data.wake.gov
    • +2more
    Updated Jul 7, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Raleigh (2014). Future Land Use [Dataset]. https://data-ral.opendata.arcgis.com/maps/ral::future-land-use/about
    Explore at:
    Dataset updated
    Jul 7, 2014
    Dataset authored and provided by
    City of Raleigh
    Area covered
    Description

    This dataset covers the geographic area within Raleigh's Extraterritorial Jurisdiction (ETJ). The Future Land Use dataset includes polygons and labels representing the boundaries for specific land use classes as defined by the Unified Development Ordinance (UDO). The UDO is a complete rewrite of the existing City of Raleigh Zoning Code. Map service displaying future land use classes in the City of Raleigh.

  19. S

    Spatial Analysis Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Spatial Analysis Software Report [Dataset]. https://www.datainsightsmarket.com/reports/spatial-analysis-software-529883
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 11, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Spatial Analysis Software market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions, the expanding use of drones and other data acquisition technologies for precise geographic data collection, and the rising demand for advanced analytics across diverse sectors. The market's expansion is fueled by the need for efficient geospatial data processing and interpretation in applications such as urban planning, infrastructure development, environmental monitoring, and precision agriculture. Key trends include the integration of Artificial Intelligence (AI) and Machine Learning (ML) for automating analysis and improving accuracy, the proliferation of readily available satellite imagery and sensor data, and the growing adoption of 3D modeling and visualization techniques. While data security concerns and the high initial investment costs for advanced software solutions pose some restraints, the overall market outlook remains positive, with a projected compound annual growth rate (CAGR) exceeding 10% (a reasonable estimate based on the rapid technological advancements and market penetration observed in related sectors). This growth is expected to be particularly strong in the North American and Asia-Pacific regions, driven by substantial government investments in infrastructure projects and burgeoning private sector adoption. The segmentation by application (architecture, engineering, and other sectors) reflects the versatility of spatial analysis software, enabling its use across various industries. Similarly, the choice between cloud-based and locally deployed solutions caters to specific organizational needs and technical capabilities. The competitive landscape is characterized by both established players and emerging technology companies, showcasing the dynamic nature of the market. Major players like Autodesk, Bentley Systems, and Trimble are leveraging their existing portfolios to integrate advanced spatial analysis capabilities, while smaller companies are focusing on niche applications and innovative analytical techniques. The ongoing advancements in both hardware and software, coupled with increasing data availability and affordability, are set to further fuel the market's growth in the coming years. The historical period (2019-2024) likely witnessed moderate growth as the market matured, laying the foundation for the accelerated expansion expected during the forecast period (2025-2033). Continued innovation and industry convergence will be key drivers shaping the future trajectory of the Spatial Analysis Software market.

  20. f

    Locally Downscaled and Spatially Customizable Climate Data for Historical...

    • plos.figshare.com
    pdf
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tongli Wang; Andreas Hamann; Dave Spittlehouse; Carlos Carroll (2023). Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America [Dataset]. http://doi.org/10.1371/journal.pone.0156720
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Tongli Wang; Andreas Hamann; Dave Spittlehouse; Carlos Carroll
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North America
    Description

    Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901–2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011–2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataintelo (2025). Geographic Information System (GIS) Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/geographic-information-system-gis-market
Organization logo

Geographic Information System (GIS) Market Report | Global Forecast From 2025 To 2033

Explore at:
pptx, pdf, csvAvailable download formats
Dataset updated
Jan 7, 2025
Dataset authored and provided by
Dataintelo
License

https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

Time period covered
2024 - 2032
Area covered
Global
Description

Geographic Information System (GIS) Market Outlook



The Geographic Information System (GIS) market is witnessing robust growth with its global market size projected to reach USD 25.7 billion by 2032, up from USD 8.7 billion in 2023, at a compound annual growth rate (CAGR) of 12.4% during the forecast period. This growth is primarily driven by the increasing integration of GIS technology across various industries to improve spatial data visualization, enhance decision-making, and optimize operations. The benefits offered by GIS in terms of accuracy, efficiency, and cost-effectiveness are convincing more sectors to adopt these systems, thereby expanding the market size significantly.



A major growth factor contributing to the GIS market expansion is the escalating demand for location-based services. As businesses across different sectors recognize the importance of spatial data analytics in driving strategic decisions, the reliance on GIS applications is becoming increasingly pronounced. The rise in IoT devices, coupled with the enhanced capabilities of AI and machine learning, has further fueled the demand for GIS solutions. These technologies enable the processing and analysis of large volumes of spatial data, thereby providing valuable insights that businesses can leverage for competitive advantage. In addition, government initiatives promoting the adoption of digital infrastructure and smart city projects are playing a crucial role in the growth of the GIS market.



The advancement in satellite imaging and remote sensing technologies is another key driver of the GIS market growth. With enhanced satellite capabilities, the precision and quality of geospatial data have significantly improved, making GIS applications more reliable and effective. The availability of high-resolution satellite imagery has opened new avenues in various sectors including agriculture, urban planning, and disaster management. Moreover, the decreasing costs of satellite data acquisition and the proliferation of drone technology are making GIS more accessible to small and medium enterprises, further expanding the market potential.



The advent of 3D Geospatial Technologies is revolutionizing the way industries utilize GIS data. By providing a three-dimensional perspective, these technologies enhance spatial analysis and visualization, offering more detailed and accurate representations of geographical areas. This advancement is particularly beneficial in urban planning, where 3D models can simulate cityscapes and infrastructure, allowing planners to visualize potential developments and assess their impact on the environment. Moreover, 3D geospatial data is proving invaluable in sectors such as construction and real estate, where it aids in site analysis and project planning. As these technologies continue to evolve, they are expected to play a pivotal role in the future of GIS, expanding its applications and driving further market growth.



Furthermore, the increasing application of GIS in environmental monitoring and management is bolstering market growth. With growing concerns over climate change and environmental degradation, GIS is being extensively used for resource management, biodiversity conservation, and natural disaster risk management. This trend is expected to continue as more organizations and governments prioritize sustainability, thereby driving the demand for advanced GIS solutions. The integration of GIS with other technologies such as big data analytics, and cloud computing is also expected to enhance its capabilities, making it an indispensable tool for environmental management.



Regionally, North America is currently leading the GIS market, driven by the widespread adoption of advanced technologies and the presence of major GIS vendors. The regionÂ’s focus on infrastructure development and smart city projects is further propelling the market growth. Europe is also witnessing significant growth owing to the increasing adoption of GIS in various industries such as agriculture and transportation. The Asia Pacific region is anticipated to exhibit the highest CAGR during the forecast period, attributed to rapid urbanization, government initiatives for digital transformation, and increasing investments in infrastructure development. In contrast, the markets in Latin America and the Middle East & Africa are growing steadily as these regions continue to explore and adopt GIS technologies.



<a href="https://dataintelo.com/report/geospatial-data-fusion-market" target="_blank&quo

Search
Clear search
Close search
Google apps
Main menu