Facebook
TwitterThe gender pay gap or gender wage gap is the average difference between the remuneration for men and women who are working. Women are generally considered to be paid less than men. There are two distinct numbers regarding the pay gap: non-adjusted versus adjusted pay gap. The latter typically takes into account differences in hours worked, occupations were chosen, education, and job experience. In the United States, for example, the non-adjusted average female's annual salary is 79% of the average male salary, compared to 95% for the adjusted average salary.
The reasons link to legal, social, and economic factors, and extend beyond "equal pay for equal work".
The gender pay gap can be a problem from a public policy perspective because it reduces economic output and means that women are more likely to be dependent upon welfare payments, especially in old age.
This dataset aims to replicate the data used in the famous paper "The Gender Wage Gap: Extent, Trends, and Explanations", which provides new empirical evidence on the extent of and trends in the gender wage gap, which declined considerably during the 1980–2010 period.
fedesoriano. (January 2022). Gender Pay Gap Dataset. Retrieved [Date Retrieved] from https://www.kaggle.com/fedesoriano/gender-pay-gap-dataset.
There are 2 files in this dataset: a) the Panel Study of Income Dynamics (PSID) microdata over the 1980-2010 period, and b) the Current Population Survey (CPS) to provide some additional US national data on the gender pay gap.
PSID variables:
NOTES: THE VARIABLES WITH fz ADDED TO THEIR NAME REFER TO EXPERIENCE WHERE WE HAVE FILLED IN SOME ZEROS IN THE MISSING PSID YEARS WITH DATA FROM THE RESPONDENTS’ ANSWERS TO QUESTIONS ABOUT JOBS WORKED ON DURING THESE MISSING YEARS. THE fz variables WERE USED IN THE REGRESSION ANALYSES THE VARIABLES WITH A predict PREFIX REFER TO THE COMPUTATION OF ACTUAL EXPERIENCE ACCUMULATED DURING THE YEARS IN WHICH THE PSID DID NOT SURVEY THE RESPONDENTS. THERE ARE MORE PREDICTED EXPERIENCE LEVELS THAT ARE NEEDED TO IMPUTE EXPERIENCE IN THE MISSING YEARS IN SOME CASES. NOTE THAT THE VARIABLES yrsexpf, yrsexpfsz, etc., INCLUDE THESE COMPUTATIONS, SO THAT IF YOU WANT TO USE FULL TIME OR PART TIME EXPERIENCE, YOU DON’T NEED TO ADD THESE PREDICT VARIABLES IN. THEY ARE INCLUDED IN THE DATA SET TO ILLUSTRATE THE RESULTS OF THE COMPUTATION PROCESS. THE VARIABLES WITH AN orig PREFIX ARE THE ORIGINAL PSID VARIABLES. THESE HAVE BEEN PROCESSED AND IN SOME CASES RENAMED FOR CONVENIENCE. THE hd SUFFIX MEANS THAT THE VARIABLE REFERS TO THE HEAD OF THE FAMILY, AND THE wf SUFFIX MEANS THAT IT REFERS TO THE WIFE OR FEMALE COHABITOR IF THERE IS ONE. AS SHOWN IN THE ACCOMPANYING REGRESSION PROGRAM, THESE orig VARIABLES AREN’T USED DIRECTLY IN THE REGRESSIONS. THERE ARE MORE OF THE ORIGINAL PSID VARIABLES, WHICH WERE USED TO CONSTRUCT THE VARIABLES USED IN THE REGRESSIONS. HD MEANS HEAD AND WF MEANS WIFE OR FEMALE COHABITOR.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The gender wage gap indicator compares the median earnings between male and female workers in Champaign County.
Two worker populations are analyzed: all workers, including part-time and seasonal workers and those that were not employed for the full survey year; and full-time, year-round workers. The gender wage gap is included because it blends economics and equity, and illustrates that a major economic talking point on the national level is just as relevant at the local scale.
For all four populations (male full-time, year-round workers; female full-time, year-round workers; all male workers; and all female workers), the estimated median earnings were higher in 2023 than in 2005. The greatest increase in a population’s estimated median earnings between 2005 and 2023 was for female full-time, year-round workers; the smallest increase between 2005 and 2023 was for all female workers. In both categories (all and full-time, year-round), the estimated median annual earnings for male workers was consistently higher than for female workers.
The gender gap between the two estimates in 2023 was larger for full-time, year-round workers than all workers. For full-time, year-round workers, the difference was $11,863; for all workers, it was approaching $9,700.
The Associated Press wrote this article in October 2024 about how Census Bureau data shows that in 2023 in the United States, the gender wage gap between men and women working full-time widened year-over-year for the first time in 20 years.
Income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Earnings in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) by Sex by Work Experience in the Past 12 Months for the Population 16 Years and Over with Earnings in the Past 12 Months.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (20 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (21 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).
Facebook
TwitterIn 2021, female employee earnings were outpaced by male earnings across nearly all industries, with sharp disparities in the professional and technical services industry, as well as the finance and insurance industry. In that year, there were no industries in which women earned more than men.
Facebook
TwitterThe difference between the earnings of women and men shrank slightly over the past years. Considering the controlled gender pay gap, which measures the median salary for men and women with the same job and qualifications, women earned one U.S. cent less. By comparison, the uncontrolled gender pay gap measures the median salary for all men and all women across all sectors and industries and regardless of location and qualification. In 2025, the uncontrolled gender pay gap in the world stood at 0.83, meaning that women earned 0.83 dollars for every dollar earned by men.
Facebook
TwitterIn 2023, the Rhode Island had the highest earnings ratio for women, as female workers earned ***** percent of their male counterparts on average. The state of Louisiana had the lowest earnings ratio for female workers, who earned ***** percent of what their male counterparts earn.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual gender pay gap estimates for UK employees by age, occupation, industry, full-time and part-time, region and other geographies, and public and private sector. Compiled from the Annual Survey of Hours and Earnings.
Facebook
TwitterThis table describes gender pay gap and is defined as the ratio of the gross earnings between women and men. The disaggregation variables are subject to data availability and where the numbers are lesser than 6, the disaggregation will be dropped.
Find more Pacific data on PDH.stat.
Facebook
Twitter"The gender wage gap is defined as the difference between median earnings of men and women relative to median earnings of men. Data refer to full-time employees on the one hand and to self-employed on the other."
OECD (2022), Gender wage gap (indicator). doi: 10.1787/7cee77aa-en (Accessed on 10 March 2022)
Table with Gender wage gap data.
OECD (2022), Gender wage gap (indicator). doi: 10.1787/7cee77aa-en (Accessed on 10 March 2022)
https://data.oecd.org/earnwage/gender-wage-gap.htm
The disparity of male/female on Kaggle that will be reproduced on kagglers professional lives.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Using data from the largest online job portal in Nigeria, we document: (a) gender differences in salary offers for jobs, and (b) the response of (a) to recessions. Jobs in industries where the number of job applicants skews female, offer lower starting salaries than jobs in industries where applicants skew male. During Nigeria’s 2016 recession, overall job applications rose, but applications to jobs in industries that skew male increased more than applications to jobs in industries that skew female. Salary offers fell sharply for jobs in male-skewed industries compared to female-skewed industries. In accordance with this relative shift in applications, in 2016, the salary-offer gender gap almost disappeared.
Facebook
TwitterThe replication package contains the replication files for the paper "Decomposing Gender Wage Gaps - A Family Economics Perspective'' by Dorothée Averkamp, Christian Bredemeier and Falko Juessen.We propose a simple way to embed family-economics arguments for pay differences between genders into standard decomposition techniques. To account appropriately for the role of the family in the determination of wages, one has to compare men and women with similar own characteristics and similar partners. In U.S. survey data, we find that our extended decomposition explains considerably more of the wage gap than a standard approach - in line with our theory that highlights the role of career prioritization in dual-earner couples.
Facebook
TwitterIn Italy, the percentage of the gender salary gap was the lowest for middle managers, while it was the largest for blue-collar workers. According to data provided by JobPricing, in 2024, male middle managers earned on average *** percent more than women, while for blue-collar workers, salaries were almost *** percent higher for men than for women.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Using Panel Study of Income Dynamics (PSID) microdata over the 1980-2010 period, we provide new empirical evidence on the extent of and trends in the gender wage gap, which declined considerably during this time. By 2010, conventional human capital variables taken together explained little of the gender wage gap, while gender differences in occupation and industry continued to be important. Moreover, the gender pay gap declined much more slowly at the top of the wage distribution than at the middle or bottom and by 2010 was noticeably higher at the top. We then survey the literature to identify what has been learned about the explanations for the gap. We conclude that many of the traditional explanations continue to have salience. Although human-capital factors are now relatively unimportant in the aggregate, women's work force interruptions and shorter hours remain significant in high-skilled occupations, possibly due to compensating differentials. Gender differences in occupations and industries, as well as differences in gender roles and the gender division of labor remain important, and research based on experimental evidence strongly suggests that discrimination cannot be discounted. Psychological attributes or noncognitive skills comprise one of the newer explanations for gender differences in outcomes. Our effort to assess the quantitative evidence on the importance of these factors suggests that they account for a small to moderate portion of the gender pay gap, considerably smaller than, say, occupation and industry effects, though they appear to modestly contribute to these differences.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Maryland. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Maryland, the median income for all workers aged 15 years and older, regardless of work hours, was $58,694 for males and $42,513 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 28% between the median incomes of males and females in Maryland. With women, regardless of work hours, earning 72 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thestate of Maryland.
- Full-time workers, aged 15 years and older: In Maryland, among full-time, year-round workers aged 15 years and older, males earned a median income of $81,332, while females earned $70,237, resulting in a 14% gender pay gap among full-time workers. This illustrates that women earn 86 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the state of Maryland.Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Maryland.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Maryland median household income by race. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT This article aims to investigate the determinants of wage differentials between men and women by comparing the public and private sectors. To this end, information from the 2015 National Household Sample Survey (PNAD) and decomposition techniques based on Oaxaca, Blinder, and Firpo, Fortin and Lemieux will be used. The main objective of the study is to understand this wage differential throughout the distribution, distinguishing workers in the public and private sectors. The results of the models show that the largest portion of the wage differential between men and women, in Brazil, is not supported by the different characteristics, and may, to a certain extent, signal the presence of gender discrimination in the labor market. The work period, education, type of occupation, and area of activity, contribute, to some extent, to explaining the wage differential. The results point to greater income inequalities in the public sector, with an emphasis on the upper part of the distribution, despite evidence of greater discrimination in the private sector.
Facebook
Twitterhttps://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Women and Men in Spain: Gender salary gap (not adjusted to individual characteristics) by hourly salary by sectors of economic activity and period in the EU. Annual. National.
Facebook
TwitterAs of August 2023, the gender wage gap in Indonesian rural areas was around ***** percent. This indicates that the average wage for male workers in rural areas was ***** percent higher than for female workers. Compared to the previous year, the gender wage gap in urban and rural areas had increased by about *** and **** percent, respectively.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data used for this study is private. This package includes the do-files to create the main figures and tables
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Encouraging women to pursue STEM employment is frequently touted as a means of reducing the gender wage gap. We examine whether the attributes of computer science workers–who account for nearly half of those working in STEM jobs–explain the persistent gender wage gap in computer science, using American Community Survey (ACS) data from 2009 to 2019. Our analysis focuses on working-age respondents between the ages of 22 and 60 who had a college degree and were employed full-time. We use ordinary least squares (OLS) regression of logged wages on observed characteristics, before turning to regression decomposition techniques to estimate what proportion of the gender wage gap would remain if men and women were equally rewarded for the same attributes–such as parenthood or marital status, degree field, or occupation. Women employed in computer science jobs earned about 86.6 cents for every dollar that men earned–a raw gender gap that is smaller than it is for the overall labor force (where it was 82 percent). Controlling for compositional effects (family attributes, degree field and occupation) narrows the gender wage gap, though women continue to earn 9.1 cents per dollar less than their male counterparts. But differential returns to family characteristics and human capital measures account for almost two-thirds of the gender wage gap in computer science jobs. Women working in computer science receive both a marriage and parenthood premium relative to unmarried or childless women, but these are significantly smaller than the bonus that married men and fathers receive over their childless and unmarried peers. Men also receive sizable wage premiums for having STEM degrees in computer science and engineering when they work in computer science jobs, advantages that do not accrue to women. Closing the gender wage gap in computer science requires treating women more like men, not just increasing their representation.
Facebook
TwitterAlthough the Chinese government has implemented a variety of measures, the gender wage gap in 21st century China has not decreased. A significant body of literature has studied this phenomenon using sector segmentation theory, but these studies have overlooked the importance of the collective economy beyond the public and private sectors. Moreover, they have lacked assessment of the gender wage gap across different wage groups, hindering an accurate estimation of the gender wage gap in China, and the formulation of appropriate recommendations. Utilizing micro-level data from 2004, 2008, and 2013, this paper examines trends in the gender wage gap within the public sector, private sector, and collective economy. Employing a selection bias correction based on the multinomial logit model, this study finds that the gender wage gap is smallest and most stable within the public sector. Furthermore, the private sector surpasses the collective economy in this period, becoming the sector with the largest gender wage gap. Meanwhile, a recentered influence function regression reveals a substantial gender wage gap among the low-wage population in all three sectors, as well as among the high-wage population in the private sector. Additionally, employing Brown wage decomposition, this study concludes that inter-sector, rather than intra-sector, differences account for the largest share of the gender wage gap, with gender discrimination in certain sectors identified as the primary cause. Finally, this paper provides policy recommendations aimed at addressing the gender wage gap among low-wage groups and within the private sector.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Gainesville. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Gainesville, the median income for all workers aged 15 years and older, regardless of work hours, was $28,653 for males and $23,738 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 17% between the median incomes of males and females in Gainesville. With women, regardless of work hours, earning 83 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecity of Gainesville.
- Full-time workers, aged 15 years and older: In Gainesville, among full-time, year-round workers aged 15 years and older, males earned a median income of $50,778, while females earned $43,642, resulting in a 14% gender pay gap among full-time workers. This illustrates that women earn 86 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Gainesville.Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Gainesville.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gainesville median household income by race. You can refer the same here
Facebook
TwitterThe gender pay gap or gender wage gap is the average difference between the remuneration for men and women who are working. Women are generally considered to be paid less than men. There are two distinct numbers regarding the pay gap: non-adjusted versus adjusted pay gap. The latter typically takes into account differences in hours worked, occupations were chosen, education, and job experience. In the United States, for example, the non-adjusted average female's annual salary is 79% of the average male salary, compared to 95% for the adjusted average salary.
The reasons link to legal, social, and economic factors, and extend beyond "equal pay for equal work".
The gender pay gap can be a problem from a public policy perspective because it reduces economic output and means that women are more likely to be dependent upon welfare payments, especially in old age.
This dataset aims to replicate the data used in the famous paper "The Gender Wage Gap: Extent, Trends, and Explanations", which provides new empirical evidence on the extent of and trends in the gender wage gap, which declined considerably during the 1980–2010 period.
fedesoriano. (January 2022). Gender Pay Gap Dataset. Retrieved [Date Retrieved] from https://www.kaggle.com/fedesoriano/gender-pay-gap-dataset.
There are 2 files in this dataset: a) the Panel Study of Income Dynamics (PSID) microdata over the 1980-2010 period, and b) the Current Population Survey (CPS) to provide some additional US national data on the gender pay gap.
PSID variables:
NOTES: THE VARIABLES WITH fz ADDED TO THEIR NAME REFER TO EXPERIENCE WHERE WE HAVE FILLED IN SOME ZEROS IN THE MISSING PSID YEARS WITH DATA FROM THE RESPONDENTS’ ANSWERS TO QUESTIONS ABOUT JOBS WORKED ON DURING THESE MISSING YEARS. THE fz variables WERE USED IN THE REGRESSION ANALYSES THE VARIABLES WITH A predict PREFIX REFER TO THE COMPUTATION OF ACTUAL EXPERIENCE ACCUMULATED DURING THE YEARS IN WHICH THE PSID DID NOT SURVEY THE RESPONDENTS. THERE ARE MORE PREDICTED EXPERIENCE LEVELS THAT ARE NEEDED TO IMPUTE EXPERIENCE IN THE MISSING YEARS IN SOME CASES. NOTE THAT THE VARIABLES yrsexpf, yrsexpfsz, etc., INCLUDE THESE COMPUTATIONS, SO THAT IF YOU WANT TO USE FULL TIME OR PART TIME EXPERIENCE, YOU DON’T NEED TO ADD THESE PREDICT VARIABLES IN. THEY ARE INCLUDED IN THE DATA SET TO ILLUSTRATE THE RESULTS OF THE COMPUTATION PROCESS. THE VARIABLES WITH AN orig PREFIX ARE THE ORIGINAL PSID VARIABLES. THESE HAVE BEEN PROCESSED AND IN SOME CASES RENAMED FOR CONVENIENCE. THE hd SUFFIX MEANS THAT THE VARIABLE REFERS TO THE HEAD OF THE FAMILY, AND THE wf SUFFIX MEANS THAT IT REFERS TO THE WIFE OR FEMALE COHABITOR IF THERE IS ONE. AS SHOWN IN THE ACCOMPANYING REGRESSION PROGRAM, THESE orig VARIABLES AREN’T USED DIRECTLY IN THE REGRESSIONS. THERE ARE MORE OF THE ORIGINAL PSID VARIABLES, WHICH WERE USED TO CONSTRUCT THE VARIABLES USED IN THE REGRESSIONS. HD MEANS HEAD AND WF MEANS WIFE OR FEMALE COHABITOR.