12 datasets found
  1. Microsoft excel database containing all the simulated (10 sets) and...

    • plos.figshare.com
    • figshare.com
    xlsx
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamed Ahmadi (2023). Microsoft excel database containing all the simulated (10 sets) and experimental data used in this study. [Dataset]. http://doi.org/10.1371/journal.pone.0187292.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Hamed Ahmadi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel sheets in order: The sheet entitled “Hens Original Data” contains the results of an experiment conducted to study the response of laying hens during initial phase of egg production subjected to different intakes of dietary threonine. The sheet entitled “Simulated data & fitting values” contains the 10 simulated data sets that were generated using a standard procedure of random number generator. The predicted values obtained by the new three-parameter and conventional four-parameter logistic models were also appeared in this sheet. (XLSX)

  2. s

    Data from: Fostering cultures of open qualitative research: Dataset 1 –...

    • orda.shef.ac.uk
    docx
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Hanchard; Itzel San Roman Pineda (2025). Fostering cultures of open qualitative research: Dataset 1 – Survey Responses [Dataset]. http://doi.org/10.15131/shef.data.23567250.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    The University of Sheffield
    Authors
    Matthew Hanchard; Itzel San Roman Pineda
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This dataset was created and deposited onto the University of Sheffield Online Research Data repository (ORDA) on 23-Jun-2023 by Dr. Matthew S. Hanchard, Research Associate at the University of Sheffield iHuman Institute.

    The dataset forms part of three outputs from a project titled ‘Fostering cultures of open qualitative research’ which ran from January 2023 to June 2023:

    · Fostering cultures of open qualitative research: Dataset 1 – Survey Responses · Fostering cultures of open qualitative research: Dataset 2 – Interview Transcripts · Fostering cultures of open qualitative research: Dataset 3 – Coding Book

    The project was funded with £13,913.85 Research England monies held internally by the University of Sheffield - as part of their ‘Enhancing Research Cultures’ scheme 2022-2023.

    The dataset aligns with ethical approval granted by the University of Sheffield School of Sociological Studies Research Ethics Committee (ref: 051118) on 23-Jan-2021.This includes due concern for participant anonymity and data management.

    ORDA has full permission to store this dataset and to make it open access for public re-use on the basis that no commercial gain will be made form reuse. It has been deposited under a CC-BY-NC license.

    This dataset comprises one spreadsheet with N=91 anonymised survey responses .xslx format. It includes all responses to the project survey which used Google Forms between 06-Feb-2023 and 30-May-2023. The spreadsheet can be opened with Microsoft Excel, Google Sheet, or open-source equivalents.

    The survey responses include a random sample of researchers worldwide undertaking qualitative, mixed-methods, or multi-modal research.

    The recruitment of respondents was initially purposive, aiming to gather responses from qualitative researchers at research-intensive (targetted Russell Group) Universities. This involved speculative emails and a call for participant on the University of Sheffield ‘Qualitative Open Research Network’ mailing list. As result, the responses include a snowball sample of scholars from elsewhere.

    The spreadsheet has two tabs/sheets: one labelled ‘SurveyResponses’ contains the anonymised and tidied set of survey responses; the other, labelled ‘VariableMapping’, sets out each field/column in the ‘SurveyResponses’ tab/sheet against the original survey questions and responses it relates to.

    The survey responses tab/sheet includes a field/column labelled ‘RespondentID’ (using randomly generated 16-digit alphanumeric keys) which can be used to connect survey responses to interview participants in the accompanying ‘Fostering cultures of open qualitative research: Dataset 2 – Interview transcripts’ files.

    A set of survey questions gathering eligibility criteria detail and consent are not listed with in this dataset, as below. All responses provide in the dataset gained a ‘Yes’ response to all the below questions (with the exception of one question, marked with an asterisk (*) below):

    · I am aged 18 or over · I have read the information and consent statement and above. · I understand how to ask questions and/or raise a query or concern about the survey. · I agree to take part in the research and for my responses to be part of an open access dataset. These will be anonymised unless I specifically ask to be named. · I understand that my participation does not create a legally binding agreement or employment relationship with the University of Sheffield · I understand that I can withdraw from the research at any time. · I assign the copyright I hold in materials generated as part of this project to The University of Sheffield. · * I am happy to be contacted after the survey to take part in an interview.

    The project was undertaken by two staff: Co-investigator: Dr. Itzel San Roman Pineda ORCiD ID: 0000-0002-3785-8057 i.sanromanpineda@sheffield.ac.uk

    Postdoctoral Research Assistant Principal Investigator (corresponding dataset author): Dr. Matthew Hanchard ORCiD ID: 0000-0003-2460-8638 m.s.hanchard@sheffield.ac.uk Research Associate iHuman Institute, Social Research Institutes, Faculty of Social Science

  3. Enterprise Survey 2009-2019, Panel Data - Slovenia

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Aug 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (WBG) (2020). Enterprise Survey 2009-2019, Panel Data - Slovenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3762
    Explore at:
    Dataset updated
    Aug 6, 2020
    Dataset provided by
    European Investment Bankhttp://eib.org/
    World Bank Grouphttp://www.worldbank.org/
    European Bank for Reconstruction and Developmenthttp://ebrd.com/
    Time period covered
    2008 - 2019
    Area covered
    Slovenia
    Description

    Abstract

    The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.

    The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.

    Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.

    For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.

    For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).

    Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).

    For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.

    For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.

    Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.

    For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

    For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.

    For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.

    Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.

  4. Review Citations

    • figshare.com
    zip
    Updated Feb 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kieran Shah (2016). Review Citations [Dataset]. http://doi.org/10.6084/m9.figshare.2325142.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 18, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Kieran Shah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Review citations used for picking reviews by random (random # generator produced by excel, and number listed on citations picked based on random number generated)

  5. New 1000 Sales Records Data 2

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Calvin Oko Mensah (2023). New 1000 Sales Records Data 2 [Dataset]. https://www.kaggle.com/datasets/calvinokomensah/new-1000-sales-records-data-2
    Explore at:
    zip(49305 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    Calvin Oko Mensah
    Description

    This is a dataset downloaded off excelbianalytics.com created off of random VBA logic. I recently performed an extensive exploratory data analysis on it and I included new columns to it, namely: Unit margin, Order year, Order month, Order weekday and Order_Ship_Days which I think can help with analysis on the data. I shared it because I thought it was a great dataset to practice analytical processes on for newbies like myself.

  6. BANK BRANCHES - BUSINESS DATA

    • kaggle.com
    zip
    Updated Dec 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    bhanuprakash08 (2022). BANK BRANCHES - BUSINESS DATA [Dataset]. https://www.kaggle.com/datasets/bhanuprakash08/bank-branches-business-data/versions/1
    Explore at:
    zip(29823 bytes)Available download formats
    Dataset updated
    Dec 17, 2022
    Authors
    bhanuprakash08
    Description

    This dataset is prepared using random number generator function in excel. The data include sample bank branch key business parameters.

    3 dim tables include key business parameters, dates and branch names. 3 fact tables include parameter values of branches as on 3 different dates (last FY end,last Qtr end, last day).

    The dataset can be loaded into Power BI for analysis and visualizations. 3 fact tables can be appended to one table. 3 types of reports can be generated : Branch-wise Business , Trend analysis , Parameter-wise analysis

    Image Credits: (Image by pch.vector on Freepik)

  7. w

    COVID-19 Rapid Response Phone Survey with Households 2020-2022, Panel -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Sep 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nistha Sinha (2022). COVID-19 Rapid Response Phone Survey with Households 2020-2022, Panel - Kenya [Dataset]. https://microdata.worldbank.org/index.php/catalog/3774
    Explore at:
    Dataset updated
    Sep 21, 2022
    Dataset authored and provided by
    Nistha Sinha
    Time period covered
    2020 - 2022
    Area covered
    Kenya
    Description

    Abstract

    The World Bank in collaboration with the Kenya National Bureau of Statistics and the University of California, Berkeley are conducting the Kenya COVID-19 Rapid Response Phone Survey to track the socioeconomic impacts of the COVID-19 pandemic, the recovery from it as well as other shocks to provide timely data to inform policy. This dataset contains information from eight waves of the COVID-19 RRPS, which is part of a panel survey that targets Kenyan nationals and started in May 2020. The same households were interviewed every two months for five survey rounds, in the first year of data collection and every four months thereafter, with interviews conducted using Computer Assisted Telephone Interviewing (CATI) techniques.

    The data set contains information from two samples of Kenyan households. The first sample is a randomly drawn subset of all households that were part of the 2015/16 Kenya Integrated Household Budget Survey (KIHBS) Computer-Assisted Personal Interviewing (CAPI) pilot and provided a phone number. The second was obtained through the Random Digit Dialing method, by which active phone numbers created from the 2020 Numbering Frame produced by the Kenya Communications Authority are randomly selected. The samples cover urban and rural areas and are designed to be representative of the population of Kenya using cell phones. Waves 1-7 of this survey include information on household background, service access, employment, food security, income loss, transfers, health, and COVID-19 knowledge and vaccinations. Wave 8 focused on how households were exposed to shocks, in particular adverse weather shocks and the increase in the price of food and fuel, but also included parts of the previous modules on household background, service access, employment, food security, income loss, and subjective wellbeing.

    The data is uploaded in three files. The first is the hh file, which contains household level information. The ‘hhid’, uniquely identifies all household. The second is the adult level file, which contains data at the level of adult household members. Each adult in a household is uniquely identified by the ‘adult_id’. The third file is the child level file, available only for waves 3-7, which contains information for every child in the household. Each child in a household is uniquely identified by the ‘child_id’.

    The duration of data collection and sample size for each completed wave was: Wave 1: May 14 to July 7, 2020; 4,061 Kenyan households Wave 2: July 16 to September 18, 2020; 4,492 Kenyan households Wave 3: September 28 to December 2, 2020; 4,979 Kenyan households Wave 4: January 15 to March 25, 2021; 4,892 Kenyan households Wave 5: March 29 to June 13, 2021; 5,854 Kenyan households Wave 6: July 14 to November 3, 2021; 5,765 Kenyan households Wave 7: November 15, 2021, to March 31, 2022; 5,633 Kenyan households Wave 8: May 31 to July 8, 2022: 4,550 Kenyan households

    The same questionnaire is also administered to refugees in Kenya, with the data available in the UNHCR microdata library: https://microdata.unhcr.org/index.php/catalog/296/

    Geographic coverage

    National coverage covering rural and urban areas

    Analysis unit

    Household, Individual

    Sampling procedure

    The COVID-19 RRPS with Kenyan households has two samples. The first sample consists of households that were part of the 2015/16 KIHBS CAPI pilot and provided a phone number. The 2015/16 KIHBS CAPI pilot is representative at the national level stratified by county and place of residence (urban and rural areas). At least one valid phone number was obtained for 9,007 households and all of them were included in the COVID-19 RRPS sample. The target respondent was the primary male or female household member from the 2015/16 KIHBS CAPI pilot. The second sample consists of households selected using the Random Digit Dialing method. A list of random mobile phone numbers was created using a random number generator from the 2020 Numbering Frame produced by the Kenya Communications Authority. The initial sampling frame therefore consisted of 92,999,970 randomly ordered phone numbers assigned to three networks: Safaricom, Airtel and Telkom. An introductory text message was sent to 5,000 randomly selected numbers to determine if numbers were in operation. Out of these, 4,075 were found to be active and formed the final sampling frame. There was no stratification and individuals that were called were asked about the households they live in. Until wave 7 sampled households that were not reached in earlier waves were also contacted along with households that were interviewed before. In wave 8 only households that had previously participated in the survey were contacted for interview. The “wave” variable represents in which wave the households were interviewed in.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaire was administered in English and is provided as a resource in pdf format. Additionally, questionnaires for each wave are also provided in Excel format coded for SCTO. The same questionnaire is also administered to refugees in Kenya, with the data available in the UNHCR microdata library: https://microdata.unhcr.org/index.php/catalog/296/

  8. m

    Spreadsheet Implementation for an Interactive Simulation of the Monty Hall...

    • data.mendeley.com
    Updated Dec 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Gutiérrez (2024). Spreadsheet Implementation for an Interactive Simulation of the Monty Hall Problem [Dataset]. http://doi.org/10.17632/nvkc4sgj6m.1
    Explore at:
    Dataset updated
    Dec 6, 2024
    Authors
    Michael Gutiérrez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Monty Hall Problem (Three-Door Problem) is a well-known example for a counterintuitive problem in probability theory. This site provides a VBA-based spreadsheet (Excel) implementation for an interactive simulation of the Monty Hall Problem using Zoom or any other video conference software that enables group rooms. The game process and the associated simulation based on this Excel file are deliberately not fully automated; rather, the participants in the role of hosts and contestants should carry out essential steps themselves, interact with each other, and thus become an active part of the simulation. The settings allow for different assumptions regarding, among other things, the random or conscious nature of decisions. This allows a range of different game situations to be mapped - from a purely random game (based solely on Excel’s random number generator) on the one hand to a purely conscious game (based on possibly tactical decisions and expectations of the participants) on the other.

    The simulation tool can be used in online teaching. Carrying out the interactive simulation provides data in the form of absolute and relative frequencies for wins and losses depending on whether the contestant switches doors or not. The results can then be discussed.

  9. Massive Bank dataset ( 1 Million+ rows)

    • kaggle.com
    zip
    Updated Feb 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    K S ABISHEK (2023). Massive Bank dataset ( 1 Million+ rows) [Dataset]. https://www.kaggle.com/datasets/ksabishek/massive-bank-dataset-1-million-rows
    Explore at:
    zip(32471013 bytes)Available download formats
    Dataset updated
    Feb 21, 2023
    Authors
    K S ABISHEK
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Greetings , fellow analysts !

    (NOTE : This is a random dataset generated using python. It bears no resemblance to any real entity in the corporate world. Any resemblance is a matter of coincidence.)

    REC-SSEC Bank is a govt-aided bank operating in the Indian Peninsula. They have regional branches in over 40+ regions of the country. You have been provided with a massive excel sheet containing the transaction details, the total transaction amount and their location and total transaction count.

    The dataset is described as follows :

    1. Date - The date on which the transaction took place. 2.Domain - Where or which type of Business entity made the transaction. 3.Location - Where the data is collected from 4.Value - Total value of transaction
    2. Count of transaction .

    For example , in the very first row , the data can be read as : " On the first of January, 2022 , 1932 transactions of summing upto INR 365554 from Bhuj were reported " NOTE : There are about 2750 transactions every single day. All of this has been given to you.

    The bank wants you to answer the following questions :

    1. What is the average transaction value everyday for each domain over the year.
    2. What is the average transaction value for every city/location over the year
    3. The bank CEO , Mr: Hariharan , wants to promote the ease of transaction for the highest active domain. If the domains could be sorted into a priority, what would be the priority list ?
    4. What's the average transaction count for each city ?
  10. f

    UC_vs_US Statistic Analysis.xlsx

    • figshare.com
    xlsx
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

    Tagging scheme:
    Aligned (AL) - A concept is represented as a class in both models, either
    

    with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

    All the calculations and information provided in the following sheets
    

    originate from that raw data.

    Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
    

    including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

    Sheet 3 (Size-Ratio):
    

    The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

    Sheet 4 (Overall):
    

    Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

    For sheet 4 as well as for the following four sheets, diverging stacked bar
    

    charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

    Sheet 5 (By-Notation):
    

    Model correctness and model completeness is compared by notation - UC, US.

    Sheet 6 (By-Case):
    

    Model correctness and model completeness is compared by case - SIM, HOS, IFA.

    Sheet 7 (By-Process):
    

    Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

    Sheet 8 (By-Grade):
    

    Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

  11. f

    S1 Data -

    • plos.figshare.com
    xlsx
    Updated Jun 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neelam Dhakal; Pradip Gyanwali; Baburam Humagain; Rajendra BC; Nisha Jha; Phoolgen Sah; Amita Pradhan; Meghnath Dhimal; Anjani Kumar Jha (2023). S1 Data - [Dataset]. http://doi.org/10.1371/journal.pgph.0001841.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Neelam Dhakal; Pradip Gyanwali; Baburam Humagain; Rajendra BC; Nisha Jha; Phoolgen Sah; Amita Pradhan; Meghnath Dhimal; Anjani Kumar Jha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Essential medicines are those medicines that satisfy the primary health care needs of the citizens. Poor quality of essential medicines can have serious impact on public health. Thus, this study is aimed to assess the quality of essential medicines available in public health care facilities of Nepal. A cross sectional descriptive study was carried out in 62 health facilities across 21 districts, representing all seven provinces of Nepal and selected proportionately from all three ecological regions i.e. Terai, Hill and Mountain using lottery method. Health facilities in selected districts were chosen using random number generator. Face to face interview was taken with health facility in charge using structured questionnaire. All storage conditions information was recorded through observation checklists. Temperature and humidity were measured using a digital instrument. Similarly, 20 different generic medicines were collected for quality testing. The obtained data were entered in Epidata version 3.1, cleaned in Microsoft Excel 2007 and analyzed in SPSS version 16.0. Among 62 health facilities, only 13% of health facilities were found to follow the medicine storage guidelines, with temperature and humidity levels exceeding recommended limits. Out of 244 batches of 20 different generics of essential medicines, 37 batches were found to be substandard. These substandard medicines were- Ciprofloxacin hydrochloride eye/ear drop, Iron supplement tablets, Metformin Hydrochloric tablet, Metronidazole Tablets, Paracetamol Oral suspension, Paracetamol tablet and Povidone Iodine solution. The study recommends the urgent need for the Government of Nepal to prioritize ensuring the quality of essential medicines in the country.

  12. Characteristics of included studies.

    • plos.figshare.com
    xls
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Habtamu Geremew; Eyasu Bamlaku Golla; Mulat Belay Simegn; Alegntaw Abate; Mohammed Ahmed Ali; Hawi Kumbi; Smegnew Gichew Wondie; Misganaw Asmamaw Mengstie; Werkneh Melkie Tilahun (2024). Characteristics of included studies. [Dataset]. http://doi.org/10.1371/journal.pone.0307283.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Habtamu Geremew; Eyasu Bamlaku Golla; Mulat Belay Simegn; Alegntaw Abate; Mohammed Ahmed Ali; Hawi Kumbi; Smegnew Gichew Wondie; Misganaw Asmamaw Mengstie; Werkneh Melkie Tilahun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionBreast cancer continues to be the most common malignancy and the leading cause of cancer-related deaths in Ethiopia. The poor prognosis and high mortality rate of breast cancer patients in the country are largely caused by late-stage diagnosis. Hence, understanding the epidemiology of late-stage diagnosis is essential to address this important problem. However, previous reports in Ethiopia indicated inconsistent findings. Therefore, this literature review was conducted to generate dependable evidence by summarizing the prevalence and determinants of late-stage diagnosis among breast cancer patients in Ethiopia.MethodsPertinent articles were retrieved by systematically searching on major electronic databases and gray literature. Data were extracted into an Excel spreadsheet and analyzed using the STATA 17 statistical software. The pooled estimates were summarized using the random effect meta-analysis model. Heterogeneity and small study effect were evaluated using the I2 statistics and Egger’s regression test in conjunction with the funnel plot, respectively. Meta-regression, sub-group analysis, and sensitivity analysis were also employed. Protocol registration number: CRD42024496237.ResultsThe pooled prevalence of late-stage diagnosis after combining reports of 24 studies with 8,677 participants was 65.85 (95% CI: 58.38, 73.32). Residence (adjusted OR: 1.92; 95% CI: 1.45, 2.53), patient delay at their first presentation (adjusted OR: 2.65; 95% CI: 1.56, 4.49), traditional medicine use (adjusted OR: 2.54; 95% CI: 1.89, 3.41), and breast self-examination practice (adjusted OR: 0.28; 95% CI: 0.09, 0.88) were significant determinants of late-stage diagnosis.ConclusionTwo-thirds of breast cancer patients in Ethiopia were diagnosed at an advanced stage. Residence, delay in the first presentation, traditional medicine use, and breast self-examination practice were significantly associated with late-stage diagnosis. Public education about breast cancer and its early detection techniques is crucial to reduce mortality and improve the survival of patients. Besides, improving access to cancer screening services is useful to tackle the disease at its curable stages.

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hamed Ahmadi (2023). Microsoft excel database containing all the simulated (10 sets) and experimental data used in this study. [Dataset]. http://doi.org/10.1371/journal.pone.0187292.s001
Organization logo

Microsoft excel database containing all the simulated (10 sets) and experimental data used in this study.

Related Article
Explore at:
xlsxAvailable download formats
Dataset updated
Jun 3, 2023
Dataset provided by
PLOShttp://plos.org/
Authors
Hamed Ahmadi
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Excel sheets in order: The sheet entitled “Hens Original Data” contains the results of an experiment conducted to study the response of laying hens during initial phase of egg production subjected to different intakes of dietary threonine. The sheet entitled “Simulated data & fitting values” contains the 10 simulated data sets that were generated using a standard procedure of random number generator. The predicted values obtained by the new three-parameter and conventional four-parameter logistic models were also appeared in this sheet. (XLSX)

Search
Clear search
Close search
Google apps
Main menu