11 datasets found
  1. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    San Miguel Island, California
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  2. Digital Bedrock Geologic-GIS Map of the Saint-Gaudens National Historical...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Bedrock Geologic-GIS Map of the Saint-Gaudens National Historical Park and Vicinity, New Hampshire (NPS, GRD, GRI, SAGA, SAGA_bedrock digital map) adapted from U.S. Geological Survey Scientific Investigations Maps by Walsh, Valley, Thompson, Ratcliffe, Proctor and Sicard (2020), and Walsh (2016) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-the-saint-gaudens-national-historical-park-and-vicinit
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Bedrock Geologic-GIS Map of the Saint-Gaudens National Historical Park and Vicinity, New Hampshire is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (saga_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (saga_bedrock_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (saga_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (saga_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (saga_bedrock_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (saga_bedrock_geology_metadata_faq.pdf). Please read the saga_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (saga_bedrock_geology_metadata.txt or saga_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  3. n

    Historic Geomac Perimeters All Years 2000 2018 gdb - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Historic Geomac Perimeters All Years 2000 2018 gdb - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/historic-geomac-perimeters-all-years-2000-2018-gdb
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    The Geospatial Multi-Agency Coordination Group, or GeoMAC, is an internet-based mapping tool originally designed for fire managers to access online maps of current fire locations and perimeters in the US. Perimeters are submitted to GeoMAC by field offices. The GeoMAC team attributes the perimeters using various sources, and then posts them on the GeoMAC website and to an HTTP site for downloading. This file contains all the latest fire perimeters that were processed by the GeoMAC team between 2000 and 2018. The projection is geographic and the datum is NAD83.

  4. Historic Geomac Perimeters All Years 2000 2018 gdb

    • wifire-data.sdsc.edu
    • wildfireapps-nifc.hub.arcgis.com
    • +3more
    Updated Aug 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Interagency Fire Center (2022). Historic Geomac Perimeters All Years 2000 2018 gdb [Dataset]. https://wifire-data.sdsc.edu/km/dataset/historic-geomac-perimeters-all-years-2000-2018-gdb
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Aug 3, 2022
    Dataset provided by
    National Interagency Fire Centerhttps://www.nifc.gov/
    Description

    The Geospatial Multi-Agency Coordination Group, or GeoMAC, is an internet-based mapping tool originally designed for fire managers to access online maps of current fire locations and perimeters in the US. Perimeters are submitted to GeoMAC by field offices. The GeoMAC team attributes the perimeters using various sources, and then posts them on the GeoMAC website and to an HTTP site for downloading. This file contains all the latest fire perimeters that were processed by the GeoMAC team between 2000 and 2018. The projection is geographic and the datum is NAD83.

  5. NCRMP Prod gdb

    • noaa.hub.arcgis.com
    Updated Sep 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2023). NCRMP Prod gdb [Dataset]. https://noaa.hub.arcgis.com/maps/638b68acf9a147e7966d89146d320be7
    Explore at:
    Dataset updated
    Sep 1, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    This file geodatabase contains summary data meant to be visualized within the National Coral Reef Monitoring Program's Data Visualization Tool.This file geodatabase and its associated data/dashboards/hub are developed to represent data in both the Atlantic and Pacific basins and all four monitoring themes (Socioeconomic, Benthic, Fish and Climate). Each dashboard presents data at a resolution that is appropriate for the sampling method and effort for each area. Users can filter the data by a number of variables to allow them to refine the graphs and charts. Additionally, users can download the summary data tables for their own analyses. The metadata for the data in this application can be found at https://www.ncei.noaa.gov/data/oceans/coris/library/NOAA/CRCP/monitoring/metadata/The following AGOL items are dependent upon this file geodatabase:NCRMP_Prod_gdb Feature Layer (hosted) NCRMP Data Visualization Tool Hub Site Application NCRMP Data Visualization Tool Hub Initiative Data Download Hub Page NCRMP Atlantic Benthic Dashboard Web Experience NCRMP Pacific Benthic Dashboard Web Experience NCRMP Atlantic Benthic Embed Dashboard NCRMP Pacific Benthic Embed Dashboard NCRMP Atlantic Benthic Map Web Map NCRMP Pacific Benthic Map Web Map NCRMP Climate Dashboard Web Experience NCRMP Climate Embed Dashboard NCRMP Climate Map Web Map NCRMP Atlantic Fish Dashboard Web Experience NCRMP Pacific Fish Dashboard Web Experience NCRMP Atlantic Fish Embed Dashboard NCRMP Pacific Fish Embed Dashboard NCRMP Atlantic Fish Map Web Map NCRMP Pacific Fish Map Web Map NCRMP Socioeconomic Dashboard Web Experience NCRMP Socioeconomic Embed Dashboard NCRMP Socioeconomic Map Web Map NCRMP Data Download Dashboard

  6. f

    Construction of High Density Sweet Cherry (Prunus avium L.) Linkage Maps...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    tiff
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Verónica Guajardo; Simón Solís; Boris Sagredo; Felipe Gainza; Carlos Muñoz; Ksenija Gasic; Patricio Hinrichsen (2023). Construction of High Density Sweet Cherry (Prunus avium L.) Linkage Maps Using Microsatellite Markers and SNPs Detected by Genotyping-by-Sequencing (GBS) [Dataset]. http://doi.org/10.1371/journal.pone.0127750
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Verónica Guajardo; Simón Solís; Boris Sagredo; Felipe Gainza; Carlos Muñoz; Ksenija Gasic; Patricio Hinrichsen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage maps have been constructed using mainly microsatellite markers (SSRs) and, recently, using single nucleotide polymorphism markers (SNPs) from a cherry 6K SNP array. Genotyping-by-sequencing (GBS), a new methodology based on high-throughput sequencing, holds great promise for identification of high number of SNPs and construction of high density linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical position for each SNP was determined using the peach genome, Peach v1.0, as reference, and a homogeneous distribution of markers along the eight peach scaffolds was obtained. On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of linkage maps. Parental and consensus high density maps were constructed by genotyping 166 siblings from a ‘Rainier’ x ‘Rivedel’ (Ra x Ri) cross. Using Ra x Ri population, 462, 489 and 985 markers were mapped into eight linkage groups in ‘Rainier’, ‘Rivedel’ and the Ra x Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps spanned 549.5, 582.6 and 731.3 cM for ‘Rainier’, ‘Rivedel’ and consensus maps, respectively, with an average distance of 1.2 cM between adjacent markers for both ‘Rainier’ and ‘Rivedel’ maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed between obtained maps and with Peach v1.0. These new high density linkage maps provide valuable information on the sweet cherry genome, and serve as the basis for identification of QTLs and genes relevant for the breeding of the species.

  7. Map of reporting facilities – geodatabase

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    fgdb/gdb, html
    Updated Dec 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment and Climate Change Canada (2024). Map of reporting facilities – geodatabase [Dataset]. https://open.canada.ca/data/dataset/5d0ac0f4-feba-4f46-becf-bc047d44109f
    Explore at:
    html, fgdb/gdbAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset provided by
    Environment And Climate Change Canadahttps://www.canada.ca/en/environment-climate-change.html
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2019 - Dec 31, 2019
    Description

    The National Pollutant Release Inventory (NPRI) is Canada's public inventory of pollutant releases (to air, water and land), disposals and transfers for recycling. This file is a geodatabase (GDB) that shows the locations of all facilities that reported to the NPRI in the current reporting year. The data are also available in a virtual globe format : https://open.canada.ca/data/en/dataset/d9be6bec-47e5-4835-8d01-d2875a8d67ff Please consult the following resources to enhance your analysis: - Guide on using and Interpreting NPRI Data: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/using-interpreting-data.html - Access additional data from the NPRI, including datasets and mapping products: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/tools-resources-data/exploredata.html

  8. Digital Bedrock Geologic-GIS Map of the Fox Creek Quadrangle, Tennessee...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Bedrock Geologic-GIS Map of the Fox Creek Quadrangle, Tennessee (NPS, GRD, GRI, OBED, FOCR_bedrock digital map) adapted from a University of Tennessee, Tectonics and Structural Geology Research Group 7.5-Minute Series Map by Scruggs, Rascoe, Stearns, Hansen, Wunderlich and Hatcher (2015) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-the-fox-creek-quadrangle-tennessee-nps-grd-gri-obed-fo
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Bedrock Geologic-GIS Map of the Fox Creek Quadrangle, Tennessee is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (focr_bedrock_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (focr_bedrock_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (obed_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (obed_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (focr_bedrock_geology_metadata_faq.pdf). Please read the obed_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: University of Tennessee, Tectonics and Structural Geology Research Group. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (focr_bedrock_geology_metadata.txt or focr_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  9. f

    Table_3_High-Resolution Genetic Map and QTL Analysis of Growth-Related...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    André R. O. Conson; Cristiane H. Taniguti; Rodrigo R. Amadeu; Isabela A. A. Andreotti; Livia M. de Souza; Luciano H. B. dos Santos; João R. B. F. Rosa; Camila C. Mantello; Carla C. da Silva; Erivaldo José Scaloppi Junior; Rafael V. Ribeiro; Vincent Le Guen; Antonio A. F. Garcia; Paulo de Souza Gonçalves; Anete P. de Souza (2023). Table_3_High-Resolution Genetic Map and QTL Analysis of Growth-Related Traits of Hevea brasiliensis Cultivated Under Suboptimal Temperature and Humidity Conditions.XLSX [Dataset]. http://doi.org/10.3389/fpls.2018.01255.s005
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Frontiers
    Authors
    André R. O. Conson; Cristiane H. Taniguti; Rodrigo R. Amadeu; Isabela A. A. Andreotti; Livia M. de Souza; Luciano H. B. dos Santos; João R. B. F. Rosa; Camila C. Mantello; Carla C. da Silva; Erivaldo José Scaloppi Junior; Rafael V. Ribeiro; Vincent Le Guen; Antonio A. F. Garcia; Paulo de Souza Gonçalves; Anete P. de Souza
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Rubber tree (Hevea brasiliensis) cultivation is the main source of natural rubber worldwide and has been extended to areas with suboptimal climates and lengthy drought periods; this transition affects growth and latex production. High-density genetic maps with reliable markers support precise mapping of quantitative trait loci (QTL), which can help reveal the complex genome of the species, provide tools to enhance molecular breeding, and shorten the breeding cycle. In this study, QTL mapping of the stem diameter, tree height, and number of whorls was performed for a full-sibling population derived from a GT1 and RRIM701 cross. A total of 225 simple sequence repeats (SSRs) and 186 single-nucleotide polymorphism (SNP) markers were used to construct a base map with 18 linkage groups and to anchor 671 SNPs from genotyping by sequencing (GBS) to produce a very dense linkage map with small intervals between loci. The final map was composed of 1,079 markers, spanned 3,779.7 cM with an average marker density of 3.5 cM, and showed collinearity between markers from previous studies. Significant variation in phenotypic characteristics was found over a 59-month evaluation period with a total of 38 QTLs being identified through a composite interval mapping method. Linkage group 4 showed the greatest number of QTLs (7), with phenotypic explained values varying from 7.67 to 14.07%. Additionally, we estimated segregation patterns, dominance, and additive effects for each QTL. A total of 53 significant effects for stem diameter were observed, and these effects were mostly related to additivity in the GT1 clone. Associating accurate genome assemblies and genetic maps represents a promising strategy for identifying the genetic basis of phenotypic traits in rubber trees. Then, further research can benefit from the QTLs identified herein, providing a better understanding of the key determinant genes associated with growth of Hevea brasiliensis under limiting water conditions.

  10. Digital Geologic-GIS Map of Florissant Fossil Beds National Monument (Root,...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Florissant Fossil Beds National Monument (Root, 1981), Colorado (NPS, GRD, GRI, FLFO, ROOT digital map) adapted from a National Park Service unpublished map by Root (1981) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-florissant-fossil-beds-national-monument-root-1981-colorado-np
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Colorado, Florissant
    Description

    The Digital Geologic-GIS Map of Florissant Fossil Beds National Monument (Root, 1981), Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (root_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (root_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (root_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (flfo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (flfo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (root_geology_metadata_faq.pdf). Please read the flfo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: National Park Service. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (root_geology_metadata.txt or root_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:7,000 and United States National Map Accuracy Standards features are within (horizontally) 5.9 meters or 19.4 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  11. d

    Digital Geologic-GIS Map of the Tennessee part of the Back Valley...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of the Tennessee part of the Back Valley Quadrangle, Tennessee (NPS, GRD, GRI, CUGA, BKVA digital map) adapted from a Tennessee Division of Geology Map by Brent (1988) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-tennessee-part-of-the-back-valley-quadrangle-tennessee-nps
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    National Park Service
    Area covered
    Tennessee
    Description

    The Digital Geologic-GIS Map of the Tennessee part of the Back Valley Quadrangle, Tennessee is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (bkva_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (bkva_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (bkva_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (cuga_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cuga_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (bkva_geology_metadata_faq.pdf). Please read the cuga_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Tennessee Division of Geology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (bkva_geology_metadata.txt or bkva_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2025). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
Organization logo

Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969)

Explore at:
Dataset updated
Oct 5, 2025
Dataset provided by
National Park Servicehttp://www.nps.gov/
Area covered
San Miguel Island, California
Description

The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Search
Clear search
Close search
Google apps
Main menu