100+ datasets found
  1. C

    Gender Wage Gap

    • data.ccrpc.org
    csv
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Gender Wage Gap [Dataset]. https://data.ccrpc.org/dataset/gender-wage-gap
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 22, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The gender wage gap indicator compares the median earnings between male and female workers in Champaign County.

    Two worker populations are analyzed: all workers, including part-time and seasonal workers and those that were not employed for the full survey year; and full-time, year-round workers. The gender wage gap is included because it blends economics and equity, and illustrates that a major economic talking point on the national level is just as relevant at the local scale.

    For all four populations (male full-time, year-round workers; female full-time, year-round workers; all male workers; and all female workers), the estimated median earnings were higher in 2023 than in 2005. The greatest increase in a population’s estimated median earnings between 2005 and 2023 was for female full-time, year-round workers; the smallest increase between 2005 and 2023 was for all female workers. In both categories (all and full-time, year-round), the estimated median annual earnings for male workers was consistently higher than for female workers.

    The gender gap between the two estimates in 2023 was larger for full-time, year-round workers than all workers. For full-time, year-round workers, the difference was $11,863; for all workers, it was approaching $9,700.

    The Associated Press wrote this article in October 2024 about how Census Bureau data shows that in 2023 in the United States, the gender wage gap between men and women working full-time widened year-over-year for the first time in 20 years.

    Income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Earnings in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) by Sex by Work Experience in the Past 12 Months for the Population 16 Years and Over with Earnings in the Past 12 Months.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (20 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (21 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).

  2. U.S. gender wage gap, by industry 2021

    • statista.com
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. gender wage gap, by industry 2021 [Dataset]. https://www.statista.com/statistics/244202/us-gender-wage-gap-by-industry/
    Explore at:
    Dataset updated
    Aug 23, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In 2021, female employee earnings were outpaced by male earnings across nearly all industries, with sharp disparities in the professional and technical services industry, as well as the finance and insurance industry. In that year, there were no industries in which women earned more than men.

  3. Global gender pay gap 2015-2025

    • statista.com
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global gender pay gap 2015-2025 [Dataset]. https://www.statista.com/statistics/1212140/global-gender-pay-gap/
    Explore at:
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The difference between the earnings of women and men shrank slightly over the past years. Considering the controlled gender pay gap, which measures the median salary for men and women with the same job and qualifications, women earned one U.S. cent less. By comparison, the uncontrolled gender pay gap measures the median salary for all men and all women across all sectors and industries and regardless of location and qualification. In 2025, the uncontrolled gender pay gap in the world stood at 0.83, meaning that women earned 0.83 dollars for every dollar earned by men.

  4. Gender pay gap

    • ons.gov.uk
    • cy.ons.gov.uk
    zip
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Gender pay gap [Dataset]. https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/datasets/annualsurveyofhoursandearningsashegenderpaygaptables
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 29, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Annual gender pay gap estimates for UK employees by age, occupation, industry, full-time and part-time, region and other geographies, and public and private sector. Compiled from the Annual Survey of Hours and Earnings.

  5. Gender pay gap Japan 2015-2024, by income level

    • statista.com
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gender pay gap Japan 2015-2024, by income level [Dataset]. https://www.statista.com/statistics/1311461/japan-gender-pay-gap-by-income-range/
    Explore at:
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Japan
    Description

    In 2024, the gender pay gap for the median wages in Japan was **** percent. Compared to other OECD countries, Japan was one of the countries with the highest gender pay gap.

  6. Gender pay gap between men and women in Germany 2024

    • statista.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gender pay gap between men and women in Germany 2024 [Dataset]. https://www.statista.com/statistics/1407077/men-women-gender-pay-gap/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany
    Description

    In 2024, the gender pay gap in Germany was around 16 percent. This meant that wages for men were on average 16 percent higher than for women. Figures have gradually decreased since 2009.

  7. Gender pay gap in OECD countries 2023

    • statista.com
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gender pay gap in OECD countries 2023 [Dataset]. https://www.statista.com/statistics/934039/gender-pay-gap-select-countries/
    Explore at:
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    OECD, Worldwide
    Description

    As of 2023, South Korea is the country with the highest gender pay gap among OECD countries, with a **** percent difference between the genders. The gender pay gap displays the difference between the median wages of full-time employed men and full-time employed women.

  8. Gender pay gap in the UK 1997-2024

    • statista.com
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gender pay gap in the UK 1997-2024 [Dataset]. https://www.statista.com/statistics/280710/uk-gender-pay-gap/
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    In 2024, the difference between average hourly earnings for men and women in the United Kingdom for all workers was 13.1 percent, compared with seven percent for full-time workers, and -3 percent for part-time workers. During the provided time period, the gender pay gap was at its highest in 1997, when it was 27.5 percent for all workers. Compared with 1997, the gender pay gap has fallen by 13.2 percent for all workers, and 9.7 percent for full-time workers. Gender pay gap higher in older age groups Although the gender pay gap among younger age groups was relatively small in 2024, the double-digit pay gap evident in older age groups served to keep the overall gap high. The gender pay gap for workers aged between 18 and 21 for example was -0.5 percent, compared with 12.1percent for people in their 50s. Additionally, the gender pay gap for people aged over 60 has changed little since 1997, falling by just 1.2 percent between 1997 and 2023, compared with a 14.9 percent reduction among workers in their 40s. Positions of power As of 2024, women are unfortunately still relatively underrepresented in leadership positions at Britain’s top businesses. Among FTSE 100 companies, for example, just 9.4 percent of CEOs were female, falling to just 6.1 percent for FTSE 250 companies. Representation was better when it came to FTSE 100 boardrooms, with 44.7 percent of positions at this level being filled by women, compared with 42.6 percent at FTSE 250 companies. In the corridors of political power, the proportion of female MPs was estimated to have reached its highest ever level after the 2024 election at 41 percent, compared with just three percent in 1979.

  9. Y

    Citation Network Graph

    • shibatadb.com
    Updated May 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yubetsu (2019). Citation Network Graph [Dataset]. https://www.shibatadb.com/article/TMsXmtVK
    Explore at:
    Dataset updated
    May 7, 2019
    Dataset authored and provided by
    Yubetsu
    License

    https://www.shibatadb.com/license/data/proprietary/v1.0/license.txthttps://www.shibatadb.com/license/data/proprietary/v1.0/license.txt

    Description

    Network of 45 papers and 60 citation links related to "Closing the Gender Wage Gap and Achieving Professional Equity in Medicine".

  10. Y

    Citation Network Graph

    • shibatadb.com
    Updated May 23, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yubetsu (2010). Citation Network Graph [Dataset]. https://www.shibatadb.com/article/oDDVgRyF
    Explore at:
    Dataset updated
    May 23, 2010
    Dataset authored and provided by
    Yubetsu
    License

    https://www.shibatadb.com/license/data/proprietary/v1.0/license.txthttps://www.shibatadb.com/license/data/proprietary/v1.0/license.txt

    Description

    Network of 45 papers and 88 citation links related to "Occupational Segregation and the Gender Wage Gap in Private‐ and Public‐Sector Employment: A Distributional Analysis*".

  11. m

    Women, Business and the Law: Pay Indicator Score (scale 1-100) - Papua New...

    • macro-rankings.com
    csv, excel
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Women, Business and the Law: Pay Indicator Score (scale 1-100) - Papua New Guinea [Dataset]. https://www.macro-rankings.com/papua-new-guinea/women-business-and-the-law-pay-indicator-score-(scale-1-100)
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Guinea, Papua New Guinea
    Description

    Time series data for the statistic Women, Business and the Law: Pay Indicator Score (scale 1-100) and country Papua New Guinea. Indicator Definition:The Pay indicator measures laws affecting occupational segregation and the gender wage gap. The Pay indicator score is obtained by calculating the unweighted average of the following: 1. SG.LAW.EQRM.WK; 2. SG.NGT.WORK.EQ; 3. SG.DNG.WORK.DN.EQ; 4. SG.IND.WORK.EQ (= 25 points each) and scaling the result to 100.

  12. m

    Women, Business and the Law: Pay Indicator Score (scale 1-100) - Dominica

    • macro-rankings.com
    csv, excel
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Women, Business and the Law: Pay Indicator Score (scale 1-100) - Dominica [Dataset]. https://www.macro-rankings.com/dominica/women-business-and-the-law-pay-indicator-score-(scale-1-100)
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dominica
    Description

    Time series data for the statistic Women, Business and the Law: Pay Indicator Score (scale 1-100) and country Dominica. Indicator Definition:The Pay indicator measures laws affecting occupational segregation and the gender wage gap. The Pay indicator score is obtained by calculating the unweighted average of the following: 1. SG.LAW.EQRM.WK; 2. SG.NGT.WORK.EQ; 3. SG.DNG.WORK.DN.EQ; 4. SG.IND.WORK.EQ (= 25 points each) and scaling the result to 100.

  13. The unadjusted gender pay gap in Iceland 2008-2022

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). The unadjusted gender pay gap in Iceland 2008-2022 [Dataset]. https://www.statista.com/statistics/1259875/unadjusted-gender-pay-gap-iceland/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Iceland
    Description

    In Iceland, there is an income gap between men and women. Between 2008 and 2021, women earned significantly less than men per hour. However, the gap decreased gradually since 2013, falling to nine percent by 2022. Despite this income disparity, Iceland topped the rankings for gender equality in 2023> due to the high level of living standards, female representation in business and politics, and maternal benefits.

  14. m

    Women, Business and the Law: Pay Indicator Score (scale 1-100) - Sierra...

    • macro-rankings.com
    csv, excel
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Women, Business and the Law: Pay Indicator Score (scale 1-100) - Sierra Leone [Dataset]. https://www.macro-rankings.com/sierra-leone/women-business-and-the-law-pay-indicator-score-(scale-1-100)
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Sierra Leone
    Description

    Time series data for the statistic Women, Business and the Law: Pay Indicator Score (scale 1-100) and country Sierra Leone. Indicator Definition:The Pay indicator measures laws affecting occupational segregation and the gender wage gap. The Pay indicator score is obtained by calculating the unweighted average of the following: 1. SG.LAW.EQRM.WK; 2. SG.NGT.WORK.EQ; 3. SG.DNG.WORK.DN.EQ; 4. SG.IND.WORK.EQ (= 25 points each) and scaling the result to 100.

  15. N

    Upson County, GA annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Upson County, GA annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a53cbb16-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Upson County, Georgia
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Upson County. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Upson County, the median income for all workers aged 15 years and older, regardless of work hours, was $40,397 for males and $21,407 for females.

    These income figures highlight a substantial gender-based income gap in Upson County. Women, regardless of work hours, earn 53 cents for each dollar earned by men. This significant gender pay gap, approximately 47%, underscores concerning gender-based income inequality in the county of Upson County.

    - Full-time workers, aged 15 years and older: In Upson County, among full-time, year-round workers aged 15 years and older, males earned a median income of $59,402, while females earned $38,183, leading to a 36% gender pay gap among full-time workers. This illustrates that women earn 64 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Upson County, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Upson County median household income by race. You can refer the same here

  16. U.S. gender pay gap by age group Q4 2023

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. gender pay gap by age group Q4 2023 [Dataset]. https://www.statista.com/statistics/244383/female-to-male-earnings-ratio-of-workers-in-the-us-by-age/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The statistic shows the female to male earnings ratio in the United States in the fourth quarter of 2022, based on the median income in current U.S. dollars, by age group. In the fourth quarter of 2022, the earnings ratio of female to male workers aged between 16 to 24 years was at about 92.9 percent.

  17. T

    Ireland - Gender differences in the relative income of elderly people (65+)

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Aug 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). Ireland - Gender differences in the relative income of elderly people (65+) [Dataset]. https://tradingeconomics.com/ireland/gender-differences-in-the-relative-income-of-elderly-people-65-eurostat-data.html
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset updated
    Aug 23, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Ireland
    Description

    Ireland - Gender differences in the relative income of elderly people (65+) was 0.12% in December of 2024, according to the EUROSTAT. Trading Economics provides the current actual value, an historical data chart and related indicators for Ireland - Gender differences in the relative income of elderly people (65+) - last updated from the EUROSTAT on September of 2025. Historically, Ireland - Gender differences in the relative income of elderly people (65+) reached a record high of 0.32% in December of 2012 and a record low of 0.04% in December of 2023.

  18. m

    Women, Business and the Law: Pay Indicator Score (scale 1-100) - Liberia

    • macro-rankings.com
    csv, excel
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Women, Business and the Law: Pay Indicator Score (scale 1-100) - Liberia [Dataset]. https://www.macro-rankings.com/liberia/women-business-and-the-law-pay-indicator-score-(scale-1-100)
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Liberia
    Description

    Time series data for the statistic Women, Business and the Law: Pay Indicator Score (scale 1-100) and country Liberia. Indicator Definition:The Pay indicator measures laws affecting occupational segregation and the gender wage gap. The Pay indicator score is obtained by calculating the unweighted average of the following: 1. SG.LAW.EQRM.WK; 2. SG.NGT.WORK.EQ; 3. SG.DNG.WORK.DN.EQ; 4. SG.IND.WORK.EQ (= 25 points each) and scaling the result to 100.

  19. m

    Women, Business and the Law: Pay Indicator Score (scale 1-100) - Maldives

    • macro-rankings.com
    csv, excel
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Women, Business and the Law: Pay Indicator Score (scale 1-100) - Maldives [Dataset]. https://www.macro-rankings.com/maldives/women-business-and-the-law-pay-indicator-score-(scale-1-100)
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Maldives
    Description

    Time series data for the statistic Women, Business and the Law: Pay Indicator Score (scale 1-100) and country Maldives. Indicator Definition:The Pay indicator measures laws affecting occupational segregation and the gender wage gap. The Pay indicator score is obtained by calculating the unweighted average of the following: 1. SG.LAW.EQRM.WK; 2. SG.NGT.WORK.EQ; 3. SG.DNG.WORK.DN.EQ; 4. SG.IND.WORK.EQ (= 25 points each) and scaling the result to 100.

  20. m

    Women, Business and the Law: Pay Indicator Score (scale 1-100) - Suriname

    • macro-rankings.com
    csv, excel
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Women, Business and the Law: Pay Indicator Score (scale 1-100) - Suriname [Dataset]. https://www.macro-rankings.com/suriname/women-business-and-the-law-pay-indicator-score-(scale-1-100)
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Suriname
    Description

    Time series data for the statistic Women, Business and the Law: Pay Indicator Score (scale 1-100) and country Suriname. Indicator Definition:The Pay indicator measures laws affecting occupational segregation and the gender wage gap. The Pay indicator score is obtained by calculating the unweighted average of the following: 1. SG.LAW.EQRM.WK; 2. SG.NGT.WORK.EQ; 3. SG.DNG.WORK.DN.EQ; 4. SG.IND.WORK.EQ (= 25 points each) and scaling the result to 100.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Champaign County Regional Planning Commission (2024). Gender Wage Gap [Dataset]. https://data.ccrpc.org/dataset/gender-wage-gap

Gender Wage Gap

Explore at:
csvAvailable download formats
Dataset updated
Oct 22, 2024
Dataset authored and provided by
Champaign County Regional Planning Commission
License

Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically

Description

The gender wage gap indicator compares the median earnings between male and female workers in Champaign County.

Two worker populations are analyzed: all workers, including part-time and seasonal workers and those that were not employed for the full survey year; and full-time, year-round workers. The gender wage gap is included because it blends economics and equity, and illustrates that a major economic talking point on the national level is just as relevant at the local scale.

For all four populations (male full-time, year-round workers; female full-time, year-round workers; all male workers; and all female workers), the estimated median earnings were higher in 2023 than in 2005. The greatest increase in a population’s estimated median earnings between 2005 and 2023 was for female full-time, year-round workers; the smallest increase between 2005 and 2023 was for all female workers. In both categories (all and full-time, year-round), the estimated median annual earnings for male workers was consistently higher than for female workers.

The gender gap between the two estimates in 2023 was larger for full-time, year-round workers than all workers. For full-time, year-round workers, the difference was $11,863; for all workers, it was approaching $9,700.

The Associated Press wrote this article in October 2024 about how Census Bureau data shows that in 2023 in the United States, the gender wage gap between men and women working full-time widened year-over-year for the first time in 20 years.

Income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Earnings in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) by Sex by Work Experience in the Past 12 Months for the Population 16 Years and Over with Earnings in the Past 12 Months.

Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (20 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (21 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).

Search
Clear search
Close search
Google apps
Main menu