36 datasets found
  1. Gallup Analytics

    • archive.ciser.cornell.edu
    Updated Feb 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gallup Organization (2024). Gallup Analytics [Dataset]. https://archive.ciser.cornell.edu/studies/2823
    Explore at:
    Dataset updated
    Feb 15, 2024
    Dataset provided by
    Gallup, Inc.http://gallup.com/
    Authors
    Gallup Organization
    Variables measured
    Individual
    Description

    Contains Gallup data from countries that are home to more than 98% of the world's population through a state-of-the-art Web-based portal. Gallup Analytics puts Gallup's best global intelligence in users' hands to help them better understand the strengths and challenges of the world's countries and regions. Users can access Gallup's U.S. Daily tracking and World Poll data to compare residents' responses region by region and nation by nation to questions on topics such as economic conditions, government and business, health and wellbeing, infrastructure, and education.

    The Gallup Analytics Database is accessed through the Cornell University Libraries here. In addition, a CUL subscription also allows access to the Gallup Respondent Level Data. For access please refer to the documentation below and then request the variables you need here.

    Before requesting data from the World Poll, please see the Getting Started guide and the Worldwide Research Methodology and Codebook (You will need to request access). The Codebook will give you information about all available variables in the datasets. There are other guides available as well in the google folder. You can also access information about questions asked and variables using the Gallup World Poll Reference Tool. You will need to create your user account to access the tool. This will only give you access to information about the questions asked and variables. It will not give you access to the data.

    For further documentation and information see this site from New York University Libraries. The Gallup documentation for the World Poll methodology is also available under the Data and Documentation tab.

    In addition to the World Poll and Daily Tracking Poll, also available are the Gallup Covid-19 Survey, Gallup Poll Social Series Surveys, Race Relations Survey, Confidence in Institutions Survey, Honesty and Ethics in Professions Survey, and Religion Battery.

    The process for getting access to respondent-level data from the Gallup U.S. Daily Tracking is similar to the World Poll Survey. There is no comparable discovery tool for U.S. Daily Tracking poll questions, however. Users need to consult the codebooks and available variables across years.

    The COVID-19 web survey began on March 13, 2020 with daily random samples of U.S. adults, aged 18 and older who are members of the Gallup Panel. Before requesting data, please see the Gallup Panel COVID-19 Survey Methodology and Codebook.

    The Gallup Poll Social Series (GPSS) dataset is a set of public opinion surveys designed to monitor U.S. adults’ views on numerous social, economic, and political topics. More information is available on the Gallup website: https://www.gallup.com/175307/gallup-poll-social-series-methodology.aspx As each month has a unique codebook, contact CCSS-ResearchSupport@cornell.edu to discuss your interests and start the data request process.

    Starting in 1973, Gallup started measuring the confidence level in several US institutions like Congress, Presidency, Supreme Court, Police, etc. The included dataset includes data beginning in 1973 and data is collected once per year. Users should consult the list of available variables.

    The Race Relations Poll includes topics that were previously represented in the GPSS Minority Relations Survey that ran through 2016. The Race Relations Survey was conducted November 2018. Users should consult the codebook for this poll before making their request.

    The Honesty and Ethics in Professions Survey – Starting in 1976, Gallup started measuring US perceptions of the honesty and ethics of a list of professions. The included dataset was added to the collection in March 2023 and includes data ranging from 1976-2022. Documentation for this collection is located here and will require you to request access.

    Religion Battery: Consolidated list of items focused on religion in the US from 1999-2022. Documentation for this collection is located here and will require you to request access.

  2. Gallup Analytics

    • data.library.wustl.edu
    Updated 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gallup Organization (2006). Gallup Analytics [Dataset]. https://data.library.wustl.edu/record/108216
    Explore at:
    Dataset updated
    2006
    Dataset provided by
    Gallup, Inc.http://gallup.com/
    Authors
    Gallup Organization
    Description

    Gallup has developed Gallup Analytics, which allows Users to access data from the Gallup World Poll, the Gallup U.S. Daily tracking and the historical data from the Gallup Poll Social Series. Gallup Analytics includes questions and indexes covering topics such as economics, politics and well-being.

  3. Gallup Respondent-Level Data: World Poll

    • datacatalog.med.nyu.edu
    Updated Mar 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gallup (2024). Gallup Respondent-Level Data: World Poll [Dataset]. https://datacatalog.med.nyu.edu/dataset/10183
    Explore at:
    Dataset updated
    Mar 22, 2024
    Dataset provided by
    Gallup, Inc.http://gallup.com/
    Authors
    Gallup
    Area covered
    International
    Description

    The Gallup World Poll is an ongoing global survey that collects respondents' opinions on a variety of topics. In geographic regions that have low access to telephone services, survey staff go to that area and to ask residents questions in-person. The Gallup World Poll includes core questions on business and economics, citizen engagement, communications and technology, education and families, environment and energy, food and shelter, government and politics, health, law and order, religion and ethics, social issues, well-being, and work. Additional questions may be included or edited depending on geographic location.

  4. Gallup Respondent-Level Data: U.S. Daily Tracking

    • datacatalog.med.nyu.edu
    Updated Apr 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gallup (2024). Gallup Respondent-Level Data: U.S. Daily Tracking [Dataset]. https://datacatalog.med.nyu.edu/dataset/10184
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset provided by
    Gallup, Inc.http://gallup.com/
    Authors
    Gallup
    Time period covered
    Jan 1, 2008 - Dec 31, 2017
    Area covered
    United States, National
    Description

    The Gallup U.S. Daily Tracking poll was conducted between 2008 and 2017 to collect Americans' opinions and perceptions on political and economic current events. It included two parallel surveys, the U.S. Daily and the Gallup-Sharecare Well-Being Index. Gallup interviews approximately 1,000 U.S. adults every day, half of whom respond to the U.S. Daily survey and the other half respond to the Gallup-Sharecare Well-Being Index survey. The U.S. Daily survey includes information about political affiliation, presidential approval ratings, economic confidence, and religion. The Gallup-Sharecare Well-Being Index includes information on health insurance, exercise, dietary choices, and overall well-being.

  5. N

    Gallup, NM Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Gallup, NM Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Gallup from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/gallup-nm-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gallup, New Mexico
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Gallup population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Gallup across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Gallup was 20,451, a 2.44% decrease year-by-year from 2022. Previously, in 2022, Gallup population was 20,962, a decline of 2.30% compared to a population of 21,456 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Gallup decreased by 323. In this period, the peak population was 22,159 in the year 2015. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Gallup is shown in this column.
    • Year on Year Change: This column displays the change in Gallup population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Gallup Population by Year. You can refer the same here

  6. N

    Median Household Income Variation by Family Size in Gallup, NM: Comparative...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Median Household Income Variation by Family Size in Gallup, NM: Comparative analysis across 7 household sizes [Dataset]. https://www.neilsberg.com/research/datasets/1aefb39b-73fd-11ee-949f-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gallup, New Mexico
    Variables measured
    Household size, Median Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 7 household sizes (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out how household income varies with the size of the family unit. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median household incomes for various household sizes in Gallup, NM, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.

    Key observations

    • Of the 7 household sizes (1 person to 7-or-more person households) reported by the census bureau, Gallup did not include 6, or 7-person households. Across the different household sizes in Gallup the mean income is $62,233, and the standard deviation is $12,589. The coefficient of variation (CV) is 20.23%. This high CV indicates high relative variability, suggesting that the incomes vary significantly across different sizes of households.
    • In the most recent year, 2021, The smallest household size for which the bureau reported a median household income was 1-person households, with an income of $41,054. It then further increased to $72,634 for 5-person households, the largest household size for which the bureau reported a median household income.

    https://i.neilsberg.com/ch/gallup-nm-median-household-income-by-household-size.jpeg" alt="Gallup, NM median household income, by household size (in 2022 inflation-adjusted dollars)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Household Sizes:

    • 1-person households
    • 2-person households
    • 3-person households
    • 4-person households
    • 5-person households
    • 6-person households
    • 7-or-more-person households

    Variables / Data Columns

    • Household Size: This column showcases 7 household sizes ranging from 1-person households to 7-or-more-person households (As mentioned above).
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific household size.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Gallup median household income. You can refer the same here

  7. Food Insecurity Experience Scale 2021 - Jamaica

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Jan 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FAO Statistics Division (2023). Food Insecurity Experience Scale 2021 - Jamaica [Dataset]. https://microdata.worldbank.org/index.php/catalog/5501
    Explore at:
    Dataset updated
    Jan 18, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    Authors
    FAO Statistics Division
    Time period covered
    2021
    Area covered
    Jamaica
    Description

    Abstract

    Sustainable Development Goal (SDG) target 2.1 commits countries to end hunger, ensure access by all people to safe, nutritious and sufficient food all year around. Indicator 2.1.2, “Prevalence of moderate or severe food insecurity based on the Food Insecurity Experience Scale (FIES)”, provides internationally-comparable estimates of the proportion of the population facing difficulties in accessing food. More detailed background information is available at http://www.fao.org/in-action/voices-of-the-hungry/fies/en/ .

    The FIES-based indicators are compiled using the FIES survey module, containing 8 questions. Two indicators can be computed:
    1. The proportion of the population experiencing moderate or severe food insecurity (SDG indicator 2.1.2), 2. The proportion of the population experiencing severe food insecurity.

    These data were collected by FAO through the Gallup World Poll. General information on the methodology can be found here: https://www.gallup.com/178667/gallup-world-poll-work.aspx. National institutions can also collect FIES data by including the FIES survey module in nationally representative surveys.

    Microdata can be used to calculate the indicator 2.1.2 at national level. Instructions for computing this indicator are described in the methodological document available in the documentations tab. Disaggregating results at sub-national level is not encouraged because estimates will suffer from substantial sampling and measurement error.

    Geographic coverage

    National coverage

    Analysis unit

    Individuals

    Universe

    Individuals of 15 years or older with access to landline and/or mobile phones.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A stratified multi-stage cluster sample design was used to complete 505 face-to-face surveys. Exclusions: NA Design effect: 1.6

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Cleaning operations

    Statistical validation assesses the quality of the FIES data collected by testing their consistency with the assumptions of the Rasch model. This analysis involves the interpretation of several statistics that reveal 1) items that do not perform well in a given context, 2) cases with highly erratic response patterns, 3) pairs of items that may be redundant, and 4) the proportion of total variance in the population that is accounted for by the measurement model.

    Sampling error estimates

    The margin of error is estimated as 5.5. This is calculated around a proportion at the 95% confidence level. The maximum margin of error was calculated assuming a reported percentage of 50% and takes into account the design effect.

    Data appraisal

    The variable WORRIED was not considered in the computation of the published FAO food insecurity indicator based on FIES due to the results of the validation process. The variable HEALTHY was not considered in the computation of the published FAO food insecurity indicator based on FIES due to the results of the validation process.

  8. N

    Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of Gallup, NM Household Incomes Across 16 Income Brackets // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/f34d99e9-f353-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gallup
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Gallup: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 254(3.60%) households where the householder is under 25 years old, 2,837(40.24%) households with a householder aged between 25 and 44 years, 1,989(28.21%) households with a householder aged between 45 and 64 years, and 1,970(27.94%) households where the householder is over 65 years old.
    • The age group of 45 to 64 years exhibits the highest median household income, while the largest number of households falls within the 25 to 44 years bracket. This distribution hints at economic disparities within the city of Gallup, showcasing varying income levels among different age demographics.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Gallup median household income by age. You can refer the same here

  9. N

    Gallup, NM Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Gallup, NM Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1e1c2ee-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gallup, New Mexico
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Gallup by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Gallup. The dataset can be utilized to understand the population distribution of Gallup by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Gallup. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Gallup.

    Key observations

    Largest age group (population): Male # 35-39 years (928) | Female # 10-14 years (1,218). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Gallup population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Gallup is shown in the following column.
    • Population (Female): The female population in the Gallup is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Gallup for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Gallup Population by Gender. You can refer the same here

  10. d

    Replication Data for: Globalization, Government Popularity, and the Great...

    • search.dataone.org
    Updated Dec 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aksoy, Cevat Giray (2023). Replication Data for: Globalization, Government Popularity, and the Great Skill Divide [Dataset]. http://doi.org/10.7910/DVN/ET4UO9
    Explore at:
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Aksoy, Cevat Giray
    Description

    The paper uses data from the Gallup World Poll 2005-2018, which is accessible only to subscribers. To obtain the data, fill out the form at the end of the this page: https://www.gallup.com/analytics/318875/global-research.aspx. You will receive an email from the Gallup team to discuss the subscription options and pricing.

  11. u

    Cadastral PLSS Standardized Data - PLSSPoints (Gallup) - Version 1.1

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Apr 8, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2013). Cadastral PLSS Standardized Data - PLSSPoints (Gallup) - Version 1.1 [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/39d12f6d-7a65-4d88-aeb1-1ffe8d63e6b6/metadata/FGDC-STD-001-1998.html
    Explore at:
    shp(25), xls(25), kml(25), geojson(25), gml(25), zip(32), json(25), csv(25)Available download formats
    Dataset updated
    Apr 8, 2013
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    Apr 11, 2011
    Area covered
    New Mexico, West Bounding Coordinate -110.006112076 East Bounding Coordinate -107.993887858 North Bounding Coordinate 36.0061119523 South Bounding Coordinate 34.9938877836
    Description

    This feature class is part of the Cadastral National Spatial Data Infrastructure (NSDI) CADNSDI publication data set for rectangular and non-rectangular Public Land Survey System (PLSS) data set. The metadata description in the Cadastral Reference System Feature Data Set more fully describes the entire data set. These are the corners of the PLSS. This feature class contains summary information about the coordinate location and reliability of corner coordinate information. alternate names or aliases for corners are also inlcuded in this feature class.

  12. Food Insecurity Experience Scale 2023 - Austria

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FAO Statistics Division (2024). Food Insecurity Experience Scale 2023 - Austria [Dataset]. https://microdata.worldbank.org/index.php/catalog/6294
    Explore at:
    Dataset updated
    Oct 16, 2024
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    Authors
    FAO Statistics Division
    Time period covered
    2023
    Area covered
    Austria
    Description

    Abstract

    Sustainable Development Goal (SDG) target 2.1 commits countries to end hunger, ensure access by all people to safe, nutritious and sufficient food all year around. Indicator 2.1.2, “Prevalence of moderate or severe food insecurity based on the Food Insecurity Experience Scale (FIES)”, provides internationally-comparable estimates of the proportion of the population facing difficulties in accessing food. More detailed background information is available at http://www.fao.org/in-action/voices-of-the-hungry/fies/en/

    The FIES-based indicators are compiled using the FIES survey module, containing 8 questions. Two indicators can be computed:
    1. The proportion of the population experiencing moderate or severe food insecurity (SDG indicator 2.1.2), 2. The proportion of the population experiencing severe food insecurity.

    These data were collected by FAO through the Gallup World Poll. General information on the methodology can be found here: https://www.gallup.com/178667/gallup-world-poll-work.aspx. National institutions can also collect FIES data by including the FIES survey module in nationally representative surveys.

    Microdata can be used to calculate the indicator 2.1.2 at national level. Instructions for computing this indicator are described in the methodological document available in the downloads tab. Disaggregating results at sub-national level is not encouraged because estimates will suffer from substantial sampling and measurement error.

    Geographic coverage

    National

    Analysis unit

    Individuals

    Universe

    Individuals of 15 years or older with access to landline and/or mobile phones.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    With some exceptions, all samples are probability based and nationally representative of the resident adult population. The coverage area is the entire country including rural areas, and the sampling frame represents the entire civilian, non-institutionalized, aged 15 and older population. For more details on the overall sampling and data collection methodology, see the World poll methodology attached as a resource in the downloads tab. Specific sampling details for each country are also attached as technical documents in the downloads tab. Exclusions: NA Design effect: 1.84

    Mode of data collection

    Computer-Assisted Telephone Interviewing [CATI]

    Cleaning operations

    Statistical validation assesses the quality of the FIES data collected by testing their consistency with the assumptions of the Rasch model. This analysis involves the interpretation of several statistics that reveal 1) items that do not perform well in a given context, 2) cases with highly erratic response patterns, 3) pairs of items that may be redundant, and 4) the proportion of total variance in the population that is accounted for by the measurement model.

    Sampling error estimates

    The margin of error is estimated as 4.2. This is calculated around a proportion at the 95% confidence level. The maximum margin of error was calculated assuming a reported percentage of 50% and takes into account the design effect.

  13. Food Insecurity Experience Scale 2022 - Poland

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    Updated Sep 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FAO Statistics Division (2023). Food Insecurity Experience Scale 2022 - Poland [Dataset]. https://microdata.worldbank.org/index.php/catalog/6055
    Explore at:
    Dataset updated
    Sep 26, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    Authors
    FAO Statistics Division
    Time period covered
    2022
    Area covered
    Poland
    Description

    Abstract

    Sustainable Development Goal (SDG) target 2.1 commits countries to end hunger, ensure access by all people to safe, nutritious and sufficient food all year around. Indicator 2.1.2, “Prevalence of moderate or severe food insecurity based on the Food Insecurity Experience Scale (FIES)”, provides internationally-comparable estimates of the proportion of the population facing difficulties in accessing food. More detailed background information is available at http://www.fao.org/in-action/voices-of-the-hungry/fies/en/ .

    The FIES-based indicators are compiled using the FIES survey module, containing 8 questions. Two indicators can be computed:
    1. The proportion of the population experiencing moderate or severe food insecurity (SDG indicator 2.1.2), 2. The proportion of the population experiencing severe food insecurity.

    These data were collected by FAO through the Gallup World Poll. General information on the methodology can be found here: https://www.gallup.com/178667/gallup-world-poll-work.aspx. National institutions can also collect FIES data by including the FIES survey module in nationally representative surveys.

    Microdata can be used to calculate the indicator 2.1.2 at national level. Instructions for computing this indicator are described in the methodological document available in the documentations tab. Disaggregating results at sub-national level is not encouraged because estimates will suffer from substantial sampling and measurement error.

    Geographic coverage

    National

    Analysis unit

    Individuals

    Universe

    Individuals of 15 years or older with access to landline and/or mobile phones.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    NA Exclusions: NA Design effect: 1.26

    Mode of data collection

    Face-to-Face [f2f]

    Cleaning operations

    Statistical validation assesses the quality of the FIES data collected by testing their consistency with the assumptions of the Rasch model. This analysis involves the interpretation of several statistics that reveal 1) items that do not perform well in a given context, 2) cases with highly erratic response patterns, 3) pairs of items that may be redundant, and 4) the proportion of total variance in the population that is accounted for by the measurement model.

    Sampling error estimates

    The margin of error is estimated as 3.5. This is calculated around a proportion at the 95% confidence level. The maximum margin of error was calculated assuming a reported percentage of 50% and takes into account the design effect.

  14. A

    ‘Gallup, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000’...

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘Gallup, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-gallup-nm-1-250000-quad-west-half-usgs-land-use-land-cover-2000-f26e/00442bb3/?iid=002-963&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gallup
    Description

    Analysis of ‘Gallup, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/b95a34dc-cea4-48b5-8f0d-b03ea854c106 on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA) to produce a consistent, land cover data layer for the conterminous U.S. based on 30-meter Landsat thematic mapper (TM) data. National Land Cover Data (NLCD) was developed from TM data acquired by the Multi-resoultion Land Characterization (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies that produce or use land cover data. Partners include the USGS (National Mapping, Biological Resources, and Water Resources Divisions), USEPA, the U.S. Forest Service, and the National Oceanic and Atmospheric Administration.

    --- Original source retains full ownership of the source dataset ---

  15. N

    Gallup, NM Age Cohorts Dataset: Children, Working Adults, and Seniors in...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Gallup, NM Age Cohorts Dataset: Children, Working Adults, and Seniors in Gallup - Population and Percentage Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/4b81fd6b-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gallup, New Mexico
    Variables measured
    Population Over 65 Years, Population Under 18 Years, Population Between 18 and 64 Years, Percent of Total Population for Age Groups
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age cohorts. For age cohorts we divided it into three buckets Children ( Under the age of 18 years), working population ( Between 18 and 64 years) and senior population ( Over 65 years). For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Gallup population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Gallup. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.

    Key observations

    The largest age group was 18 to 64 years with a poulation of 11,826 (55.44% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age cohorts:

    • Under 18 years
    • 18 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Group: This column displays the age cohort for the Gallup population analysis. Total expected values are 3 groups ( Children, Working Population and Senior Population).
    • Population: The population for the age cohort in Gallup is shown in the following column.
    • Percent of Total Population: The population as a percent of total population of the Gallup is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Gallup Population by Age. You can refer the same here

  16. Food Insecurity Experience Scale 2023 - Singapore

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FAO Statistics Division (2024). Food Insecurity Experience Scale 2023 - Singapore [Dataset]. https://microdata.worldbank.org/index.php/catalog/6329
    Explore at:
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    Authors
    FAO Statistics Division
    Time period covered
    2023 - 2024
    Area covered
    Singapore
    Description

    Abstract

    Sustainable Development Goal (SDG) target 2.1 commits countries to end hunger, ensure access by all people to safe, nutritious and sufficient food all year around. Indicator 2.1.2, “Prevalence of moderate or severe food insecurity based on the Food Insecurity Experience Scale (FIES)”, provides internationally-comparable estimates of the proportion of the population facing difficulties in accessing food. More detailed background information is available at http://www.fao.org/in-action/voices-of-the-hungry/fies/en/

    The FIES-based indicators are compiled using the FIES survey module, containing 8 questions. Two indicators can be computed:
    1. The proportion of the population experiencing moderate or severe food insecurity (SDG indicator 2.1.2), 2. The proportion of the population experiencing severe food insecurity.

    These data were collected by FAO through the Gallup World Poll. General information on the methodology can be found here: https://www.gallup.com/178667/gallup-world-poll-work.aspx. National institutions can also collect FIES data by including the FIES survey module in nationally representative surveys.

    Microdata can be used to calculate the indicator 2.1.2 at national level. Instructions for computing this indicator are described in the methodological document available in the downloads tab. Disaggregating results at sub-national level is not encouraged because estimates will suffer from substantial sampling and measurement error.

    Geographic coverage

    National

    Analysis unit

    Individuals

    Universe

    Individuals of 15 years or older with access to landline and/or mobile phones.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    With some exceptions, all samples are probability based and nationally representative of the resident adult population. The coverage area is the entire country including rural areas, and the sampling frame represents the entire civilian, non-institutionalized, aged 15 and older population. For more details on the overall sampling and data collection methodology, see the World poll methodology attached as a resource in the downloads tab. Specific sampling details for each country are also attached as technical documents in the downloads tab. Exclusions: NA Design effect: 1.99

    Mode of data collection

    Computer-Assisted Telephone Interviewing [CATI]

    Cleaning operations

    Statistical validation assesses the quality of the FIES data collected by testing their consistency with the assumptions of the Rasch model. This analysis involves the interpretation of several statistics that reveal 1) items that do not perform well in a given context, 2) cases with highly erratic response patterns, 3) pairs of items that may be redundant, and 4) the proportion of total variance in the population that is accounted for by the measurement model.

    Sampling error estimates

    The margin of error is estimated as 4.4. This is calculated around a proportion at the 95% confidence level. The maximum margin of error was calculated assuming a reported percentage of 50% and takes into account the design effect.

  17. A

    ‘Cadastral PLSS Standardized Data - PLSSSecond Division (Gallup) - Version...

    • analyst-2.ai
    Updated Jan 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Cadastral PLSS Standardized Data - PLSSSecond Division (Gallup) - Version 1.1’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-cadastral-plss-standardized-data-plsssecond-division-gallup-version-1-1-fa5d/2201a4fb/?iid=005-619&v=presentation
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Cadastral PLSS Standardized Data - PLSSSecond Division (Gallup) - Version 1.1’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/f12c5eca-b2d1-4d7e-83f7-48ed43bc6d33 on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    This feature class is part of the Cadastral National Spatial Data Infrastructure (NSDI) CADNSDI publication data set for rectangular and non-rectangular Public Land Survey System (PLSS) data set. The metadata description in the Cadastral Reference System Feature Data Set more fully describes the entire data set. This feature class is the second division of the PLSS is quarter, quarter-quarter, sixteenth or government lot divisions of the PLSS. The second and third divisions are combined into this feature class as an intentional de-normalization of the PLSS hierarchical data. The polygons in this feature class represent the smallest division to the sixteenth that has been defined for the first division. For example In some cases sections have only been divided to the quarter. Divisions below the sixteenth are in the Special Survey or Parcel Feature Class.

    --- Original source retains full ownership of the source dataset ---

  18. u

    Earth Data Analysi Center (EDAC)

    • gstore.unm.edu
    zip
    Updated Feb 19, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2009). Earth Data Analysi Center (EDAC) [Dataset]. https://gstore.unm.edu/apps/rgisarchive/datasets/54754010-c133-4820-856b-d7bf8ccd4efc/metadata/FGDC-STD-001-1998.html
    Explore at:
    zip(1)Available download formats
    Dataset updated
    Feb 19, 2009
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    Jan 1, 1986
    Area covered
    Earth, Unknown, West Bounding Coordinate -110.0 East Bounding Coordinate -108.0 North Bounding Coordinate 36.0 South Bounding Coordinate 35.0, Gallup, New Mexico
    Description

    This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source software was Optional DLG-3 and the conversion software was ARC/INFO 6.1.2. For documentation refer to USGS Data Users Guide 4, National Mapping Program, Technical Instructions, 1986, Reston, VA. These data are processed in 1:250,000 scale map units, therefore file size varies for each map unit. chaco Mesa was processed at 1:100,000 scale.

  19. Food Insecurity Experience Scale 2023 - Romania

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FAO Statistics Division (2024). Food Insecurity Experience Scale 2023 - Romania [Dataset]. https://microdata.worldbank.org/index.php/catalog/6328
    Explore at:
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    Authors
    FAO Statistics Division
    Time period covered
    2023
    Area covered
    Romania
    Description

    Abstract

    Sustainable Development Goal (SDG) target 2.1 commits countries to end hunger, ensure access by all people to safe, nutritious and sufficient food all year around. Indicator 2.1.2, “Prevalence of moderate or severe food insecurity based on the Food Insecurity Experience Scale (FIES)”, provides internationally-comparable estimates of the proportion of the population facing difficulties in accessing food. More detailed background information is available at http://www.fao.org/in-action/voices-of-the-hungry/fies/en/

    The FIES-based indicators are compiled using the FIES survey module, containing 8 questions. Two indicators can be computed:
    1. The proportion of the population experiencing moderate or severe food insecurity (SDG indicator 2.1.2), 2. The proportion of the population experiencing severe food insecurity.

    These data were collected by FAO through the Gallup World Poll. General information on the methodology can be found here: https://www.gallup.com/178667/gallup-world-poll-work.aspx. National institutions can also collect FIES data by including the FIES survey module in nationally representative surveys.

    Microdata can be used to calculate the indicator 2.1.2 at national level. Instructions for computing this indicator are described in the methodological document available in the downloads tab. Disaggregating results at sub-national level is not encouraged because estimates will suffer from substantial sampling and measurement error.

    Geographic coverage

    National

    Analysis unit

    Individuals

    Universe

    Individuals of 15 years or older with access to landline and/or mobile phones.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    With some exceptions, all samples are probability based and nationally representative of the resident adult population. The coverage area is the entire country including rural areas, and the sampling frame represents the entire civilian, non-institutionalized, aged 15 and older population. For more details on the overall sampling and data collection methodology, see the World poll methodology attached as a resource in the downloads tab. Specific sampling details for each country are also attached as technical documents in the downloads tab. Exclusions: NA Design effect: 1.43

    Mode of data collection

    Face-to-Face [f2f]

    Cleaning operations

    Statistical validation assesses the quality of the FIES data collected by testing their consistency with the assumptions of the Rasch model. This analysis involves the interpretation of several statistics that reveal 1) items that do not perform well in a given context, 2) cases with highly erratic response patterns, 3) pairs of items that may be redundant, and 4) the proportion of total variance in the population that is accounted for by the measurement model.

    Sampling error estimates

    The margin of error is estimated as 3.7. This is calculated around a proportion at the 95% confidence level. The maximum margin of error was calculated assuming a reported percentage of 50% and takes into account the design effect.

    Data appraisal

    The variable WORRIED was not considered in the computation of the published FAO food insecurity indicator based on FIES due to the results of the validation process.

  20. Food Insecurity Experience Scale 2020 - Germany

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FAO Statistics Division (2023). Food Insecurity Experience Scale 2020 - Germany [Dataset]. https://microdata.worldbank.org/index.php/catalog/5558
    Explore at:
    Dataset updated
    Jan 23, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    Authors
    FAO Statistics Division
    Time period covered
    2020
    Area covered
    Germany
    Description

    Abstract

    Sustainable Development Goal (SDG) target 2.1 commits countries to end hunger, ensure access by all people to safe, nutritious and sufficient food all year around. Indicator 2.1.2, “Prevalence of moderate or severe food insecurity based on the Food Insecurity Experience Scale (FIES)”, provides internationally-comparable estimates of the proportion of the population facing difficulties in accessing food. More detailed background information is available at http://www.fao.org/in-action/voices-of-the-hungry/fies/en/ .

    The FIES-based indicators are compiled using the FIES survey module, containing 8 questions. Two indicators can be computed:
    1. The proportion of the population experiencing moderate or severe food insecurity (SDG indicator 2.1.2), 2. The proportion of the population experiencing severe food insecurity.

    These data were collected by FAO through the Gallup World Poll. General information on the methodology can be found here: https://www.gallup.com/178667/gallup-world-poll-work.aspx. National institutions can also collect FIES data by including the FIES survey module in nationally representative surveys.

    Microdata can be used to calculate the indicator 2.1.2 at national level. Instructions for computing this indicator are described in the methodological document available in the documentations tab. Disaggregating results at sub-national level is not encouraged because estimates will suffer from substantial sampling and measurement error.

    Geographic coverage

    National coverage

    Analysis unit

    Individuals

    Universe

    Individuals of 15 years or older with access to landline and/or mobile phones.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A simple stratified sample design was used for selection of landline phone samples. Within each explicit stratum (NUTS 2 region), sample of specified size was drawn using pure Random Digit Dial (RDD) procedures. Sampling was done independently within each stratum. For mobile phone sample, pure RDD procedure was used to draw sample proportionate to the share of mobile phone service providers. All sampled numbers were pre-screened for working status.

    For respondents contacted by landline telephone, random respondent selection within the household was performed by asking for the person in the household aged 15 and older who had the next birthday. Respondents contacted by mobile telephone were screened for those aged 15 and older; no additional selection procedure was performed.

    For the purpose of data collection, the total initial sample was split into random subsamples (replicate samples) and released sequentially based on the progress of interviewing in different strata. The goal was to release an optimum amount of sample each time to achieve a high response rate while completing the targeted number of interviews within the field period. Exclusions: NA Design effect: 2.14

    Mode of data collection

    Landline and Mobile Telephone

    Cleaning operations

    Statistical validation assesses the quality of the FIES data collected by testing their consistency with the assumptions of the Rasch model. This analysis involves the interpretation of several statistics that reveal 1) items that do not perform well in a given context, 2) cases with highly erratic response patterns, 3) pairs of items that may be redundant, and 4) the proportion of total variance in the population that is accounted for by the measurement model.

    Sampling error estimates

    The margin of error is estimated as 4.5. This is calculated around a proportion at the 95% confidence level. The maximum margin of error was calculated assuming a reported percentage of 50% and takes into account the design effect.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Gallup Organization (2024). Gallup Analytics [Dataset]. https://archive.ciser.cornell.edu/studies/2823
Organization logo

Gallup Analytics

Explore at:
242 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 15, 2024
Dataset provided by
Gallup, Inc.http://gallup.com/
Authors
Gallup Organization
Variables measured
Individual
Description

Contains Gallup data from countries that are home to more than 98% of the world's population through a state-of-the-art Web-based portal. Gallup Analytics puts Gallup's best global intelligence in users' hands to help them better understand the strengths and challenges of the world's countries and regions. Users can access Gallup's U.S. Daily tracking and World Poll data to compare residents' responses region by region and nation by nation to questions on topics such as economic conditions, government and business, health and wellbeing, infrastructure, and education.

The Gallup Analytics Database is accessed through the Cornell University Libraries here. In addition, a CUL subscription also allows access to the Gallup Respondent Level Data. For access please refer to the documentation below and then request the variables you need here.

Before requesting data from the World Poll, please see the Getting Started guide and the Worldwide Research Methodology and Codebook (You will need to request access). The Codebook will give you information about all available variables in the datasets. There are other guides available as well in the google folder. You can also access information about questions asked and variables using the Gallup World Poll Reference Tool. You will need to create your user account to access the tool. This will only give you access to information about the questions asked and variables. It will not give you access to the data.

For further documentation and information see this site from New York University Libraries. The Gallup documentation for the World Poll methodology is also available under the Data and Documentation tab.

In addition to the World Poll and Daily Tracking Poll, also available are the Gallup Covid-19 Survey, Gallup Poll Social Series Surveys, Race Relations Survey, Confidence in Institutions Survey, Honesty and Ethics in Professions Survey, and Religion Battery.

The process for getting access to respondent-level data from the Gallup U.S. Daily Tracking is similar to the World Poll Survey. There is no comparable discovery tool for U.S. Daily Tracking poll questions, however. Users need to consult the codebooks and available variables across years.

The COVID-19 web survey began on March 13, 2020 with daily random samples of U.S. adults, aged 18 and older who are members of the Gallup Panel. Before requesting data, please see the Gallup Panel COVID-19 Survey Methodology and Codebook.

The Gallup Poll Social Series (GPSS) dataset is a set of public opinion surveys designed to monitor U.S. adults’ views on numerous social, economic, and political topics. More information is available on the Gallup website: https://www.gallup.com/175307/gallup-poll-social-series-methodology.aspx As each month has a unique codebook, contact CCSS-ResearchSupport@cornell.edu to discuss your interests and start the data request process.

Starting in 1973, Gallup started measuring the confidence level in several US institutions like Congress, Presidency, Supreme Court, Police, etc. The included dataset includes data beginning in 1973 and data is collected once per year. Users should consult the list of available variables.

The Race Relations Poll includes topics that were previously represented in the GPSS Minority Relations Survey that ran through 2016. The Race Relations Survey was conducted November 2018. Users should consult the codebook for this poll before making their request.

The Honesty and Ethics in Professions Survey – Starting in 1976, Gallup started measuring US perceptions of the honesty and ethics of a list of professions. The included dataset was added to the collection in March 2023 and includes data ranging from 1976-2022. Documentation for this collection is located here and will require you to request access.

Religion Battery: Consolidated list of items focused on religion in the US from 1999-2022. Documentation for this collection is located here and will require you to request access.

Search
Clear search
Close search
Google apps
Main menu