Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excel sheets in order: The sheet entitled “Hens Original Data” contains the results of an experiment conducted to study the response of laying hens during initial phase of egg production subjected to different intakes of dietary threonine. The sheet entitled “Simulated data & fitting values” contains the 10 simulated data sets that were generated using a standard procedure of random number generator. The predicted values obtained by the new three-parameter and conventional four-parameter logistic models were also appeared in this sheet. (XLSX)
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset was created and deposited onto the University of Sheffield Online Research Data repository (ORDA) on 23-Jun-2023 by Dr. Matthew S. Hanchard, Research Associate at the University of Sheffield iHuman Institute.
The dataset forms part of three outputs from a project titled ‘Fostering cultures of open qualitative research’ which ran from January 2023 to June 2023:
· Fostering cultures of open qualitative research: Dataset 1 – Survey Responses · Fostering cultures of open qualitative research: Dataset 2 – Interview Transcripts · Fostering cultures of open qualitative research: Dataset 3 – Coding Book
The project was funded with £13,913.85 Research England monies held internally by the University of Sheffield - as part of their ‘Enhancing Research Cultures’ scheme 2022-2023.
The dataset aligns with ethical approval granted by the University of Sheffield School of Sociological Studies Research Ethics Committee (ref: 051118) on 23-Jan-2021.This includes due concern for participant anonymity and data management.
ORDA has full permission to store this dataset and to make it open access for public re-use on the basis that no commercial gain will be made form reuse. It has been deposited under a CC-BY-NC license.
This dataset comprises one spreadsheet with N=91 anonymised survey responses .xslx format. It includes all responses to the project survey which used Google Forms between 06-Feb-2023 and 30-May-2023. The spreadsheet can be opened with Microsoft Excel, Google Sheet, or open-source equivalents.
The survey responses include a random sample of researchers worldwide undertaking qualitative, mixed-methods, or multi-modal research.
The recruitment of respondents was initially purposive, aiming to gather responses from qualitative researchers at research-intensive (targetted Russell Group) Universities. This involved speculative emails and a call for participant on the University of Sheffield ‘Qualitative Open Research Network’ mailing list. As result, the responses include a snowball sample of scholars from elsewhere.
The spreadsheet has two tabs/sheets: one labelled ‘SurveyResponses’ contains the anonymised and tidied set of survey responses; the other, labelled ‘VariableMapping’, sets out each field/column in the ‘SurveyResponses’ tab/sheet against the original survey questions and responses it relates to.
The survey responses tab/sheet includes a field/column labelled ‘RespondentID’ (using randomly generated 16-digit alphanumeric keys) which can be used to connect survey responses to interview participants in the accompanying ‘Fostering cultures of open qualitative research: Dataset 2 – Interview transcripts’ files.
A set of survey questions gathering eligibility criteria detail and consent are not listed with in this dataset, as below. All responses provide in the dataset gained a ‘Yes’ response to all the below questions (with the exception of one question, marked with an asterisk (*) below):
· I am aged 18 or over · I have read the information and consent statement and above. · I understand how to ask questions and/or raise a query or concern about the survey. · I agree to take part in the research and for my responses to be part of an open access dataset. These will be anonymised unless I specifically ask to be named. · I understand that my participation does not create a legally binding agreement or employment relationship with the University of Sheffield · I understand that I can withdraw from the research at any time. · I assign the copyright I hold in materials generated as part of this project to The University of Sheffield. · * I am happy to be contacted after the survey to take part in an interview.
The project was undertaken by two staff: Co-investigator: Dr. Itzel San Roman Pineda ORCiD ID: 0000-0002-3785-8057 i.sanromanpineda@sheffield.ac.uk
Postdoctoral Research Assistant Principal Investigator (corresponding dataset author): Dr. Matthew Hanchard ORCiD ID: 0000-0003-2460-8638 m.s.hanchard@sheffield.ac.uk Research Associate iHuman Institute, Social Research Institutes, Faculty of Social Science
Facebook
TwitterThe documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Review citations used for picking reviews by random (random # generator produced by excel, and number listed on citations picked based on random number generated)
Facebook
TwitterThis dataset is prepared using random number generator function in excel. The data include sample bank branch key business parameters.
3 dim tables include key business parameters, dates and branch names. 3 fact tables include parameter values of branches as on 3 different dates (last FY end,last Qtr end, last day).
The dataset can be loaded into Power BI for analysis and visualizations. 3 fact tables can be appended to one table. 3 types of reports can be generated : Branch-wise Business , Trend analysis , Parameter-wise analysis
Image Credits: (Image by pch.vector on Freepik)
Facebook
TwitterThis is a dataset downloaded off excelbianalytics.com created off of random VBA logic. I recently performed an extensive exploratory data analysis on it and I included new columns to it, namely: Unit margin, Order year, Order month, Order weekday and Order_Ship_Days which I think can help with analysis on the data. I shared it because I thought it was a great dataset to practice analytical processes on for newbies like myself.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Monty Hall Problem (Three-Door Problem) is a well-known example for a counterintuitive problem in probability theory. This site provides a VBA-based spreadsheet implementation in Excel for an interactive and automatic simulation of the Monty Hall Problem.
In the interactive simulation mode, participants (students) are organized into pairs. Within each pair, one student assumes the role of the host, while the other takes on the role of the contestant. In this simulation mode, the game process and the associated simulation based on the Excel tool provided here are deliberately not fully automated; rather, the students in the role of hosts and contestants should carry out essential steps themselves, interact with each other, and thus become an active part of the simulation. The settings allow for different assumptions regarding, among other things, the random or conscious nature of decisions. This allows a range of different game situations to be mapped - from a purely random game (based solely on Excel’s random number generator) on the one hand to a purely conscious game (based on possibly tactical decisions and expectations of the participants) on the other. The results template can be used to aggregate the results of the interactive simulation of the groups, e.g. in combination with Moodle.
The fully automatic simulation comes in two modes and enables different speed and display options, e.g. successive chart creation during simulation.
Both the interactive and automatic simulation modes allow for different assumptions regarding the probabilities for the car location, the contestant’s first choice and the door opened by the host.
Both the interactive and automatic simulation modes can be carried out in online and face-to-face teaching. The online variant can be conducted using Zoom or any other video conferencing software that enables group rooms.
Carrying out the interactive and automatic simulation provides data in the form of absolute and relative frequencies for wins and losses depending on whether the contestant switches doors or not. The results can then be discussed.
Versions of the simulation tool: - for Windows: Monty Hall Problem Simulation 5.0 (Win) - for Mac: Monty Hall Problem Simulation 5.0 (Mac)
Please note: The simulation tool is optimized for use with Windows. Some options are not available in the Mac version of the simulation tool provided here.
Facebook
TwitterThe World Bank in collaboration with the Kenya National Bureau of Statistics and the University of California, Berkeley are conducting the Kenya COVID-19 Rapid Response Phone Survey to track the socioeconomic impacts of the COVID-19 pandemic, the recovery from it as well as other shocks to provide timely data to inform policy. This dataset contains information from eight waves of the COVID-19 RRPS, which is part of a panel survey that targets Kenyan nationals and started in May 2020. The same households were interviewed every two months for five survey rounds, in the first year of data collection and every four months thereafter, with interviews conducted using Computer Assisted Telephone Interviewing (CATI) techniques.
The data set contains information from two samples of Kenyan households. The first sample is a randomly drawn subset of all households that were part of the 2015/16 Kenya Integrated Household Budget Survey (KIHBS) Computer-Assisted Personal Interviewing (CAPI) pilot and provided a phone number. The second was obtained through the Random Digit Dialing method, by which active phone numbers created from the 2020 Numbering Frame produced by the Kenya Communications Authority are randomly selected. The samples cover urban and rural areas and are designed to be representative of the population of Kenya using cell phones. Waves 1-7 of this survey include information on household background, service access, employment, food security, income loss, transfers, health, and COVID-19 knowledge and vaccinations. Wave 8 focused on how households were exposed to shocks, in particular adverse weather shocks and the increase in the price of food and fuel, but also included parts of the previous modules on household background, service access, employment, food security, income loss, and subjective wellbeing.
The data is uploaded in three files. The first is the hh file, which contains household level information. The ‘hhid’, uniquely identifies all household. The second is the adult level file, which contains data at the level of adult household members. Each adult in a household is uniquely identified by the ‘adult_id’. The third file is the child level file, available only for waves 3-7, which contains information for every child in the household. Each child in a household is uniquely identified by the ‘child_id’.
The duration of data collection and sample size for each completed wave was: Wave 1: May 14 to July 7, 2020; 4,061 Kenyan households Wave 2: July 16 to September 18, 2020; 4,492 Kenyan households Wave 3: September 28 to December 2, 2020; 4,979 Kenyan households Wave 4: January 15 to March 25, 2021; 4,892 Kenyan households Wave 5: March 29 to June 13, 2021; 5,854 Kenyan households Wave 6: July 14 to November 3, 2021; 5,765 Kenyan households Wave 7: November 15, 2021, to March 31, 2022; 5,633 Kenyan households Wave 8: May 31 to July 8, 2022: 4,550 Kenyan households
The same questionnaire is also administered to refugees in Kenya, with the data available in the UNHCR microdata library: https://microdata.unhcr.org/index.php/catalog/296/
National coverage covering rural and urban areas
Household, Individual
The COVID-19 RRPS with Kenyan households has two samples. The first sample consists of households that were part of the 2015/16 KIHBS CAPI pilot and provided a phone number. The 2015/16 KIHBS CAPI pilot is representative at the national level stratified by county and place of residence (urban and rural areas). At least one valid phone number was obtained for 9,007 households and all of them were included in the COVID-19 RRPS sample. The target respondent was the primary male or female household member from the 2015/16 KIHBS CAPI pilot. The second sample consists of households selected using the Random Digit Dialing method. A list of random mobile phone numbers was created using a random number generator from the 2020 Numbering Frame produced by the Kenya Communications Authority. The initial sampling frame therefore consisted of 92,999,970 randomly ordered phone numbers assigned to three networks: Safaricom, Airtel and Telkom. An introductory text message was sent to 5,000 randomly selected numbers to determine if numbers were in operation. Out of these, 4,075 were found to be active and formed the final sampling frame. There was no stratification and individuals that were called were asked about the households they live in. Until wave 7 sampled households that were not reached in earlier waves were also contacted along with households that were interviewed before. In wave 8 only households that had previously participated in the survey were contacted for interview. The “wave” variable represents in which wave the households were interviewed in.
Computer Assisted Personal Interview [capi]
The questionnaire was administered in English and is provided as a resource in pdf format. Additionally, questionnaires for each wave are also provided in Excel format coded for SCTO. The same questionnaire is also administered to refugees in Kenya, with the data available in the UNHCR microdata library: https://microdata.unhcr.org/index.php/catalog/296/
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead ofurban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Greetings , fellow analysts !
(NOTE : This is a random dataset generated using python. It bears no resemblance to any real entity in the corporate world. Any resemblance is a matter of coincidence.)
REC-SSEC Bank is a govt-aided bank operating in the Indian Peninsula. They have regional branches in over 40+ regions of the country. You have been provided with a massive excel sheet containing the transaction details, the total transaction amount and their location and total transaction count.
The dataset is described as follows :
For example , in the very first row , the data can be read as : " On the first of January, 2022 , 1932 transactions of summing upto INR 365554 from Bhuj were reported " NOTE : There are about 2750 transactions every single day. All of this has been given to you.
The bank wants you to answer the following questions :
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Essential medicines are those medicines that satisfy the primary health care needs of the citizens. Poor quality of essential medicines can have serious impact on public health. Thus, this study is aimed to assess the quality of essential medicines available in public health care facilities of Nepal. A cross sectional descriptive study was carried out in 62 health facilities across 21 districts, representing all seven provinces of Nepal and selected proportionately from all three ecological regions i.e. Terai, Hill and Mountain using lottery method. Health facilities in selected districts were chosen using random number generator. Face to face interview was taken with health facility in charge using structured questionnaire. All storage conditions information was recorded through observation checklists. Temperature and humidity were measured using a digital instrument. Similarly, 20 different generic medicines were collected for quality testing. The obtained data were entered in Epidata version 3.1, cleaned in Microsoft Excel 2007 and analyzed in SPSS version 16.0. Among 62 health facilities, only 13% of health facilities were found to follow the medicine storage guidelines, with temperature and humidity levels exceeding recommended limits. Out of 244 batches of 20 different generics of essential medicines, 37 batches were found to be substandard. These substandard medicines were- Ciprofloxacin hydrochloride eye/ear drop, Iron supplement tablets, Metformin Hydrochloric tablet, Metronidazole Tablets, Paracetamol Oral suspension, Paracetamol tablet and Povidone Iodine solution. The study recommends the urgent need for the Government of Nepal to prioritize ensuring the quality of essential medicines in the country.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excel sheets in order: The sheet entitled “Hens Original Data” contains the results of an experiment conducted to study the response of laying hens during initial phase of egg production subjected to different intakes of dietary threonine. The sheet entitled “Simulated data & fitting values” contains the 10 simulated data sets that were generated using a standard procedure of random number generator. The predicted values obtained by the new three-parameter and conventional four-parameter logistic models were also appeared in this sheet. (XLSX)