Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset represents the boundary of each parcel of land in Fulton County recorded for the purpose of aiding in the appraisal of real property and the determination of property tax. A parcel dataset is created each year in association with that year's tax digest. The parcel dataset for any given year is not considered final until the completion of the digest, which generally occurs around mid-year. Until the completion of the digest, the parcel dataset is considered to be a work in progress. Any necessary corrections and omissions may continue to be made even after the completion of the digest. The parcel dataset in its published form incorporates information from the CAMA (computer-aided mass appraisal) database. The CAMA information included with the published dataset is selected based on its value to the typical consumer of the data and includes the parcel identification number, the property address, property owner, owner's mailing address, tax district, assessed and appraised value for land and improvements, the number of livable units, acreage, property class and land use class. The information in this data set represents the completed 2021 digest.
Facebook
TwitterAccess Georgia's 129 data folders with 1,733 services and 3,993 layers of parcel boundaries, property tax records, and GIS mapping data.
Facebook
TwitterCity of Cumming administrative boundary derived from Forsyth County Tax Parcel feature class, updated as new annexations occur
Facebook
TwitterThe Digital Geologic-GIS Map of the Valley Head Quadrangle, Alabama and Georgia is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (vahe_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (vahe_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (vahe_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (liri_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (liri_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (vahe_geology_metadata_faq.pdf). Please read the liri_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Geological Survey of Alabama. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (vahe_geology_metadata.txt or vahe_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Geologic-GIS Map of Ocmulgee Mounds National Historical Park and Vicinity, Georgia is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ocmu_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ocmu_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ocmu_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ocmu_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ocmu_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ocmu_geology_metadata_faq.pdf). Please read the ocmu_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Georgia Department of Natural Resources and U. S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ocmu_geology_metadata.txt or ocmu_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:181,000 and United States National Map Accuracy Standards features are within (horizontally) 91.9 meters or 301.7 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterVector polygon map data of property parcels from Gwinnett County, Georgia containing 274,270 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Facebook
TwitterGIS Map view look up parcel information including owner, taxes, market value and more.Important Mailing Label Information:The "Mailing Labels" button is is copy of the Parcels Layer and is intended to be turned OFF on the map, and is there just for the "Public Notification" Widget. This widget obtains information on the pop-up of a selected layer to create "Mailing Labels." This said, this layer contains the Owners Mailing Address information. Below is Arcaded used to customize the pop-up:Made three custom Arcade Lines below: Proper($feature["OWNER_NAM1"]) + Proper($feature["OWNER_NAM2"])Proper($feature["OWNER_ADDR"])Proper($feature["OWNER_CITY"]) + ',' + $feature["OWNER_STAT"] + ',' + $feature["OWNER_ZIP"]Below is the custom pop-up:{expression/expr0}{expression/expr1}{expression/expr2}
Facebook
TwitterThe Unpublished Digital Geologic-GIS Map of the Fort Oglethorpe Quadrangle and parts of the Hooker and East Ridge Quadrangles, Georgia and Tennessee is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (fohe_geology.gdb), a 10.1 ArcMap (.MXD) map document (fohe_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (chch_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (chch_gis_readme.pdf). Please read the chch_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). Presently, a GRI Google Earth KMZ/KML product doesn't exist for this map. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: University of Tennessee, Tectonics and Structural Geology Research Group. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (fohe_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/chch/fohe_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 16N. The data is within the area of interest of Chickamauga & Chattanooga National Military Park.
Facebook
TwitterUS Geologic Service (USGS) Digital Raster Graphics (1:24000 scale) for the State of Georgia, combined with a hillshade visualization of a 10 meter Digital Elevation Model (DEM). A DRG is an image of a USGS standard series topographic map scanned at a minimum resolution of 250 dots per inch, and georeferenced to the Universal Transverse Mercator (UTM) projection. Each 7.5-minute DRG provides coverage for an area of land measuring 7.5-minutes of latitude by 7.5-minutes longitude. The horizontal positional accuracy and datum of the DRG matches that of the source map. The National Elevation Dataset (NED) is produced and distributed by the USGS. The NED is derived from diverse sources and processed to a common coordinate system and unit of vertical measure. NED data are in geographic coordinates (decimal degree units) and conform with the North American Datum of 1983. Elevation values are in meters, and referenced to the North American Vertical Datum of 1988 over the conterminous US. Although these data have been processed successfully on a computer system at the Georgia GIS Data Clearinghouse, no warranty expressed or implied is made by Georgia GIS Data Clearinghouse regarding the utility of the data on any other system, nor shall the act of distribution constitute any such warranty.
Facebook
TwitterGeorgia Counties from Atlanta Regional CommissionNo use limitations
Facebook
TwitterThe Digital Geologic-GIS Map of the Jamestown Quadrangle, Alabama and Georgia is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (jmst_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (jmst_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (jmst_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (liri_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (liri_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (jmst_geology_metadata_faq.pdf). Please read the liri_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Geological Survey of Alabama and Auburn University, Department of Geosciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (jmst_geology_metadata.txt or jmst_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Shoals and Underwater Hazard Areas-GIS Map of Chattahoochee River National Recreation Area, Georgia is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (chsh_shoals_and_underwater_hazards.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (chsh_shoals_and_underwater_hazards.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (chsh_shoals_and_underwater_hazards.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (chat_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chat_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (chsh_shoals_and_underwater_hazards_metadata_faq.pdf). Please read the chat_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: GeoCorps of America. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (chsh_shoals_and_underwater_hazards_metadata.txt or chsh_shoals_and_underwater_hazards_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Atlanta Regional Commission's (ARC) Research and Analytics Department is publishing this national data set from the United States' Health Resources and Services Administration (HRSA) Data Explorer. This dataset contains Providers of Services (POS) Facilities Data from the Centers for Medicare & Medicaid Services (CMS). The dataset was retrieved from the HRSA Data Explorer on June 3, 2024.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group at the Atlanta Regional Commission to show major Roads in Atlanta Region and State Highways in Georgia.These layers are subsets of the Georgia Department of Transportation's (GDOT) DLGF street centerline database. The features included in this Layer consist of all State highways in the 29-county area, as well as a number of additional roads that were identified by ARC's Transportation Planning Division (TPD) as major roads. Please note, this Layer is intended for relatively small scale mapping and labeling, and should be used in conjunction with the Expressways Layer.Major roads date: 2004State Highways date: 2003
Facebook
TwitterGeospatial data about Cobb County, Georgia Parcels. Export to CAD, GIS, PDF, CSV and access via API.
Facebook
TwitterUS Geologic Service (USGS) Digital Raster Graphics (1:24000 scale) covering the State of Georgia. A DRG is an image of a USGS standard series topographic map scanned at a minimum resolution of 250 dots per inch, and georeferenced to the Universal Transverse Mercator (UTM) projection. Each 7.5-minute DRG provides coverage for an area of land measuring 7.5-minutes of latitude by 7.5-minutes longitude. The horizontal positional accuracy and datum of the DRG matches that of the source map. Although these data have been processed successfully on a computer system at the Georgia GIS Data Clearinghouse, no warranty expressed or implied is made by Georgia GIS Data Clearinghouse regarding the utility of the data on any other system, nor shall the act of distribution constitute any such warranty.
Facebook
TwitterGeospatial data about Paulding County, Georgia Contours 2 Ft Intervals. Export to CAD, GIS, PDF, CSV and access via API.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Cumberland Island National Seashore, Georgia is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (cuis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (cuis_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (cuis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cuis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (cuis_geomorphology_metadata_faq.pdf). Please read the cuis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://res1wwwd-o-tgoogled-o-tcom.vcapture.xyz/earth/versions/. QGIS software is available for free at: https://res1wwwd-o-tqgisd-o-torg.vcapture.xyz/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://res1wwwd-o-tnpsd-o-tgov.vcapture.xyz/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://res1wwwd-o-tnpsd-o-tgov.vcapture.xyz/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: RWParkinson Inc. and MDA Information Systems, Inc. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (cuis_geomorphology_metadata.txt or cuis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:60,000 and United States National Map Accuracy Standards features are within (horizontally) 30.5 meters or 100 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://res1wwwd-o-tnpsd-o-tgov.vcapture.xyz/articles/gri-geodatabase-model.htm).
Facebook
TwitterThis data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Natural Resources Department of the Atlanta Regional Commission. The dataset contains polygonal hydrographic features including lakes, ponds, reservoirs, swamps, and marshes. Original data were captured from the NHDWaterbody geospatial data layer included in the High Resolution National Hydrography Dataset Plus (NHDPlus HR). Features in the NHDWaterbody geospatial layer that intersected the Georgia State boundary were selected and spatially joined to Georgia county boundaries and the WBDHU8 geospatial data layer found in the U.S. Geological Survey's Watershed Boundary Dataset. Layers were spatially joined using the Largest Overlap matching method. The spatial join was removed upon calculating values for the COUNTY_FIPS, COUNTY_NAME, HUC8_ID, and HUC8_SUBBASIN attributes. The CLASS attribute was created to identify Lakes equal to or larger than 10 acres as Major and less than 0.5 acres as Minor. Data in the HYDRO_CAT and RESERVOIR_TYPE attributes were sourced from values encoded in the Feature Code (FCode) field of the NHDWaterbody geospatial data layer.Attributes:FEATURE = Type of hydrologic featureCLASS = Class used to identify major and minor waterbodiesGNIS_ID = A permanent, unique number assigned by the Geographic Names Information System (GNIS) to a geographic feature name for the sole purpose of uniquely identifying that name application as a record in any information system database, dataset, file, or documentGNIS_NAME = The Geographic Names Information System (GNIS) assigned proper name, specific term, or expression by which a particular geographic entity is known.HUC8_ID = 8-digit hydrologic unit code used to identify subbasins in the hydrologic unit systemHUC8_SUBBASIN = Subbasin name of the 8-digit hydrologic unit code in the hydrologic unit systemCOUNTY_FIPS = County Federal Information Processing System (FIPS) codeCOUNTY_NAME = County nameHYDRO_CAT = Hydrographic feature categoryRESERVOIR_TYPE = Type of reservoirACRES = Area of the feature in acresELEVATION = The vertical distance from a given datumGlobalID = A type of UUID (Universal Unique Identifier) in which values are automatically assigned by the geodatabase when a row is createdlast_edited_user = User to last edit featurelast_edited_date = Date feature was last editedShape = Feature geometryShape_Length = Length of the feature, which may differ from the field measured length due to differences in calculation. Units are map units.Shape_Area = Area of feature in map units squaredSource: U.S. Geological Survey, National Geospatial ProgramDate: 2023
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset represents the boundary of each parcel of land in Fulton County recorded for the purpose of aiding in the appraisal of real property and the determination of property tax. A parcel dataset is created each year in association with that year's tax digest. The parcel dataset for any given year is not considered final until the completion of the digest, which generally occurs around mid-year. Until the completion of the digest, the parcel dataset is considered to be a work in progress. Any necessary corrections and omissions may continue to be made even after the completion of the digest. The parcel dataset in its published form incorporates information from the CAMA (computer-aided mass appraisal) database. The CAMA information included with the published dataset is selected based on its value to the typical consumer of the data and includes the parcel identification number, the property address, property owner, owner's mailing address, tax district, assessed and appraised value for land and improvements, the number of livable units, acreage, property class and land use class. The information in this data set represents the completed 2021 digest.