This is a conversion of Wentworth and others (2023)[DAS1] to the Geologic Map Schema (GeMS) for inclusion in the National Geologic Map Database. The original publication was in the Alacarte schema commonly used for geologic map databases prior to the release of the now mandatory GeMS. The GIS layers in this release have the same scientific content as the source data release. The source data release lacks description of map units, however, so those have been copied verbatim from the two principal sources for that work (Witter and others, 2006 [DAS2]; Knudsen and others, 2000 [DAS3]).
Collation of species point records contributing to the Geodatabase of Marine features adjacent to Scotland (GeMS). Records are attributed as to their qualification as protected features of protected areas within the Scottish MPA network. Where appropriate typical record details will include: status as Scottish Priority Marine Features or Annex II Species, scientific name, abundance details, date, date range, year, status, accuracy, determiner and details of where the records are sourced from and intellectual property ownership.
This dataset is a redacted version of the latest GEMS database as of 05-06-2025, providing non-sensitive data on the species and habitats included in the collation. Records consented for re-use under terms associated with either an Open Government Licence (https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/) or various Creative Commons licences (https://creativecommons.org/licenses/) are attributed as such in the CONSENT field. Details of copyright ownership to assist relevant acknowledgement are in the COPYRIGHT field.
ADMMR map collection: Golden Gem Assay Map; 1 in. to 80 feet; 17 x 11 in.
This U.S. Geological Survey (USGS) data release presents a digital database of geospatially enabled vector layers and tabular data transcribed from the geologic map of the Lake Owen quadrangle, Albany County, Wyoming, which was originally published as U.S. Geological Survey Geologic Quadrangle Map GQ-1304 (Houston and Orback, 1976). The 7.5-minute Lake Owen quadrangle is located in southeastern Wyoming approximately 25 miles (40 kilometers) southwest of Laramie in the west-central interior of southern Albany County, and covers most of the southern extent of Sheep Mountain, the southeastern extent of Centennial Valley, and a portion of the eastern Medicine Bow Mountains. This relational geodatabase, with georeferenced data layers digitized at the publication scale of 1:24,000, organizes and describes the geologic and structural data covering the quadrangle's approximately 35,954 acres and enables the data for use in spatial analyses and computer cartography. The data types presented in this release include geospatial features (points, lines, and polygons) with matching attribute tables, nonspatial descriptive and reference tables, and ancillary resource files for correct symbolization, in formats that conform to the Geologic Map Schema (GeMS) developed and released by the U.S. Geological Survey's National Cooperative Geologic Mapping Program (GeMS, 2020). When reconstructed from the geodatabase's vector layers and tabular data that has been symbolized according to specifications encoded in the accompanying style file, and using the supplied Federal Geographic Data Committee (FGDC) GeoAge font for labeling formations and GeoSym fonts for structural line decorations and orientation measurement symbols, this data release presents the Geologic Map as shown on the published GQ-1304 map sheet. These GIS data augment but do not supersede the information presented on GQ-1304. References: Houston, R.S., and Orback, C.J., 1976, Geologic Map of the Lake Owen Quadrangle, Albany County, Wyoming: U.S. Geological Survey Geologic Quadrangle Map GQ-1304, scale 1:24,000, https://doi.org/10.3133/gq1304. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema)- A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org//10.3133/tm11B10.
Collation of species line records contributing to the Geodatabase of Marine features adjacent to Scotland (GeMS). Records are attributed as to their qualification as protected features of protected areas within the Scottish MPA network. Where appropriate typical record details will include: status as Scottish Priority Marine Features or Annex II Species, scientific name, abundance details, date, date range, year, status, accuracy, determiner and details of where the records are sourced from and intellectual property ownership.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Bedrock Geologic Map of the Vincennes 30 x 60 Minute Quadrangle was created to present basic bedrock geologic information that contributes to the characterization of potential aggregate resources, characterization of bedrock aquifer systems, and analysis of the overlying predominantly glacial dep...osits. This map is based on data obtained from several thousand records including petroleum well drillers' logs, geophysical logs, water well drillers' logs, descriptions of cores recovered by the Indiana Geological Survey, seismic refraction records collected by the Indiana Geological Survey, natural exposures in and near the map area, and exposures in active and abandoned quarries. This database is, in large part, the result of a cooperative mapping agreement between the U.S. Geological Survey (USGS) and the Indiana Geological and Water Survey through the STATEMAP program of the USGS. [more]
Web Mapping Service containing data related to Priority Marine Features (PMF), MPA Search features (Black guillemot or Large-scale feature of functional significance), and Annex I features used to underpin the selection and management of Marine Protected Areas and the wider marine environment.
Locations of active sampling points like groundwater monitoring wells, soil gas probes, landfill leachate head wells, etc. that are tracked in the Groundwater and Environmental Monitoring System (GEMS) database.
This data is updated nightly with the latest GEMS data, and only includes records that have WTM coordinate values populated in GEMS. This layer excludes the locations of public water supply wells. See https://dnr.wisconsin.gov/topic/Landfills/gems.html for more information about the GEMS database.
Collation of species polygon records contributing to the Geodatabase of Marine features adjacent to Scotland (GeMS). Records are attributed as to their qualification as protected features of protected areas within the Scottish MPA network. Where appropriate typical record details will include: status as Scottish Priority Marine Features or Annex II Species, scientific name, abundance details, date, date range, year, status, accuracy, determiner and details of where the records are sourced from and intellectual property ownership. Polygon area values in the HECTARES field are calculated using ETRS89-LAEA (EPSG:3035) using the standard centre of projection at 10° E, 52° N.
This digital data release presents contour data from multiple subsurface geologic horizons as presented in previously published summaries of the regional subsurface configuration of the Michigan and Illinois Basins. The original maps that served as the source of the digital data within this geodatabase are from the Geological Society of America’s Decade of North American Geology project series, “The Geology of North America” volume D-2, chapter 13 “The Michigan Basin” and chapter 14 “Illinois Basin Region”. Contour maps in the original published chapters were generated from geophysical well logs (generally gamma-ray) and adapted from previously published contour maps. The published contour maps illustrated the distribution sedimentary strata within the Illinois and Michigan Basin in the context of the broad 1st order supercycles of L.L. Sloss including the Sauk, Tippecanoe, Kaskaskia, Absaroka, Zuni, and Tejas supersequences. Because these maps represent time-transgressive surfaces, contours frequently delineate the composite of multiple named sedimentary formations at once. Structure contour maps on the top of the Precambrian basement surface in both the Michigan and Illinois basins illustrate the general structural geometry which undergirds the sedimentary cover. Isopach maps of the Sauk 2 and 3, Tippecanoe 1 and 2, Kaskaskia 1 and 2, Absaroka, and Zuni sequences illustrate the broad distribution of sedimentary units in the Michigan Basin, as do isopach maps of the Sauk, Upper Sauk, Tippecanoe 1 and 2, Lower Kaskaskia 1, Upper Kaskaskia 1-Lower Kaskaskia 2, Kaskaskia 2, and Absaroka supersequences in the Illinois Basins. Isopach contours and structure contours were formatted and attributed as GIS data sets for use in digital form as part of U.S. Geological Survey’s ongoing effort to inventory, catalog, and release subsurface geologic data in geospatial form. This effort is part of a broad directive to develop 2D and 3D geologic information at detailed, national, and continental scales. This data approximates, but does not strictly follow the USGS National Cooperative Geologic Mapping Program's GeMS data structure schema for geologic maps. Structure contour lines and isopach contours for each supersequence are stored within separate “IsoValueLine” feature classes. These are distributed within a geographic information system geodatabase and are also saved as shapefiles. Contour data is provided in both feet and meters to maintain consistency with the original publication and for ease of use. Nonspatial tables define the data sources used, define terms used in the dataset, and describe the geologic units referenced herein. A tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and accompanying nonspatial tables.
This dataset is intended to provide seamless, integrated, surficial geologic mapping of the U.S. Intermountain West region and is supported by the National Cooperative Geologic Mapping Program of the U.S. Geological Survey. Surficial geology included as part of this data release as independent of bedrock geologic mapping and is compiled at a variable resolution from 1:50,000 to 1:250,000 scale. No original interpretations are presented in this dataset; rather, all interpretive data are assimilated from referenceable publications. Initial contributions to this data release are along an east-west transect that parallels 37-degrees north latitude extending from the Rio Grande Rift and Great Plains in the east to the Basin and Range and Sierra Nevada to the west. Other areas of the Intermountain West region will be incorporated over time. Data are presented as a downloadable file geodatabase (*.gdb) and as features services that can be directly ingested into GIS software for analysis. This dataset is intended to be versioned regularly as new geologic map data is integrated. The data structure follows the Seamless Integrated Geologic Mapping extension (SIGMa) (Turner and others, 2022) to the Geologic Map Schema (GeMS) (USGS, 2020). U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema)—A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org/10.3133/tm11B10. Turner, K.J., Workman, J.B., Colgan, J.P., Gilmer, A.K., Berry, M.E., Johnstone, S.A., Warrell, K.F., Dechesne, M., VanSistine, D.P., Thompson, R.A., Hudson, A.M., Zellman, K.L., Sweetkind, D., and Ruleman, C.A., 2022, The Seamless Integrated Geologic Mapping (SIGMa) extension to the Geologic Map Schema (GeMS): U.S. Geological Survey Scientific Investigations Report 2022–5115, 33 p., https://doi.org/10.3133/ sir20225115.
Collation of large-scale features of functional significance records contributing to the Geodatabase of Marine features adjacent to Scotland (GeMS). Records are attributed as to their qualification as protected features of protected areas within the Scottish MPA network. Where appropriate typical record details will include: status as Scottish Large-scale features of functional significance or Annex I Habitat, MNCR biotope, EUNIS habitat, date, date range, year, status, accuracy, determiner and details of where the records are sourced from and intellectual property ownership. Contains attribution relating to the protected status of the various feature records. Polygon area values in the HECTARES field are calculated using ETRS89-LAEA (EPSG:3035) using the standard centre of projection at 10° E, 52° N.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
189 Global import shipment records of Gem with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
GEM's Global Socio-Economic Vulnerability Maps
The Global Social Vulnerability Map (viewable here: https://maps.openquake.org/map/sv-global-human-vulnerability) is a composite index that was developed to measure characteristics or qualities of social systems that create the potential for loss or harm. Here, social vulnerability helps to explain why some countries will experience adverse impacts from earthquakes differentially where the linking of social capacities with demographic attributes suggests that communities with higher percentages of age-dependent populations, homeless, disabled, under-educated, and foreign migrants are likely to exhibit higher social vulnerability than communities lacking these characteristics. Other relevant factors that affect the social vulnerability of populations include in-migration from foreign countries, population density, an accounting of slum populations, and international tourist arrivals.
The Global Economic Vulnerability Map (viewable here: https://maps.openquake.org/map/sv-global-economic-vulnerability) is a composite index that was designed primarily to measure the potential for economic losses from earthquakes due to a country’s macroeconomic exposure. This index is also an appraisal of the ability of countries to respond to shocks to their economic systems. Relevant indicators include the density of exposed economic assets such as commercial and industrial infrastructure. Metrics used to measure the ability of a country to withstand shocks to its economic system include reliance on imports/exports, government debt, and purchasing power. The economic vulnerability category also considers the economic vitality of countries since the economic vitality of a country can be directly related to the vulnerability and resilience of its populations. The latter includes measurements of single-sector economic dependence, income inequality, and employment status.
The Recovery/Reconstruction Potential Map (viewable here: https://maps.openquake.org/map/sv-global-recovery-and-reconstruction) is closely aligned with the concept of disaster resilience. Enhancing a country’s resilience to earthquakes is to improve its capacity to anticipate threats, to reduce its overall vulnerability, and to allow its communities to recover from adverse impacts from earthquakes when they occur. The measurement of recovery and reconstruction potential includes capturing inherent conditions that allow communities within a country to absorb impacts and cope with a damaging earthquake event, such as the density of the built environment, education levels, and political participation. It also encompasses post-event processes that facilitate a population’s ability to reorganize, change, and learn in response to a damaging earthquake.
Criteria for indicator selection
To choose indicators contextually exclusive for use in each map, the starting point was an exhaustive review of the literature on earthquake social vulnerability and resilience. For a variable to be considered appropriate and selected, three equally important criteria were met:
- variables were justified based on the literature regarding its relevance to one or more of the indices.
- variables needed to be of consistent quality and freely available from sources such as the United Nations and the World Bank; and
- variables must be scalable or available at various levels of geography to promote sub-country level analyses.
This procedure resulted in a ‘wish list’ of approximately 300 variables of which 78 were available and fit for use based on the three criteria.
Process for indicator selection
For variables to be allocated to an index, a two-tiered validation procedure was utilized. For the first tier, variables were assigned to each of the respective indices based on how each variable was cited within the literature, i.e., as being part of an index of social vulnerability, economic vulnerability, or recovery/resilience. For the second tier, machine learning and a multivariate ordinal logistic regression modelling procedure was used for external validation. Here, focus was placed on the statistical association between the socio-economic vulnerability indicators and the adverse impacts from historical earthquakes on a country-by country-basis.
The Global Significant Earthquake Database provided the external validation metrics that were used as dependent variables in the statistical analysis. To include both severe and moderate earthquakes within the dependent variables, adverse impact data was collected from damaging earthquake events that conformed to at least one of five criteria: 1) caused deaths, 2) caused moderate damage (approximately 1 million USD or more), 3) had a magnitude 7.5 or greater 4) had a Modified Mercalli Intensity (MMI) X or greater, or 5) generated a tsunami. This database was chosen because it considers low magnitude earthquakes that were damaging (e.g., MW >=2.5 & MW<=5.5) and contains socio-economic data such as the total number of fatalities, injuries, houses damaged or destroyed, and dollar loss estimates in USD.
Countries not demonstrating at least a minimal earthquake risk, i.e., seismicity <0.05 PGA (Pagani et al. 2018) and <$10,000 USD in predicted average annual losses (Silva et al. 2018) were eliminated from the analyses so as not to include countries with minimal to no earthquake risk. A total study area consists of 136 countries.
This U.S. Geological Survey (USGS) data release provides a digital geospatial database for the geologic map of the White Rock Canyon quadrangle, Carbon County, Wyoming (Hyden and others, 1968). Attribute tables and geospatial features (points, lines and polygons) conform to the Geologic Map Schema (GeMS, 2020) and represent the geologic map as published in USGS Geologic Quadrangle Map GQ-789. The 35,758-acre map area represents the geology at a publication scale of 1:24,000. References: Hyden, H.J., Houston, R.S., and King, J.S., 1968, Geologic map of the White Rock Canyon quadrangle, Carbon County, Wyoming: U.S. Geological Survey, Geologic Quadrangle Map GQ-789, scale 1:24,000, https://doi.org/10.3133/gq789. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema) - A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org//10.3133/tm11B10.
Ketchen, Winfield Quadrangles; Blue Gem Coal Map; Scale 1 in = 2000 ft; Shows outline of outcrop and reserves in Campbell County.
The data release for the geologic and structure maps of the Kalispell 1 x 2 degrees quadrangle, Montana, and Alberta and British Columbia, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Miscellaneous Investigations Series Map I-2267 (Harrison and others, 2000). The updated digital data present the attribute tables and geospatial features (lines and polygons) in the format that meets GeMS requirements. This data release presents the geologic map as shown on the plates and captured in geospatial data for the published map. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 16,436 square kilometer, geologically complex Kalispell 1 x 2 degrees Quadrangle, at a publication scale of 1:250,000. The map covers primarily Flathead and Lincoln Counties, but also includes minor parts of Glacier, Lake, and Sanders Counties. These GIS data supersede those in the interpretive report: Harrison, J.E., Cressman, E.R., Whipple, J.W., Kayser, H.Z., Derkey, P.D., and EROS Data Center, 2000, Geologic and structure maps of the Kalispell 1:250,000 quadrangle, Montana, and Alberta and British Columbia: a digital database: U.S. Geological Survey Miscellaneous Investigations Series Map I-2267, version 1.0, 23 p., scale 1:250,000, https://pubs.usgs.gov/imap/i2267/.
This U.S. Geological Survey (USGS) data release for the geologic map of the Arlington quadrangle, Carbon County, Wyoming, is a Geologic Map Schema (GeMS, 2020)-compliant version of the printed geologic map published in USGS Geologic Map Quadrangle GQ-643 (Hyden and others, 1967). The database represents the geology for the 35,776-acre map plate at a publication scale of 1:24,000. References: Hyden, H.J., King, J.S., and Houston, R.S., 1967, Geologic map of the Arlington quadrangle, Carbon County, Wyoming: U.S. Geological Survey, Geologic Quadrangle Map GQ-643, scale 1:24,000; https://doi.org/10.3133/gq643. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema) - A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org//10.3133/tm11B10.
The data release for the geologic map of the Salmon National Forest and vicinity, east-central Idaho, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Geologic Investigations Series Map I-2765 (Evans and Green, 2003). The updated digital data present the attribute tables and geospatial features (points, lines and polygons) in the format that meets GeMS requirements. This data release presents the geologic map as shown on the plates and captured in geospatial data for the published map. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 11,265 square kilometer, geologically complex Salmon National Forest in two plates, at a publication scale of 1:100,000. The map covers primarily Lemhi County, but also includes minor parts of Beaverhead, Custer, Idaho, Ravalli and Valley Counties. New geologic mapping was undertaken between 1990 and 2002 and synthesized with older published maps, providing significant stratigraphic and structural data, age data for intrusive rocks, and interpretations of geologic development. These GIS data supersede those in the interpretive report: Evans, K.V., Green, G.N., 2003, Geologic Map of the Salmon National Forest and Vicinity, East-Central Idaho: U.S. Geological Survey Geologic Investigations Series Map I-2765, scale 1:100,000, https://doi.org/10.3133/i2765.
This is a conversion of Wentworth and others (2023)[DAS1] to the Geologic Map Schema (GeMS) for inclusion in the National Geologic Map Database. The original publication was in the Alacarte schema commonly used for geologic map databases prior to the release of the now mandatory GeMS. The GIS layers in this release have the same scientific content as the source data release. The source data release lacks description of map units, however, so those have been copied verbatim from the two principal sources for that work (Witter and others, 2006 [DAS2]; Knudsen and others, 2000 [DAS3]).