Facebook
TwitterThe Geodatabase to Shapefile Warning Tool examines feature classes in input file geodatabases for characteristics and data that would be lost or altered if it were transformed into a shapefile. Checks include:
1) large files (feature classes with more than 255 fields or over 2GB), 2) field names longer than 10 characters
string fields longer than 254 characters, 3) date fields with time values 4) NULL values, 5) BLOB, guid, global id, and raster field types, 6) attribute domains or subtypes, and 7) annotation or topology
The results of this inspection are written to a text file ("warning_report_[geodatabase_name]") in the directory where the geodatabase is located. A section at the top provides a list of feature classes and information about the geodatabase as a whole. The report has a section for each valid feature class that returned a warning, with a summary of possible warnings and then more details about issues found.
The tool can process multiple file geodatabases at once. A separate text file report will be created for each geodatabase. The toolbox was created using ArcGIS Pro 3.7.11.
For more information about this and other related tools, explore the Geospatial Data Curation toolkit
Facebook
TwitterThis data set has been updated and the more recent (2013) database is available at the link below. The registry is composed of a geodatabase with two files that represents observations and survey effort. The database is compiled by US Fish and Wildlife Service in cooperation with the Bureau of Land Management to serve as the prime repository for yellow-billed loon distribution information. A contacts file of research leaders is also included (yblo_2009con.dbf). A shapefile dataset is also provided. This database is updated annually and is also available in shapefile format from USFWS. Please see link to 2013 update.
Facebook
TwitterThe Digital Bedrock Geologic-GIS Map of the Saint-Gaudens National Historical Park and Vicinity, New Hampshire is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (saga_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (saga_bedrock_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (saga_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (saga_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (saga_bedrock_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (saga_bedrock_geology_metadata_faq.pdf). Please read the saga_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (saga_bedrock_geology_metadata.txt or saga_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cette base de données représente la situation des données (shapefile et divers documents) de l'AFI de la RDC au 31 Décembre 2018.
Facebook
TwitterThis packaged data collection contains all of the outputs from our primary model, including the following data layers: Habitat Cores (vector polygons) Least-cost Paths (vector lines) Least-cost Corridors (raster) Least-cost Corridors (vector polygon interpretation) Modeling Extent (vector polygon) Please refer to the embedded spatial metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in shapefile (.shp) or raster GeoTIFF (.tif) formats.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Northern Canada geodatabase contains a selection of the data from the Atlas of Canada Reference Map - Northern Canada / Nord du Canada (MCR 36). The geodatabase is comprised of two feature data sets (annotation and geometry), and the shaded relief. The annotation feature dataset comprises the annotation feature classes. All annotation feature classes were derived for MCR 36 and all text placements are based on the font type and size used for the reference map. The geometry feature dataset is comprised of data for: boundaries, roads, railways, airports, seaplane bases, ports, populated places, rivers, lakes, mines, oil/natural gas fields, hydroelectric generating stations, federal protected areas, ice shelves, permanent polar sea ice limit and the treeline. The geodatabase can be downloaded as feature data sets or as shapefiles.
Facebook
TwitterThese are the "final" current district boundaries, created by the Virginia Supreme Court in 2021.Purpose:This feature service shows the current boundaries of legislative districts for the state of Virginia. These include district boundaries for the Virginia Senate and House of Delegates, as well as Congressional districts for the U.S. House of Representatives.Source:The data were downloaded in shapefile format from the Virginia Redistricting Commission homepage on 12/8/2023.Processing:ABRA imported the shapefiles into a file geodatabase. The geodatabase was zipped, uploaded to ArcGIS Online, and published as a feature service.Symbology:Symbology of this feature service's layers will vary by map.The feature service contains 3 feature layers:SCV_FINAL_CD - Congressional DistrictsSCV_FINAL_HOD - House of Delegates DistrictsSCV_FINAL_SD - Senate Districts
Facebook
TwitterThis archive contains a geology map of the general Roosevelt Hot Springs region, both in PDF and ArcGIS geodatabase formats, that was created as part of the Utah FORGE project. This archive contains an ArcGIS geodatabase containing the GIS feature classes and symbology for the geology of the general Roosevelt Hot Springs region in Utah.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook
TwitterAll datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data. Geodatabase (.gdb) containing: 1) A polyline shapefile of basin depth contours clipped to the Steptoe Valley basin, 2) a point shapefile of geologic attitudes covering the SW 1/4 of the model area (from existing pub: NBMG M35), 3) miscellaneous rock unit data, 4) a clipped and re-projected point shapefile of well collars in the Steptoe Valley model area, derived from published well collar datasets available in NBMG M162 (see links spreadsheet), and an interactive map of Nevada geothermal wells (NBMG website).
Facebook
TwitterThe zipped folder contains: Raw pressure data (xlsx, 345KB; csv, 521KB), Overpressure data (xlsx, 70KB; csv, 80KB), Pressure cell study report (pdf, 21446KB), Pressure cell map in A0 format (pdf, 856KB), and Pressure cell spatial geodatabase gdb, containing shapeflies (shp, 664KB).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The New England Protected Open Space dataset maintained by Harvard Forest is a compilation of existing open space datasets in the New England region including The Nature Conservancy's Secured Areas, National Conservation Easement Database, Protected Areas Database of the U.S., and data provided by states and land trusts.
Data are provided with the full attribute table and with minimal attribute table that keeps only the most essential fields (these have "_min" in the file name).
The data with full and minimal attribute tables are available as file geodatabase feature classes (POS.gdb.zip) and shapefiles (POSv1_1_April2021.zip, POSv1_1_April2021_min.zip).
It is recommended to use the geodatabase feature class if you have access to Esri products, as the POS field names are all longer than 10 characters and are truncated in the shapefile versions.
Version 1.1 is a partial update, rather than an exhaustive update using all data sources - please read the metadata for more details!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
Facebook
TwitterGDB Version: ArcGIS Pro 3.3Additional Resources:Shapefile DownloadShapefile Download (Clipped to VIMS shoreline)Administrative Boundary Data Standard REST Endpoint (Unclipped) - REST Endpoint (Clipped)The Administrative Boundary feature classes represent the best available boundary information in Virginia. VGIN initially sought to develop an improved city, county, and town boundary dataset in late 2013, spurred by response of the Virginia Administrative Boundaries Workgroup community. The feature class initially started from an extraction of features from the Census TIGER dataset for Virginia. VGIN solicited input from localities in Virginia through the Road Centerlines data submission process as well as through public forums such as the Virginia Administrative Boundaries Workgroup and VGIN listservs. Data received were analyzed and incorporated into the appropriate feature classes where locality data were a superior representation of boundaries. Administrative Boundary geodatabase and shapefiles are unclipped to hydrography features by default. The clipped to hydro dataset is included as a separate shapefile download below.
Facebook
TwitterThe Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sris_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sris_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sris_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sris_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_geology_metadata.txt or sris_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
Twittersocial system, socio-economic resources, justice, BES, Environmental disamentities, Environmental Justice, Zoning Board of Appeals
Summary
For use in the environmental injustices study of Baltimore relating to patterns of environmental disamenties in relation to low income/minority communities.
Description
This feature class layer is a point dataset of authorizing ordinances from the Baltimore City Council and Mayor from 1930 until 1999 concerning identified environmental disamentities. The data was gathered from records from the City Council since 1930 relating to decisions concerning land-uses considered to be environmental disamentities and is to be used to examine environmental injustices involving low income/minority communities in Baltimore. To examine if environmental injustices exist in Baltimore, this point layer will be overlayed with race/income data to determine if patterns of inequity exist. Points were placed manually using the associated addresses from the Ordinance_master dataset and using ISTAR 2004 data in conjunction with Baltimore parcel data. The Ordinance_ID number associated with each point relates to its appeal number from the City Council. Multiple points on the data layer have the same Ordinance_ID. This point layer can be joined with the Ordinance_master data layer based on the field "Ordinance_ID" and using the relationship "Ordinance_point_relationship".
Credits
UVM Spatial Analysis Lab
Use limitations
None. There are no restrictions on the use of this dataset. The authors of this dataset make no representations of any kind, including but not limited to the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the data.
Extent
West -76.707701 East -76.526991
North 39.371885 South 39.200794
This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
Facebook
TwitterSpatial analyses were performed using ArcGIS version 10.5.1 and therefore any software version equal to or later than it will be able to view the files using the project file “Greco GGS GIS Data.mxd.” The ‘Clip’ function was used to extract the percent of GGS range contained in each county. The map overlay function ‘Union’ was used to spatially composite the GGS range map, the counties, and the conservation plan boundaries (HCPs and NCCPs). The map overlay function ‘Union’ was also used to spatially composite the conservation plan boundaries (HCPs and NCCPs) and the recovery units. The GGS known occurrences analysis using the California Natural Diversity Database (CNDDB) data was performed using two techniques: a density map and a spatial join. The density map was created using the Spatial Analyst tool ‘Point density’ with a 1 km2 (1000 m x 1000 m) cell size and a 5 km radius. The point count for each county was done using a spatial join between the CNDDB GGS point data and the Ca...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer contains the regional faults of Colorado. The geodatabase includes show faults throughout Colorado and can be accessed with a GIS software.
Facebook
TwitterBaltimore City boundary limits. This is the "official" city boundary used by many Baltimore agencies. It DOES NOT agree with the universal MSA boundaries dervied from GDT census data.
This is part of a collection of Baltimore Ecosystem Study metadata records that point to a geodatabase.
The geodatabase itself is available online at beslter.org or lternet.edu. It is considerably large. Upon request, it can be shipped to you on media, such as a flash drive.
The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
Facebook
TwitterThe Geodatabase to Shapefile Warning Tool examines feature classes in input file geodatabases for characteristics and data that would be lost or altered if it were transformed into a shapefile. Checks include:
1) large files (feature classes with more than 255 fields or over 2GB), 2) field names longer than 10 characters
string fields longer than 254 characters, 3) date fields with time values 4) NULL values, 5) BLOB, guid, global id, and raster field types, 6) attribute domains or subtypes, and 7) annotation or topology
The results of this inspection are written to a text file ("warning_report_[geodatabase_name]") in the directory where the geodatabase is located. A section at the top provides a list of feature classes and information about the geodatabase as a whole. The report has a section for each valid feature class that returned a warning, with a summary of possible warnings and then more details about issues found.
The tool can process multiple file geodatabases at once. A separate text file report will be created for each geodatabase. The toolbox was created using ArcGIS Pro 3.7.11.
For more information about this and other related tools, explore the Geospatial Data Curation toolkit