Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Synthetic dataset for A Deep Learning Approach to Private Data Sharing of Medical Images Using Conditional GANs
Dataset specification:
Arxiv paper: https://arxiv.org/abs/2106.13199
Github code: https://github.com/tcoroller/pGAN/
Abstract:
Sharing data from clinical studies can facilitate innovative data-driven research and ultimately lead to better public health. However, sharing biomedical data can put sensitive personal information at risk. This is usually solved by anonymization, which is a slow and expensive process. An alternative to anonymization is sharing a synthetic dataset that bears a behaviour similar to the real data but preserves privacy. As part of the collaboration between Novartis and the Oxford Big Data Institute, we generate a synthetic dataset based on COSENTYX Ankylosing Spondylitis (AS) clinical study. We apply an Auxiliary Classifier GAN (ac-GAN) to generate synthetic magnetic resonance images (MRIs) of vertebral units (VUs). The images are conditioned on the VU location (cervical, thoracic and lumbar). In this paper, we present a method for generating a synthetic dataset and conduct an in-depth analysis on its properties of along three key metrics: image fidelity, sample diversity and dataset privacy.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global synthetic data video generator market size reached USD 1.32 billion in 2024 and is anticipated to grow at a robust CAGR of 38.7% from 2025 to 2033. By the end of 2033, the market is projected to reach USD 18.59 billion, driven by rapid advancements in artificial intelligence, the growing need for high-quality training data for machine learning models, and increasing adoption across industries such as autonomous vehicles, healthcare, and surveillance. The surge in demand for data privacy, coupled with the necessity to overcome data scarcity and bias in real-world datasets, is significantly fueling the synthetic data video generator market's growth trajectory.
One of the primary growth factors for the synthetic data video generator market is the escalating demand for high-fidelity, annotated video datasets required to train and validate AI-driven systems. Traditional data collection methods are often hampered by privacy concerns, high costs, and the sheer complexity of obtaining diverse and representative video samples. Synthetic data video generators address these challenges by enabling the creation of large-scale, customizable, and bias-free datasets that closely mimic real-world scenarios. This capability is particularly vital for sectors such as autonomous vehicles and robotics, where the accuracy and safety of AI models depend heavily on the quality and variety of training data. As organizations strive to accelerate innovation and reduce the risks associated with real-world data collection, the adoption of synthetic data video generation technologies is expected to expand rapidly.
Another significant driver for the synthetic data video generator market is the increasing regulatory scrutiny surrounding data privacy and compliance. With stricter regulations such as GDPR and CCPA coming into force, organizations face mounting challenges in using real-world video data that may contain personally identifiable information. Synthetic data offers an effective solution by generating video datasets devoid of any real individuals, thereby ensuring compliance while still enabling advanced analytics and machine learning. Moreover, synthetic data video generators empower businesses to simulate rare or hazardous events that are difficult or unethical to capture in real life, further enhancing model robustness and preparedness. This advantage is particularly pronounced in healthcare, surveillance, and automotive industries, where data privacy and safety are paramount.
Technological advancements and increasing integration with cloud-based platforms are also propelling the synthetic data video generator market forward. The proliferation of cloud computing has made it easier for organizations of all sizes to access scalable synthetic data generation tools without significant upfront investments in hardware or infrastructure. Furthermore, the continuous evolution of generative adversarial networks (GANs) and other deep learning techniques has dramatically improved the realism and utility of synthetic video data. As a result, companies are now able to generate highly realistic, scenario-specific video datasets at scale, reducing both the time and cost required for AI development. This democratization of synthetic data technology is expected to unlock new opportunities across a wide array of applications, from entertainment content production to advanced surveillance systems.
From a regional perspective, North America currently dominates the synthetic data video generator market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The strong presence of leading AI technology providers, robust investment in research and development, and early adoption by automotive and healthcare sectors are key contributors to North America's market leadership. Europe is also witnessing significant growth, driven by stringent data privacy regulations and increased focus on AI-driven innovation. Meanwhile, Asia Pacific is emerging as a high-growth region, fueled by rapid digital transformation, expanding IT infrastructure, and increasing investments in autonomous systems and smart city projects. Latin America and Middle East & Africa, while still nascent, are expected to experience steady uptake as awareness and technological capabilities continue to grow.
The synthetic data video generator market by comp
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
including both sunny and cloudy days.
https://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy
According to our latest research, the global AI in Generative Adversarial Networks (GANs) market size reached USD 2.65 billion in 2024, reflecting robust growth driven by rapid advancements in deep learning and artificial intelligence. The market is expected to register a remarkable CAGR of 31.4% from 2025 to 2033, accelerating the adoption of GANs across diverse industries. By 2033, the market is forecasted to achieve a value of USD 32.78 billion, underscoring the transformative impact of GANs in areas such as image and video generation, data augmentation, and synthetic content creation. This trajectory is supported by the increasing demand for highly realistic synthetic data and the expansion of AI-driven applications across enterprise and consumer domains.
A primary growth factor for the AI in Generative Adversarial Networks market is the exponential increase in the availability and complexity of data that organizations must process. GANs, with their unique adversarial training methodology, have proven exceptionally effective for generating realistic synthetic data, which is crucial for industries like healthcare, automotive, and finance where data privacy and scarcity are significant concerns. The ability of GANs to create high-fidelity images, videos, and even text has enabled organizations to enhance their AI models, improve data diversity, and reduce bias, thereby accelerating the adoption of AI-driven solutions. Furthermore, the integration of GANs with cloud-based platforms and the proliferation of open-source GAN frameworks have democratized access to this technology, enabling both large enterprises and SMEs to harness its potential for innovative applications.
Another significant driver for the AI in Generative Adversarial Networks market is the surge in demand for advanced content creation tools in media, entertainment, and marketing. GANs have revolutionized the way digital content is produced by enabling hyper-realistic image and video synthesis, deepfake generation, and automated design. This has not only streamlined creative workflows but also opened new avenues for personalized content, virtual influencers, and immersive experiences in gaming and advertising. The rapid evolution of GAN architectures, such as StyleGAN and CycleGAN, has further enhanced the quality and scalability of generative models, making them indispensable for enterprises seeking to differentiate their digital offerings and engage customers more effectively in a highly competitive landscape.
The ongoing advancements in hardware acceleration and AI infrastructure have also played a pivotal role in propelling the AI in Generative Adversarial Networks market forward. The availability of powerful GPUs, TPUs, and AI-specific chips has significantly reduced the training time and computational costs associated with GANs, making them more accessible for real-time and large-scale applications. Additionally, the growing ecosystem of AI services and consulting has enabled organizations to overcome technical barriers, optimize GAN deployments, and ensure compliance with evolving regulatory standards. As investment in AI research continues to surge, the GANs market is poised for sustained innovation and broader adoption across sectors such as healthcare diagnostics, autonomous vehicles, financial modeling, and beyond.
From a regional perspective, North America continues to dominate the AI in Generative Adversarial Networks market, accounting for the largest share in 2024, driven by its robust R&D ecosystem, strong presence of leading technology companies, and early adoption of AI technologies. Europe follows closely, with significant investments in AI research and regulatory initiatives promoting ethical AI development. The Asia Pacific region is emerging as a high-growth market, fueled by rapid digital transformation, expanding AI talent pool, and increasing government support for AI innovation. Latin America and the Middle East & Africa are also witnessing steady growth, albeit from a smaller base, as enterprises in these regions begin to explore the potential of GANs for industry-specific applications.
The AI in Generative Adversarial Networks market is segmented by component into software, hardware, and services, each playing a vital role in the ecosystem’s development and adoption. Software solutions constitute the largest share of the market in 2024, reflecting the growing demand for ad
According to our latest research, the global Synthetic Data Video Generator market size in 2024 stands at USD 1.46 billion, with robust momentum driven by advances in artificial intelligence and the increasing need for high-quality, privacy-compliant video datasets. The market is witnessing a remarkable compound annual growth rate (CAGR) of 37.2% from 2025 to 2033, propelled by growing adoption across sectors such as autonomous vehicles, healthcare, and surveillance. By 2033, the market is projected to reach USD 18.16 billion, reflecting a seismic shift in how organizations leverage synthetic data to accelerate innovation and mitigate data privacy concerns.
The primary growth factor for the Synthetic Data Video Generator market is the surging demand for data privacy and compliance in machine learning and computer vision applications. As regulatory frameworks like GDPR and CCPA become more stringent, organizations are increasingly wary of using real-world video data that may contain personally identifiable information. Synthetic data video generators provide a scalable and ethical alternative, enabling enterprises to train and validate AI models without risking privacy breaches. This trend is particularly pronounced in sectors such as healthcare and finance, where data sensitivity is paramount. The ability to generate diverse, customizable, and annotation-rich video datasets not only addresses compliance requirements but also accelerates the development and deployment of AI solutions.
Another significant driver is the rapid evolution of deep learning algorithms and simulation technologies, which have dramatically improved the realism and utility of synthetic video data. Innovations in generative adversarial networks (GANs), 3D rendering engines, and advanced simulation platforms have made it possible to create synthetic videos that closely mimic real-world environments and scenarios. This capability is invaluable for industries like autonomous vehicles and robotics, where extensive and varied training data is essential for safe and reliable system behavior. The reduction in time, cost, and logistical complexity associated with collecting and labeling real-world video data further enhances the attractiveness of synthetic data video generators, positioning them as a cornerstone technology for next-generation AI development.
The expanding use cases for synthetic video data across emerging applications also contribute to market growth. Beyond traditional domains such as surveillance and entertainment, synthetic data video generators are finding adoption in areas like augmented reality, smart retail, and advanced robotics. The flexibility to simulate rare, dangerous, or hard-to-capture scenarios offers a strategic advantage for organizations seeking to future-proof their AI initiatives. As synthetic data generation platforms become more accessible and user-friendly, small and medium enterprises are also entering the fray, democratizing access to high-quality training data and fueling a new wave of AI-driven innovation.
From a regional perspective, North America continues to dominate the Synthetic Data Video Generator market, benefiting from a concentration of technology giants, research institutions, and early adopters across key verticals. Europe follows closely, driven by strong regulatory emphasis on data protection and an active ecosystem of AI startups. Meanwhile, the Asia Pacific region is emerging as a high-growth market, buoyed by rapid digital transformation, government AI initiatives, and increasing investments in autonomous systems and smart cities. Latin America and the Middle East & Africa are also showing steady progress, albeit from a smaller base, as awareness and infrastructure for synthetic data generation mature.
The Synthetic Data Video Generator market, when analyzed by component, is primarily segmented into Software and Services. The software segment currently commands the largest share, driven by the prolif
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global synthetic data generation engine market size reached USD 1.48 billion in 2024. The market is experiencing robust expansion, driven by the increasing demand for privacy-compliant data and advanced analytics solutions. The market is projected to grow at a remarkable CAGR of 35.6% from 2025 to 2033, reaching an estimated USD 18.67 billion by the end of the forecast period. This rapid growth is primarily propelled by the adoption of artificial intelligence (AI) and machine learning (ML) across various industry verticals, along with the escalating need for high-quality, diverse datasets that do not compromise sensitive information.
One of the primary growth factors fueling the synthetic data generation engine market is the heightened focus on data privacy and regulatory compliance. With stringent regulations such as GDPR, CCPA, and HIPAA being enforced globally, organizations are increasingly seeking solutions that enable them to generate and utilize data without exposing real customer information. Synthetic data generation engines provide a powerful means to create realistic, anonymized datasets that retain the statistical properties of original data, thus supporting robust analytics and model development while ensuring compliance with data protection laws. This capability is especially critical for sectors like healthcare, banking, and government, where data sensitivity is paramount.
Another significant driver is the surging adoption of AI and ML models across industries, which require vast volumes of diverse and representative data for training and validation. Traditional data collection methods often fall short due to limitations in data availability, quality, or privacy concerns. Synthetic data generation engines address these challenges by enabling the creation of customized datasets tailored for specific use cases, including rare-event modeling, edge-case scenario testing, and data augmentation. This not only accelerates innovation but also reduces the time and cost associated with data acquisition and labeling, making it a strategic asset for organizations seeking to maintain a competitive edge in AI-driven markets.
Moreover, the increasing integration of synthetic data generation engines into enterprise IT ecosystems is being catalyzed by advancements in cloud computing and scalable software architectures. Cloud-based deployment models are making these solutions more accessible and cost-effective for organizations of all sizes, from startups to large enterprises. The flexibility to generate, store, and manage synthetic datasets in the cloud enhances collaboration, speeds up development cycles, and supports global operations. As a result, cloud adoption is expected to further accelerate market growth, particularly among businesses undergoing digital transformation and seeking to leverage synthetic data for innovation and compliance.
Regionally, North America currently dominates the synthetic data generation engine market, accounting for the largest revenue share in 2024, followed closely by Europe and the Asia Pacific. North America's leadership is attributed to the presence of major technology providers, robust regulatory frameworks, and a high level of AI adoption across industries. Europe is experiencing rapid growth due to strong data privacy regulations and a thriving technology ecosystem, while Asia Pacific is emerging as a lucrative market, driven by digitalization initiatives and increasing investments in AI and analytics. The regional outlook suggests that market expansion will be broad-based, with significant opportunities for vendors and stakeholders across all major geographies.
The component segment of the synthetic data generation engine market is bifurcated into software and services, each playing a vital role in the overall ecosystem. Software solutions form the backbone of this market, providing the core algorithms and platforms that enable the generation, management, and deployment of synthetic datasets. These platforms are continually evolving, integrating advanced techniques such as generative adversarial networks (GANs), variational autoencoders, and other deep learning models to produce highly realistic and diverse synthetic data. The software segment is anticipated to maintain its dominance throughout the forecast period, as organizations increasingly invest in proprietary and commercial tools to address their un
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Synthetic Data Platform market is experiencing robust growth, driven by the increasing need for data privacy and security, coupled with the rising demand for AI and machine learning model training. The market's expansion is fueled by several key factors. Firstly, stringent data privacy regulations like GDPR and CCPA are limiting the use of real-world data, creating a surge in demand for synthetic data that mimics the characteristics of real data without compromising sensitive information. Secondly, the expanding applications of AI and ML across diverse sectors like healthcare, finance, and transportation require massive datasets for effective model training. Synthetic data provides a scalable and cost-effective solution to this challenge, enabling organizations to build and test models without the limitations imposed by real data scarcity or privacy concerns. Finally, advancements in synthetic data generation techniques, including generative adversarial networks (GANs) and variational autoencoders (VAEs), are continuously improving the quality and realism of synthetic datasets, making them increasingly viable alternatives to real data. The market is segmented by application (Government, Retail & eCommerce, Healthcare & Life Sciences, BFSI, Transportation & Logistics, Telecom & IT, Manufacturing, Others) and type (Cloud-Based, On-Premises). While the cloud-based segment currently dominates due to its scalability and accessibility, the on-premises segment is expected to witness growth driven by organizations prioritizing data security and control. Geographically, North America and Europe are currently leading the market, owing to the presence of mature technological infrastructure and a high adoption rate of AI and ML technologies. However, Asia-Pacific is anticipated to show significant growth potential in the coming years, driven by increasing digitalization and investments in AI across the region. While challenges remain in terms of ensuring the quality and fidelity of synthetic data and addressing potential biases in generated datasets, the overall outlook for the Synthetic Data Platform market remains highly positive, with substantial growth projected over the forecast period. We estimate a CAGR of 25% from 2025 to 2033.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Artificial Intelligence-based image generation has recently seen remarkable advancements, largely driven by deep learning techniques, such as Generative Adversarial Networks (GANs). With the influx and development of generative models, so too have biometric re-identification models and presentation attack detection models seen a surge in discriminative performance. However, despite the impressive photo-realism of generated samples and the additive value to the data augmentation pipeline, the role and usage of machine learning models has received intense scrutiny and criticism, especially in the context of biometrics, often being labeled as untrustworthy. Problems that have garnered attention in modern machine learning include: humans' and machines' shared inability to verify the authenticity of (biometric) data, the inadvertent leaking of private biometric data through the image synthesis process, and racial bias in facial recognition algorithms. Given the arrival of these unwanted side effects, public trust has been shaken in the blind use and ubiquity of machine learning.
However, in tandem with the advancement of generative AI, there are research efforts to re-establish trust in generative and discriminative machine learning models. Explainability methods based on aggregate model salience maps can elucidate the inner workings of a detection model, establishing trust in a post hoc manner. The CYBORG training strategy, originally proposed by Boyd, attempts to actively build trust into discriminative models by incorporating human salience into the training process.
In doing so, CYBORG-trained machine learning models behave more similar to human annotators and generalize well to unseen types of synthetic data. Work in this dissertation also attempts to renew trust in generative models by training generative models on synthetic data in order to avoid identity leakage in models trained on authentic data. In this way, the privacy of individuals whose biometric data was seen during training is not compromised through the image synthesis procedure. Future development of privacy-aware image generation techniques will hopefully achieve the same degree of biometric utility in generative models with added guarantees of trustworthiness.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Synthetic OPG Image Dataset comprises high-resolution, anatomically realistic dental X-ray images generated using custom-trained GAN variants. Based on a diverse clinical dataset from Pakistan, Thailand, and the U.S., this collection includes over 1200 curated synthetic images designed to augment training data for deep learning models in dental imaging.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the AI-Generated Synthetic Tabular Dataset market size reached USD 1.12 billion globally in 2024, with a robust CAGR of 34.7% expected during the forecast period. By 2033, the market is forecasted to reach an impressive USD 15.32 billion. This remarkable growth is primarily attributed to the increasing demand for privacy-preserving data solutions, the surge in AI-driven analytics, and the critical need for high-quality, diverse datasets across industries. The proliferation of regulations around data privacy and the rapid digital transformation of sectors such as healthcare, finance, and retail are further fueling market expansion as organizations seek innovative ways to leverage data without compromising compliance or security.
One of the key growth factors for the AI-Generated Synthetic Tabular Dataset market is the escalating importance of data privacy and compliance with global regulations such as GDPR, HIPAA, and CCPA. As organizations collect and process vast amounts of sensitive information, the risk of data breaches and misuse grows. Synthetic tabular datasets, generated using advanced AI algorithms, offer a viable solution by mimicking real-world data patterns without exposing actual personal or confidential information. This not only ensures regulatory compliance but also enables organizations to continue their data-driven innovation, analytics, and AI model training without legal or ethical hindrances. The ability to generate high-fidelity, statistically accurate synthetic data is transforming data governance strategies across industries.
Another significant driver is the exponential growth of AI and machine learning applications that demand large, diverse, and high-quality datasets. In many cases, access to real data is limited due to privacy, security, or proprietary concerns. AI-generated synthetic tabular datasets bridge this gap by providing scalable, customizable data that closely mirrors real-world scenarios. This accelerates the development and deployment of AI models in sectors like healthcare, where patient data is highly sensitive, or in finance, where transaction records are strictly regulated. The synthetic data market is also benefiting from advancements in generative AI techniques, such as GANs (Generative Adversarial Networks) and VAEs (Variational Autoencoders), which have significantly improved the realism and utility of synthetic tabular data.
A third major growth factor is the increasing adoption of cloud computing and the integration of synthetic data generation tools into enterprise data pipelines. Cloud-based synthetic data platforms offer scalability, flexibility, and ease of integration with existing data management and analytics systems. Enterprises are leveraging these platforms to enhance data availability for testing, training, and validation of AI models, particularly in environments where access to production data is restricted. The shift towards cloud-native architectures is also enabling real-time synthetic data generation and consumption, further driving the adoption of AI-generated synthetic tabular datasets across various business functions.
From a regional perspective, North America currently dominates the AI-Generated Synthetic Tabular Dataset market, accounting for the largest share in 2024. This leadership is driven by the presence of major technology companies, strong investments in AI research, and stringent data privacy regulations. Europe follows closely, with significant growth fueled by the enforcement of GDPR and increasing awareness of data privacy solutions. The Asia Pacific region is emerging as a high-growth market, propelled by rapid digitalization, expanding AI ecosystems, and government initiatives promoting data innovation. Latin America and the Middle East & Africa are also witnessing steady adoption, albeit at a slower pace, as organizations in these regions recognize the value of synthetic data in overcoming data access and privacy challenges.
The AI-Generated Synthetic Tabular Dataset market by component is segmented into software and services, with each playing a pivotal role in shaping the industry landscape. Software solutions comprise platforms and tools that automate the generation of synthetic tabular data using advanced AI algorithms. These platforms are increasingly being adopted by enterprises seeking
This dataset contains network traffic data collected from a computer network. The network consists of various devices, such as computers, servers, and routers, interconnected to facilitate communication and data exchange. The dataset captures different types of network activities, including normal network traffic as well as various network anomalies and attacks. It provides a comprehensive view of the network behavior and can be used for studying network security, intrusion detection, and anomaly detection algorithms. The dataset includes features such as source and destination IP addresses, port numbers, protocol types, packet sizes, and timestamps, enabling detailed analysis of network traffic patterns and characteristics and so on... The second file in this dataset contains synthetic data that has been generated using a Generative Adversarial Network (GAN). GANs are a type of deep learning model that can learn the underlying patterns and distributions of a given dataset and generate new synthetic samples that resemble the original data. In this case, the GAN has been trained on the network traffic data from the first file to learn the characteristics and structure of the network traffic. The generated synthetic data in the second file aims to mimic the patterns and behavior observed in real network traffic. This synthetic data can be used for various purposes, such as augmenting the original dataset, testing the robustness of machine learning models, or exploring different scenarios in network analysis.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
All the images of faces here are generated using https://thispersondoesnotexist.com/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1842206%2F4c3d3569f4f9c12fc898d76390f68dab%2FBeFunky-collage.jpg?generation=1662079836729388&alt=media" alt="">
Under US copyright law, these images are technically not subject to copyright protection. Only "original works of authorship" are considered. "To qualify as a work of 'authorship' a work must be created by a human being," according to a US Copyright Office's report [PDF].
https://www.theregister.com/2022/08/14/ai_digital_artwork_copyright/
I manually tagged all images as best as I could and separated them between the two classes below
Some may pass either female or male, but I will leave it to you to do the reviewing. I included toddlers and babies under Male/ Female
Each of the faces are totally fake, created using an algorithm called Generative Adversarial Networks (GANs).
A generative adversarial network (GAN) is a class of machine learning frameworks designed by Ian Goodfellow and his colleagues in June 2014. Two neural networks contest with each other in a game (in the form of a zero-sum game, where one agent's gain is another agent's loss).
Given a training set, this technique learns to generate new data with the same statistics as the training set. For example, a GAN trained on photographs can generate new photographs that look at least superficially authentic to human observers, having many realistic characteristics. Though originally proposed as a form of generative model for unsupervised learning, GANs have also proved useful for semi-supervised learning, fully supervised learning,and reinforcement learning.
Just a simple Jupyter notebook that looped and invoked the website https://thispersondoesnotexist.com/ , saving all images locally
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionAge-related macular degeneration (AMD) is one of the leading causes of vision impairment globally and early detection is crucial to prevent vision loss. However, the screening of AMD is resource dependent and demands experienced healthcare providers. Recently, deep learning (DL) systems have shown the potential for effective detection of various eye diseases from retinal fundus images, but the development of such robust systems requires a large amount of datasets, which could be limited by prevalence of the disease and privacy of patient. As in the case of AMD, the advanced phenotype is often scarce for conducting DL analysis, which may be tackled via generating synthetic images using Generative Adversarial Networks (GANs). This study aims to develop GAN-synthesized fundus photos with AMD lesions, and to assess the realness of these images with an objective scale.MethodsTo build our GAN models, a total of 125,012 fundus photos were used from a real-world non-AMD phenotypical dataset. StyleGAN2 and human-in-the-loop (HITL) method were then applied to synthesize fundus images with AMD features. To objectively assess the quality of the synthesized images, we proposed a novel realness scale based on the frequency of the broken vessels observed in the fundus photos. Four residents conducted two rounds of gradings on 300 images to distinguish real from synthetic images, based on their subjective impression and the objective scale respectively.Results and discussionThe introduction of HITL training increased the percentage of synthetic images with AMD lesions, despite the limited number of AMD images in the initial training dataset. Qualitatively, the synthesized images have been proven to be robust in that our residents had limited ability to distinguish real from synthetic ones, as evidenced by an overall accuracy of 0.66 (95% CI: 0.61–0.66) and Cohen’s kappa of 0.320. For the non-referable AMD classes (no or early AMD), the accuracy was only 0.51. With the objective scale, the overall accuracy improved to 0.72. In conclusion, GAN models built with HITL training are capable of producing realistic-looking fundus images that could fool human experts, while our objective realness scale based on broken vessels can help identifying the synthetic fundus photos.
According to our latest research, the GAN-Synthesized Augmented Radiology Dataset market size reached USD 412 million in 2024, supported by a robust surge in the adoption of artificial intelligence across healthcare imaging. The market demonstrated a strong CAGR of 25.7% from 2021 to 2024 and is on track to reach a valuation of USD 3.2 billion by 2033. The primary growth factor fueling this expansion is the increasing demand for high-quality, diverse, and annotated radiology datasets to train and validate advanced AI diagnostic models, especially as regulatory requirements for clinical validation intensify globally.
The exponential growth of the GAN-Synthesized Augmented Radiology Dataset market is being driven by the urgent need for large-scale, diverse, and unbiased datasets in medical imaging. Traditional methods of acquiring and annotating radiological images are time-consuming, expensive, and often limited by patient privacy concerns. Generative Adversarial Networks (GANs) have emerged as a transformative technology, enabling the synthesis of high-fidelity, realistic medical images that can augment existing datasets. This not only enhances the statistical power and generalizability of AI models but also helps overcome the challenge of data imbalance, especially for rare diseases and underrepresented demographic groups. As AI-driven diagnostics become integral to clinical workflows, the reliance on GAN-augmented datasets is expected to intensify, further propelling market growth.
Another significant growth driver is the increasing collaboration between radiology departments, AI technology vendors, and academic research institutes. These partnerships are focused on developing standardized protocols for dataset generation, annotation, and validation, leveraging GANs to create synthetic images that closely mimic real-world clinical scenarios. The resulting datasets facilitate the training of AI algorithms for a wide array of applications, including disease detection, anomaly identification, and image segmentation. Additionally, the proliferation of cloud-based platforms and open-source AI frameworks has democratized access to GAN-synthesized datasets, enabling even smaller healthcare organizations and startups to participate in the AI-driven transformation of radiology.
The regulatory landscape is also evolving to support the responsible use of synthetic data in healthcare. Regulatory agencies in North America, Europe, and Asia Pacific are increasingly recognizing the value of GAN-generated datasets for algorithm validation, provided they meet stringent standards for data quality, privacy, and clinical relevance. This regulatory endorsement is encouraging more hospitals, diagnostic centers, and research institutions to adopt GAN-augmented datasets, further accelerating market expansion. Moreover, the ongoing advancements in GAN architectures, such as StyleGAN and CycleGAN, are enhancing the realism and diversity of synthesized images, making them virtually indistinguishable from real patient scans and boosting their acceptance in both clinical and research settings.
From a regional perspective, North America is currently the largest market for GAN-Synthesized Augmented Radiology Datasets, driven by substantial investments in healthcare AI, the presence of leading technology vendors, and proactive regulatory support. Europe follows closely, with a strong emphasis on data privacy and cross-border research collaborations. The Asia Pacific region is witnessing the fastest growth, fueled by rapid digital transformation in healthcare, rising investments in AI infrastructure, and increasing disease burden. Latin America and the Middle East & Africa are also emerging as promising markets, albeit at a slower pace, as healthcare systems in these regions begin to adopt AI-driven radiology solutions.
The dataset type segment of the GAN-Synthesized Augmented Radiology Dataset market is pi
https://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy
According to our latest research, the AI in Synthetic Data market size reached USD 1.32 billion in 2024, reflecting an exceptional surge in demand across various industries. The market is poised to expand at a CAGR of 36.7% from 2025 to 2033, with the forecasted market size expected to reach USD 21.38 billion by 2033. This remarkable growth trajectory is driven by the increasing necessity for privacy-preserving data solutions, the proliferation of AI and machine learning applications, and the rapid digital transformation across sectors. As per our latest research, the market’s robust expansion is underpinned by the urgent need to generate high-quality, diverse, and scalable datasets without compromising sensitive information, positioning synthetic data as a cornerstone for next-generation AI development.
One of the primary growth factors for the AI in Synthetic Data market is the escalating demand for data privacy and compliance with stringent regulations such as GDPR, HIPAA, and CCPA. Enterprises are increasingly leveraging synthetic data to circumvent the challenges associated with using real-world data, particularly in industries like healthcare, finance, and government, where data sensitivity is paramount. The ability of synthetic data to mimic real-world datasets while ensuring anonymity enables organizations to innovate rapidly without breaching privacy laws. Furthermore, the adoption of synthetic data significantly reduces the risk of data breaches, which is a critical concern in today’s data-driven economy. As a result, organizations are not only accelerating their AI and machine learning initiatives but are also achieving compliance and operational efficiency.
Another significant driver is the exponential growth in AI and machine learning adoption across diverse sectors. These technologies require vast volumes of high-quality data for training, validation, and testing purposes. However, acquiring and labeling real-world data is often expensive, time-consuming, and fraught with privacy concerns. Synthetic data addresses these challenges by enabling the generation of large, labeled datasets that are tailored to specific use cases, such as image recognition, natural language processing, and fraud detection. This capability is particularly transformative for sectors like automotive, where synthetic data is used to train autonomous vehicle algorithms, and healthcare, where it supports the development of diagnostic and predictive models without exposing patient information.
Technological advancements in generative AI models, such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), have further propelled the market. These innovations have significantly improved the realism, diversity, and utility of synthetic data, making it nearly indistinguishable from real-world data in many applications. The synergy between synthetic data generation and advanced AI models is enabling new possibilities in areas like computer vision, speech synthesis, and anomaly detection. As organizations continue to invest in AI-driven solutions, the demand for synthetic data is expected to surge, fueling further market expansion and innovation.
From a regional perspective, North America currently leads the AI in Synthetic Data market due to its early adoption of AI technologies, strong presence of leading technology companies, and supportive regulatory frameworks. Europe follows closely, driven by its rigorous data privacy regulations and a burgeoning ecosystem of AI startups. The Asia Pacific region is emerging as a lucrative market, propelled by rapid digitalization, government initiatives, and increasing investments in AI research and development. Latin America and the Middle East & Africa are also witnessing steady growth, albeit at a slower pace, as organizations in these regions begin to recognize the value of synthetic data for digital transformation and innovation.
The AI in Synthetic Data market is segmented by component into Software and Services, each playing a pivotal role in the industry’s growth. Software solutions dominate the market, accounting for the largest share in 2024, as organizations increasingly adopt advanced platforms for data generation, management, and integration. These software platforms leverage state-of-the-art generative AI models that enable users to create highly realistic and customizab
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Protective coatings based on two dimensional materials such as graphene have gained traction for diverse applications. Their impermeability, inertness, excellent bonding with metals, and amenability to functionalization renders them as promising coatings for both abiotic and microbiologically influenced corrosion (MIC). Owing to the success of graphene coatings, the whole family of 2D materials, including hexagonal boron nitride and molybdenum disulphide are being screened to obtain other promising coatings. AI-based data-driven models can accelerate virtual screening of 2D coatings with desirable physical and chemical properties. However, lack of large experimental datasets renders training of classifiers difficult and often results in over-fitting. Generate large datasets for MIC resistance of 2D coatings is both complex and laborious. Deep learning data augmentation methods can alleviate this issue by generating synthetic electrochemical data that resembles the training data classes. Here, we investigated two different deep generative models, namely variation autoencoder (VAE) and generative adversarial network (GAN) for generating synthetic data for expanding small experimental datasets. Our model experimental system included few layered graphene over copper surfaces. The synthetic data generated using GAN displayed a greater neural network system performance (83-85% accuracy) than VAE generated synthetic data (78-80% accuracy). However, VAE data performed better (90% accuracy) than GAN data (84%-85% accuracy) when using XGBoost. Finally, we show that synthetic data based on VAE and GAN models can drive machine learning models for developing MIC resistant 2D coatings.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global synthetic tabular data market size in 2024 stands at USD 470 million, reflecting a robust demand across multiple sectors driven by the need for privacy-preserving data and advanced analytics. The market is projected to grow at a CAGR of 35.8% from 2025 to 2033, reaching a forecasted value of USD 6.9 billion by 2033. Key growth factors include the increasing adoption of artificial intelligence and machine learning, stringent data privacy regulations worldwide, and the growing necessity for high-quality, diverse datasets to fuel innovation while minimizing compliance risks.
One of the primary growth drivers in the synthetic tabular data market is the escalating emphasis on data privacy and compliance with global regulations such as GDPR, CCPA, and HIPAA. Organizations are under immense pressure to safeguard sensitive information while still leveraging data for insights and competitive advantage. Synthetic tabular data, which mimics real datasets without exposing actual personal or confidential information, offers a compelling solution. This technology enables businesses to conduct analytics, develop machine learning models, and perform robust testing without risking data breaches or non-compliance penalties. The rising number of data privacy incidents and the growing public scrutiny over data handling practices have further accelerated the adoption of synthetic data solutions across industries.
Another significant factor fueling market expansion is the exponential growth in artificial intelligence and machine learning initiatives across various sectors. Machine learning algorithms require vast, diverse, and high-quality datasets to train and validate models effectively. However, access to such data is often restricted due to privacy concerns, data scarcity, or regulatory barriers. Synthetic tabular data addresses this challenge by generating realistic, statistically representative datasets that closely resemble actual data distributions. This fosters innovation in areas such as fraud detection, predictive analytics, and recommendation systems, empowering organizations to build more accurate and robust AI models while maintaining data confidentiality.
Additionally, the synthetic tabular data market is benefiting from advancements in generative modeling techniques, such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs). These technologies have significantly improved the fidelity and utility of synthetic data, making it increasingly difficult to distinguish from real-world datasets. As a result, industries like healthcare, finance, and retail are embracing synthetic tabular data for applications ranging from clinical research and financial risk modeling to customer behavior analysis and supply chain optimization. The growing ecosystem of synthetic data platforms, tools, and services is also lowering the barriers to entry, enabling organizations of all sizes to harness the benefits of synthetic data.
From a regional perspective, North America currently leads the synthetic tabular data market, driven by a mature technology landscape, early adoption of AI and data privacy frameworks, and significant investments in research and development. Europe follows closely, propelled by stringent GDPR regulations and a strong focus on ethical AI. The Asia Pacific region is emerging as a high-growth market, supported by rapid digital transformation, expanding data-driven industries, and increasing awareness of data privacy issues. Latin America and the Middle East & Africa are also witnessing steady growth, albeit from a smaller base, as enterprises in these regions recognize the value of synthetic data for digital innovation and regulatory compliance.
The synthetic tabular data market is segmented by data type into numerical, categorical, and mixed datasets, each serving distinct use cases and industries. Numerical synthetic data, representing quantitative values such as sales figures, sensor readings, or financial metrics, is particularly vital for sectors that rely heavily on statistical analysis and predictive modeling. Organizations in finance, manufacturing, and scientific research utilize numerical synthetic data to simulate scenarios, perform stress testing, and enhance the robustness of their analytical models. The ability to generate large volumes of realistic numer
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The AIGC (AI-Generated Content) market for algorithmic models and datasets is experiencing rapid growth, driven by increasing demand for AI-powered solutions across various sectors. The market, while currently estimated at approximately $5 billion in 2025, is projected to expand significantly, exhibiting a robust Compound Annual Growth Rate (CAGR) of 35% from 2025 to 2033. This growth is fueled by several key factors: the proliferation of large language models (LLMs), advancements in deep learning techniques enabling more sophisticated model generation, and the increasing availability of high-quality training datasets. Companies like Meta, Baidu, and several Chinese technology firms are heavily invested in this space, competing to develop and deploy cutting-edge AIGC technologies. The market is segmented by model type (e.g., generative adversarial networks (GANs), transformers), dataset type (e.g., image, text, video), and application (e.g., natural language processing (NLP), computer vision). While data security and ethical concerns pose potential restraints, the overall market outlook remains extremely positive, driven by the relentless innovation in artificial intelligence. Further fueling this expansion is the increasing adoption of AIGC in diverse industries. Businesses are leveraging AIGC to automate content creation, personalize user experiences, and gain valuable insights from complex data sets. The ability of AIGC to generate synthetic data for training and testing purposes is also proving invaluable, particularly in scenarios where real-world data is scarce or expensive to acquire. The competitive landscape is dynamic, with both established tech giants and emerging startups vying for market share. Geographic distribution is likely skewed towards regions with advanced technological infrastructure and strong AI research capabilities, including North America, Europe, and East Asia. While regulatory hurdles and potential biases in AI-generated content require careful attention, the long-term growth trajectory for this segment of the AIGC market remains exceptionally strong, promising substantial economic and technological advancements.
https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
To support respiratory research, a synthetic asthma dataset was generated based on a real-world data, originally documenting 381 patients with physician-confirmed asthma who were admitted to secondary care at a single centre in 2019. The dataset is highly detailed, covering demographics, structured physiological data, medication records, and clinical outcomes. The synthetic version extends to 561 patients admitted over a year, offering insights into patient patterns, risk factors, and treatment strategies.
The dataset was created using the Synthetic Data Vault package, specifically employing the GAN synthesizer. Real data was first read and pre-processed, ensuring datetime columns were correctly parsed and identifiers were handled as strings. Metadata was defined to capture the schema, specifying field types and primary keys. This metadata guided the synthesizer in understanding the structure of the data. The GAN synthesizer was then fitted to the real data, learning the distributions and dependencies within. After fitting, the synthesizer generated synthetic data that mirrors the statistical properties and relationships of the original dataset.
Geography: The West Midlands has a population of 6 million & includes a diverse ethnic & socio-economic mix. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & > 120 ITU bed capacity. UHB runs a fully electronic healthcare record (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.
Data set availability: Data access is available via the PIONEER Hub for projects which will benefit the public or patients. This can be by developing a new understanding of disease, by providing insights into how to improve care, or by developing new models, tools, treatments, or care processes. Data access can be provided to NHS, academic, commercial, policy and third sector organisations. Applications from SMEs are welcome. There is a single data access process, with public oversight provided by our public review committee, the Data Trust Committee. Contact pioneer@uhb.nhs.uk or visit www.pioneerdatahub.co.uk for more details.
Available supplementary data: Real world data. Matched controls; ambulance and community data. Unstructured data (images). We can provide the dataset in OMOP and other common data models and can provide real-world data upon request.
Available supplementary support: Analytics, model build, validation & refinement; A.I. support. Data partner support for ETL (extract, transform & load) processes. Bespoke and “off the shelf” Trusted Research Environment build and run. Consultancy with clinical, patient & end-user and purchaser access/ support. Support for regulatory requirements. Cohort discovery. Data-driven trials and “fast screen” services to assess population size.
According to our latest research, the global synthetic health data market size reached USD 312.4 million in 2024. The market is demonstrating robust momentum, growing at a CAGR of 31.2% from 2025 to 2033. By 2033, the synthetic health data market is forecasted to achieve a value of USD 3.14 billion. This remarkable growth is primarily driven by the increasing demand for privacy-compliant, high-quality datasets to accelerate innovation across healthcare research, clinical trials, and digital health solutions.
One of the most significant growth drivers for the synthetic health data market is the intensifying focus on data privacy and regulatory compliance. Healthcare organizations are under mounting pressure to adhere to stringent regulations such as HIPAA in the United States and GDPR in Europe. These frameworks restrict the sharing and utilization of real patient data, creating a critical need for synthetic health data that mimics real-world datasets without compromising patient privacy. The ability of synthetic data to facilitate research, AI training, and analytics without the risk of identifying individuals is a key factor fueling its widespread adoption among healthcare providers, pharmaceutical companies, and research organizations globally.
Technological advancements in artificial intelligence and machine learning are further propelling the synthetic health data market forward. The sophistication of generative models, such as GANs and variational autoencoders, has enabled the creation of highly realistic and diverse synthetic datasets. These advancements not only enhance the quality and utility of synthetic health data but also expand its applicability across a wide range of use cases, from medical imaging to genomics. The integration of synthetic data into clinical workflows and drug development pipelines is accelerating time-to-market for new therapies and improving the reliability of predictive analytics, thereby contributing to better patient outcomes and operational efficiencies.
Another critical factor supporting market expansion is the growing emphasis on interoperability and data sharing across the healthcare ecosystem. Synthetic health data enables seamless collaboration between diverse stakeholders, including healthcare providers, insurers, and technology vendors, by eliminating privacy barriers. This collaborative environment fosters innovation in areas such as population health management, personalized medicine, and remote patient monitoring. Additionally, the adoption of synthetic data is helping to address the challenges of data scarcity and bias, particularly in underrepresented populations, ensuring that AI models and healthcare solutions are more equitable and effective.
From a regional perspective, North America leads the synthetic health data market, accounting for the largest revenue share in 2024. This dominance is attributed to the region’s advanced healthcare infrastructure, high adoption of digital health technologies, and strong presence of key market players. Europe is following closely, driven by rigorous data protection regulations and a rapidly growing research ecosystem. The Asia Pacific region is emerging as a high-growth market, fueled by increasing investments in healthcare technology, expanding clinical research activities, and rising awareness about the benefits of synthetic health data. Latin America and the Middle East & Africa are also witnessing steady growth, supported by government initiatives to modernize healthcare systems and improve data-driven decision-making.
The synthetic health data market is segmented by component into software and services, each playing a pivotal role in shaping the industry landscape. The software segment encompasses platforms and tools designed to generate, manage, and validate synthetic health datasets. These solutions leverage advanced machine learning algorithms and generative models to produce high-fidelity synthetic data that closely mirrors
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Synthetic dataset for A Deep Learning Approach to Private Data Sharing of Medical Images Using Conditional GANs
Dataset specification:
Arxiv paper: https://arxiv.org/abs/2106.13199
Github code: https://github.com/tcoroller/pGAN/
Abstract:
Sharing data from clinical studies can facilitate innovative data-driven research and ultimately lead to better public health. However, sharing biomedical data can put sensitive personal information at risk. This is usually solved by anonymization, which is a slow and expensive process. An alternative to anonymization is sharing a synthetic dataset that bears a behaviour similar to the real data but preserves privacy. As part of the collaboration between Novartis and the Oxford Big Data Institute, we generate a synthetic dataset based on COSENTYX Ankylosing Spondylitis (AS) clinical study. We apply an Auxiliary Classifier GAN (ac-GAN) to generate synthetic magnetic resonance images (MRIs) of vertebral units (VUs). The images are conditioned on the VU location (cervical, thoracic and lumbar). In this paper, we present a method for generating a synthetic dataset and conduct an in-depth analysis on its properties of along three key metrics: image fidelity, sample diversity and dataset privacy.