100+ datasets found
  1. f

    Data Sheet 2_Large language models generating synthetic clinical datasets: a...

    • frontiersin.figshare.com
    • figshare.com
    xlsx
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin (2025). Data Sheet 2_Large language models generating synthetic clinical datasets: a feasibility and comparative analysis with real-world perioperative data.xlsx [Dataset]. http://doi.org/10.3389/frai.2025.1533508.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Frontiers
    Authors
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.

  2. h

    synthetic-data-generation-with-llama3-405B

    • huggingface.co
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lukman Jibril Aliyu (2024). synthetic-data-generation-with-llama3-405B [Dataset]. https://huggingface.co/datasets/lukmanaj/synthetic-data-generation-with-llama3-405B
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 30, 2024
    Authors
    Lukman Jibril Aliyu
    Description

    Dataset Card for synthetic-data-generation-with-llama3-405B

    This dataset has been created with distilabel.

      Dataset Summary
    

    This dataset contains a pipeline.yaml which can be used to reproduce the pipeline that generated it in distilabel using the distilabel CLI: distilabel pipeline run --config "https://huggingface.co/datasets/lukmanaj/synthetic-data-generation-with-llama3-405B/raw/main/pipeline.yaml"

    or explore the configuration: distilabel pipeline info… See the full description on the dataset page: https://huggingface.co/datasets/lukmanaj/synthetic-data-generation-with-llama3-405B.

  3. Synthetic Data Generation Market Analysis, Size, and Forecast 2025-2029:...

    • technavio.com
    pdf
    Updated May 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Synthetic Data Generation Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/synthetic-data-generation-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 3, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Synthetic Data Generation Market Size 2025-2029

    The synthetic data generation market size is forecast to increase by USD 4.39 billion, at a CAGR of 61.1% between 2024 and 2029.

    The market is experiencing significant growth, driven by the escalating demand for data privacy protection. With increasing concerns over data security and the potential risks associated with using real data, synthetic data is gaining traction as a viable alternative. Furthermore, the deployment of large language models is fueling market expansion, as these models can generate vast amounts of realistic and diverse data, reducing the reliance on real-world data sources. However, high costs associated with high-end generative models pose a challenge for market participants. These models require substantial computational resources and expertise to develop and implement effectively. Companies seeking to capitalize on market opportunities must navigate these challenges by investing in research and development to create more cost-effective solutions or partnering with specialists in the field. Overall, the market presents significant potential for innovation and growth, particularly in industries where data privacy is a priority and large language models can be effectively utilized.

    What will be the Size of the Synthetic Data Generation Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for data-driven insights across various sectors. Data processing is a crucial aspect of this market, with a focus on ensuring data integrity, privacy, and security. Data privacy-preserving techniques, such as data masking and anonymization, are essential in maintaining confidentiality while enabling data sharing. Real-time data processing and data simulation are key applications of synthetic data, enabling predictive modeling and data consistency. Data management and workflow automation are integral components of synthetic data platforms, with cloud computing and model deployment facilitating scalability and flexibility. Data governance frameworks and compliance regulations play a significant role in ensuring data quality and security. Deep learning models, variational autoencoders (VAEs), and neural networks are essential tools for model training and optimization, while API integration and batch data processing streamline the data pipeline. Machine learning models and data visualization provide valuable insights, while edge computing enables data processing at the source. Data augmentation and data transformation are essential techniques for enhancing the quality and quantity of synthetic data. Data warehousing and data analytics provide a centralized platform for managing and deriving insights from large datasets. Synthetic data generation continues to unfold, with ongoing research and development in areas such as federated learning, homomorphic encryption, statistical modeling, and software development. The market's dynamic nature reflects the evolving needs of businesses and the continuous advancements in data technology.

    How is this Synthetic Data Generation Industry segmented?

    The synthetic data generation industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. End-userHealthcare and life sciencesRetail and e-commerceTransportation and logisticsIT and telecommunicationBFSI and othersTypeAgent-based modellingDirect modellingApplicationAI and ML Model TrainingData privacySimulation and testingOthersProductTabular dataText dataImage and video dataOthersGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalyUKAPACChinaIndiaJapanRest of World (ROW)

    By End-user Insights

    The healthcare and life sciences segment is estimated to witness significant growth during the forecast period.In the rapidly evolving data landscape, the market is gaining significant traction, particularly in the healthcare and life sciences sector. With a growing emphasis on data-driven decision-making and stringent data privacy regulations, synthetic data has emerged as a viable alternative to real data for various applications. This includes data processing, data preprocessing, data cleaning, data labeling, data augmentation, and predictive modeling, among others. Medical imaging data, such as MRI scans and X-rays, are essential for diagnosis and treatment planning. However, sharing real patient data for research purposes or training machine learning algorithms can pose significant privacy risks. Synthetic data generation addresses this challenge by producing realistic medical imaging data, ensuring data privacy while enabling research and development. Moreover

  4. G

    Synthetic Evaluation Data Generation Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Oct 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Synthetic Evaluation Data Generation Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/synthetic-evaluation-data-generation-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Oct 3, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Evaluation Data Generation Market Outlook



    According to our latest research, the synthetic evaluation data generation market size reached USD 1.4 billion globally in 2024, reflecting robust growth driven by the increasing need for high-quality, privacy-compliant data in AI and machine learning applications. The market demonstrated a remarkable CAGR of 32.8% from 2025 to 2033. By the end of 2033, the synthetic evaluation data generation market is forecasted to attain a value of USD 17.7 billion. This surge is primarily attributed to the escalating adoption of AI-driven solutions across industries, stringent data privacy regulations, and the critical demand for diverse, scalable, and bias-free datasets for model training and validation.




    One of the primary growth factors propelling the synthetic evaluation data generation market is the rapid acceleration of artificial intelligence and machine learning deployments across various sectors such as healthcare, finance, automotive, and retail. As organizations strive to enhance the accuracy and reliability of their AI models, the need for diverse and unbiased datasets has become paramount. However, accessing large volumes of real-world data is often hindered by privacy concerns, data scarcity, and regulatory constraints. Synthetic data generation bridges this gap by enabling the creation of realistic, scalable, and customizable datasets that mimic real-world scenarios without exposing sensitive information. This capability not only accelerates the development and validation of AI systems but also ensures compliance with data protection regulations such as GDPR and HIPAA, making it an indispensable tool for modern enterprises.




    Another significant driver for the synthetic evaluation data generation market is the growing emphasis on data privacy and security. With increasing incidents of data breaches and the rising cost of non-compliance, organizations are actively seeking solutions that allow them to leverage data for training and testing AI models without compromising confidentiality. Synthetic data generation provides a viable alternative by producing datasets that retain the statistical properties and utility of original data while eliminating direct identifiers and sensitive attributes. This allows companies to innovate rapidly, collaborate more openly, and share data across borders without legal impediments. Furthermore, the use of synthetic data supports advanced use cases such as adversarial testing, rare event simulation, and stress testing, further expanding its applicability across verticals.




    The synthetic evaluation data generation market is also experiencing growth due to advancements in generative AI technologies, including Generative Adversarial Networks (GANs) and large language models. These technologies have significantly improved the fidelity, diversity, and utility of synthetic datasets, making them nearly indistinguishable from real data in many applications. The ability to generate synthetic text, images, audio, video, and tabular data has opened new avenues for innovation in model training, testing, and validation. Additionally, the integration of synthetic data generation tools into cloud-based platforms and machine learning pipelines has simplified adoption for organizations of all sizes, further accelerating market growth.




    From a regional perspective, North America continues to dominate the synthetic evaluation data generation market, accounting for the largest share in 2024. This is largely due to the presence of leading technology vendors, early adoption of AI technologies, and a strong focus on data privacy and regulatory compliance. Europe follows closely, driven by stringent data protection laws and increased investment in AI research and development. The Asia Pacific region is expected to witness the fastest growth during the forecast period, fueled by rapid digital transformation, expanding AI ecosystems, and increasing government initiatives to promote data-driven innovation. Latin America and the Middle East & Africa are also emerging as promising markets, albeit at a slower pace, as organizations in these regions begin to recognize the value of synthetic data for AI and analytics applications.



  5. Creating_simple_Sintetic_dataset

    • kaggle.com
    zip
    Updated Jan 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lala Ibadullayeva (2025). Creating_simple_Sintetic_dataset [Dataset]. https://www.kaggle.com/datasets/lalaibadullayeva/creating-simple-sintetic-dataset
    Explore at:
    zip(476698 bytes)Available download formats
    Dataset updated
    Jan 20, 2025
    Authors
    Lala Ibadullayeva
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Description

    Overview: This dataset contains three distinct fake datasets generated using the Faker and Mimesis libraries. These libraries are commonly used for generating realistic-looking synthetic data for testing, prototyping, and data science projects. The datasets were created to simulate real-world scenarios while ensuring no sensitive or private information is included.

    Data Generation Process: The data creation process is documented in the accompanying notebook, Creating_simple_Sintetic_data.ipynb. This notebook showcases the step-by-step procedure for generating synthetic datasets with customizable structures and fields using the Faker and Mimesis libraries.

    File Contents:

    Datasets: CSV files containing the three synthetic datasets. Notebook: Creating_simple_Sintetic_data.ipynb detailing the data generation process and the code used to create these datasets.

  6. h

    synthetic-data

    • huggingface.co
    Updated Aug 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    uv scripts for HF Jobs (2025). synthetic-data [Dataset]. https://huggingface.co/datasets/uv-scripts/synthetic-data
    Explore at:
    Dataset updated
    Aug 5, 2025
    Dataset authored and provided by
    uv scripts for HF Jobs
    Description

    CoT-Self-Instruct: High-Quality Synthetic Data Generation

    Generate high-quality synthetic training data using Chain-of-Thought Self-Instruct methodology. This UV script implements the approach from "CoT-Self-Instruct: Building high-quality synthetic prompts for reasoning and non-reasoning tasks" (2025).

      🚀 Quick Start
    

    Install UV if you haven't already

    curl -LsSf https://astral.sh/uv/install.sh | sh

    Generate synthetic reasoning data

    uv run cot-self-instruct.py \… See the full description on the dataset page: https://huggingface.co/datasets/uv-scripts/synthetic-data.

  7. S

    Synthetic Data Platform Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Synthetic Data Platform Report [Dataset]. https://www.datainsightsmarket.com/reports/synthetic-data-platform-1939818
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Synthetic Data Platform market is experiencing robust growth, driven by the increasing need for data privacy, escalating data security concerns, and the rising demand for high-quality training data for AI and machine learning models. The market's expansion is fueled by several key factors: the growing adoption of AI across various industries, the limitations of real-world data availability due to privacy regulations like GDPR and CCPA, and the cost-effectiveness and efficiency of synthetic data generation. We project a market size of approximately $2 billion in 2025, with a Compound Annual Growth Rate (CAGR) of 25% over the forecast period (2025-2033). This rapid expansion is expected to continue, reaching an estimated market value of over $10 billion by 2033. The market is segmented based on deployment models (cloud, on-premise), data types (image, text, tabular), and industry verticals (healthcare, finance, automotive). Major players are actively investing in research and development, fostering innovation in synthetic data generation techniques and expanding their product offerings to cater to diverse industry needs. Competition is intense, with companies like AI.Reverie, Deep Vision Data, and Synthesis AI leading the charge with innovative solutions. However, several challenges remain, including ensuring the quality and fidelity of synthetic data, addressing the ethical concerns surrounding its use, and the need for standardization across platforms. Despite these challenges, the market is poised for significant growth, driven by the ever-increasing need for large, high-quality datasets to fuel advancements in artificial intelligence and machine learning. The strategic partnerships and acquisitions in the market further accelerate the innovation and adoption of synthetic data platforms. The ability to generate synthetic data tailored to specific business problems, combined with the increasing awareness of data privacy issues, is firmly establishing synthetic data as a key component of the future of data management and AI development.

  8. f

    Table1_Enhancing biomechanical machine learning with limited data:...

    • frontiersin.figshare.com
    pdf
    Updated Feb 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlo Dindorf; Jonas Dully; Jürgen Konradi; Claudia Wolf; Stephan Becker; Steven Simon; Janine Huthwelker; Frederike Werthmann; Johanna Kniepert; Philipp Drees; Ulrich Betz; Michael Fröhlich (2024). Table1_Enhancing biomechanical machine learning with limited data: generating realistic synthetic posture data using generative artificial intelligence.pdf [Dataset]. http://doi.org/10.3389/fbioe.2024.1350135.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 14, 2024
    Dataset provided by
    Frontiers
    Authors
    Carlo Dindorf; Jonas Dully; Jürgen Konradi; Claudia Wolf; Stephan Becker; Steven Simon; Janine Huthwelker; Frederike Werthmann; Johanna Kniepert; Philipp Drees; Ulrich Betz; Michael Fröhlich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data.Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation.Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples.Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.

  9. i

    Dataset of article: Synthetic Datasets Generator for Testing Information...

    • ieee-dataport.org
    Updated Mar 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos Santos (2020). Dataset of article: Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools [Dataset]. https://ieee-dataport.org/open-access/dataset-article-synthetic-datasets-generator-testing-information-visualization-and
    Explore at:
    Dataset updated
    Mar 13, 2020
    Authors
    Carlos Santos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset used in the article entitled 'Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools'. These datasets can be used to test several characteristics in machine learning and data processing algorithms.

  10. h

    clinical-synthetic-text-llm

    • huggingface.co
    Updated Jul 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ran Xu (2024). clinical-synthetic-text-llm [Dataset]. https://huggingface.co/datasets/ritaranx/clinical-synthetic-text-llm
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 5, 2024
    Authors
    Ran Xu
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Data Description

    We release the synthetic data generated using the method described in the paper Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models (ACL 2024 Findings). The external knowledge we use is based on LLM-generated topics and writing styles.

      Generated Datasets
    

    The original train/validation/test data, and the generated synthetic training data are listed as follows. For each dataset, we generate 5000… See the full description on the dataset page: https://huggingface.co/datasets/ritaranx/clinical-synthetic-text-llm.

  11. G

    Synthetic Training Data Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Synthetic Training Data Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/synthetic-training-data-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Training Data Market Outlook



    According to our latest research, the global synthetic training data market size in 2024 is valued at USD 1.45 billion, demonstrating robust momentum as organizations increasingly adopt artificial intelligence and machine learning solutions. The market is projected to grow at a remarkable CAGR of 38.7% from 2025 to 2033, reaching an estimated USD 22.46 billion by 2033. This exponential growth is primarily driven by the rising demand for high-quality, diverse, and privacy-compliant datasets that fuel advanced AI models, as well as the escalating need for scalable data solutions across various industries.




    One of the primary growth factors propelling the synthetic training data market is the escalating complexity and diversity of AI and machine learning applications. As organizations strive to develop more accurate and robust AI models, the need for vast amounts of annotated and high-quality training data has surged. Traditional data collection methods are often hampered by privacy concerns, high costs, and time-consuming processes. Synthetic training data, generated through advanced algorithms and simulation tools, offers a compelling alternative by providing scalable, customizable, and bias-mitigated datasets. This enables organizations to accelerate model development, improve performance, and comply with evolving data privacy regulations such as GDPR and CCPA, thus driving widespread adoption across sectors like healthcare, finance, autonomous vehicles, and robotics.




    Another significant driver is the increasing adoption of synthetic data for data augmentation and rare event simulation. In sectors such as autonomous vehicles, manufacturing, and robotics, real-world data for edge-case scenarios or rare events is often scarce or difficult to capture. Synthetic training data allows for the generation of these critical scenarios at scale, enabling AI systems to learn and adapt to complex, unpredictable environments. This not only enhances model robustness but also reduces the risk associated with deploying AI in safety-critical applications. The flexibility to generate diverse data types, including images, text, audio, video, and tabular data, further expands the applicability of synthetic data solutions, making them indispensable tools for innovation and competitive advantage.




    The synthetic training data market is also experiencing rapid growth due to the heightened focus on data privacy and regulatory compliance. As data protection regulations become more stringent worldwide, organizations face increasing challenges in accessing and utilizing real-world data for AI training without violating user privacy. Synthetic data addresses this challenge by creating realistic yet entirely artificial datasets that preserve the statistical properties of original data without exposing sensitive information. This capability is particularly valuable for industries such as BFSI, healthcare, and government, where data sensitivity and compliance requirements are paramount. As a result, the adoption of synthetic training data is expected to accelerate further as organizations seek to balance innovation with ethical and legal responsibilities.




    From a regional perspective, North America currently leads the synthetic training data market, driven by the presence of major technology companies, robust R&D investments, and early adoption of AI technologies. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by expanding AI initiatives, government support, and the rapid digital transformation of industries. Europe is also emerging as a key market, particularly in sectors where data privacy and regulatory compliance are critical. Latin America and the Middle East & Africa are gradually increasing their market share as awareness and adoption of synthetic data solutions grow. Overall, the global landscape is characterized by dynamic regional trends, with each region contributing uniquely to the marketÂ’s expansion.



    The introduction of a Synthetic Data Generation Engine has revolutionized the way organizations approach data creation and management. This engine leverages cutting-edge algorithms to produce high-quality synthetic datasets that mirror real-world data without compromising privacy. By sim

  12. C

    Synthetic Integrated Services Data

    • data.wprdc.org
    csv, html, pdf, zip
    Updated Jun 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2024). Synthetic Integrated Services Data [Dataset]. https://data.wprdc.org/dataset/synthetic-integrated-services-data
    Explore at:
    html, csv(1375554033), pdf, zip(39231637)Available download formats
    Dataset updated
    Jun 25, 2024
    Dataset authored and provided by
    Allegheny County
    Description

    Motivation

    This dataset was created to pilot techniques for creating synthetic data from datasets containing sensitive and protected information in the local government context. Synthetic data generation replaces actual data with representative data generated from statistical models; this preserves the key data properties that allow insights to be drawn from the data while protecting the privacy of the people included in the data. We invite you to read the Understanding Synthetic Data white paper for a concise introduction to synthetic data.

    This effort was a collaboration of the Urban Institute, Allegheny County’s Department of Human Services (DHS) and CountyStat, and the University of Pittsburgh’s Western Pennsylvania Regional Data Center.

    Collection

    The source data for this project consisted of 1) month-by-month records of services included in Allegheny County's data warehouse and 2) demographic data about the individuals who received the services. As the County’s data warehouse combines this service and client data, this data is referred to as “Integrated Services data”. Read more about the data warehouse and the kinds of services it includes here.

    Preprocessing

    Synthetic data are typically generated from probability distributions or models identified as being representative of the confidential data. For this dataset, a model of the Integrated Services data was used to generate multiple versions of the synthetic dataset. These different candidate datasets were evaluated to select for publication the dataset version that best balances utility and privacy. For high-level information about this evaluation, see the Synthetic Data User Guide.

    For more information about the creation of the synthetic version of this data, see the technical brief for this project, which discusses the technical decision making and modeling process in more detail.

    Recommended Uses

    This disaggregated synthetic data allows for many analyses that are not possible with aggregate data (summary statistics). Broadly, this synthetic version of this data could be analyzed to better understand the usage of human services by people in Allegheny County, including the interplay in the usage of multiple services and demographic information about clients.

    Known Limitations/Biases

    Some amount of deviation from the original data is inherent to the synthetic data generation process. Specific examples of limitations (including undercounts and overcounts for the usage of different services) are given in the Synthetic Data User Guide and the technical report describing this dataset's creation.

    Feedback

    Please reach out to this dataset's data steward (listed below) to let us know how you are using this data and if you found it to be helpful. Please also provide any feedback on how to make this dataset more applicable to your work, any suggestions of future synthetic datasets, or any additional information that would make this more useful. Also, please copy wprdc@pitt.edu on any such feedback (as the WPRDC always loves to hear about how people use the data that they publish and how the data could be improved).

    Further Documentation and Resources

    1) A high-level overview of synthetic data generation as a method for protecting privacy can be found in the Understanding Synthetic Data white paper.
    2) The Synthetic Data User Guide provides high-level information to help users understand the motivation, evaluation process, and limitations of the synthetic version of Allegheny County DHS's Human Services data published here.
    3) Generating a Fully Synthetic Human Services Dataset: A Technical Report on Synthesis and Evaluation Methodologies describes the full technical methodology used for generating the synthetic data, evaluating the various options, and selecting the final candidate for publication.
    4) The WPRDC also hosts the Allegheny County Human Services Community Profiles dataset, which provides annual updates on human-services usage, aggregated by neighborhood/municipality. That data can be explored using the County's Human Services Community Profile web site.

  13. G

    Synthetic Data Generation for AI Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Oct 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Synthetic Data Generation for AI Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/synthetic-data-generation-for-ai-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Oct 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Data Generation for AI Market Outlook



    According to our latest research, the global synthetic data generation for AI market size reached USD 1.42 billion in 2024, demonstrating robust momentum driven by the accelerating adoption of artificial intelligence across multiple industries. The market is projected to expand at a CAGR of 35.6% from 2025 to 2033, with the market size expected to reach USD 20.19 billion by 2033. This extraordinary growth is primarily attributed to the rising demand for high-quality, diverse datasets for training AI models, as well as increasing concerns around data privacy and regulatory compliance.



    One of the key growth factors propelling the synthetic data generation for AI market is the surging need for vast, unbiased, and representative datasets to train advanced machine learning models. Traditional data collection methods are often hampered by privacy concerns, data scarcity, and the risk of bias, making synthetic data an attractive alternative. By leveraging generative models such as GANs and VAEs, organizations can create realistic, customizable datasets that enhance model accuracy and performance. This not only accelerates AI development cycles but also enables businesses to experiment with rare or edge-case scenarios that would be difficult or costly to capture in real-world data. The ability to generate synthetic data on demand is particularly valuable in highly regulated sectors such as finance and healthcare, where access to sensitive information is restricted.



    Another significant driver is the rapid evolution of AI technologies and the growing complexity of AI-powered applications. As organizations increasingly deploy AI in mission-critical operations, the need for robust testing, validation, and continuous model improvement becomes paramount. Synthetic data provides a scalable solution for augmenting training datasets, testing AI systems under diverse conditions, and ensuring resilience against adversarial attacks. Moreover, as regulatory frameworks like GDPR and CCPA impose stricter controls on personal data usage, synthetic data offers a viable path to compliance by enabling the development and validation of AI models without exposing real user information. This dual benefit of innovation and compliance is fueling widespread adoption across industries.



    The market is also witnessing considerable traction due to the rise of edge computing and the proliferation of IoT devices, which generate enormous volumes of heterogeneous data. Synthetic data generation tools are increasingly being integrated into enterprise AI workflows to simulate device behavior, user interactions, and environmental variables. This capability is crucial for industries such as automotive (for autonomous vehicles), healthcare (for medical imaging), and retail (for customer analytics), where the diversity and scale of data required far exceed what can be realistically collected. As a result, synthetic data is becoming an indispensable enabler of next-generation AI solutions, driving innovation and operational efficiency.



    From a regional perspective, North America continues to dominate the synthetic data generation for AI market, accounting for the largest revenue share in 2024. This leadership is underpinned by the presence of major AI technology vendors, substantial R&D investments, and a favorable regulatory environment. Europe is also emerging as a significant market, driven by stringent data protection laws and strong government support for AI innovation. Meanwhile, the Asia Pacific region is expected to witness the fastest growth rate, propelled by rapid digital transformation, burgeoning AI startups, and increasing adoption of cloud-based solutions. Latin America and the Middle East & Africa are gradually catching up, supported by government initiatives and the expansion of digital infrastructure. The interplay of these regional dynamics is shaping the global synthetic data generation landscape, with each market presenting unique opportunities and challenges.





    Component Analysis



    The synthetic data gen

  14. LLM Prompt Recovery - Synthetic Datastore

    • kaggle.com
    zip
    Updated Feb 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Darien Schettler (2024). LLM Prompt Recovery - Synthetic Datastore [Dataset]. https://www.kaggle.com/datasets/dschettler8845/llm-prompt-recovery-synthetic-datastore
    Explore at:
    zip(988448 bytes)Available download formats
    Dataset updated
    Feb 29, 2024
    Authors
    Darien Schettler
    License

    https://www.licenses.ai/ai-licenseshttps://www.licenses.ai/ai-licenses

    Description

    High Level Description

    This dataset uses Gemma 7B-IT to generate synthetic dataset for the LLM Prompt Recovery competition.

    Contributors

    Please go upvote these other datasets as my work is not possible without them

    First Dataset - 1000 Examples From @thedrcat

    Update 1 - February 29, 2024

    The only file presently found in this dataset is gemma1000_7b.csv which uses the dataset created by @thedrcat found here: https://www.kaggle.com/datasets/thedrcat/llm-prompt-recovery-data?select=gemma1000.csv

    The file below is the file Darek created with two additional columns appended. The first is the output of Gemma 7B-IT (raw based on the instructions below)(vs. 2B-IT that Darek used) and the second is the output with the 'Sure... blah blah

    ' sentence removed.

    I generated things using the following setup:

    # I used a vLLM server to host Gemma 7B on paperspace (A100)
    
    # Step 1 - Install vLLM
    >>> pip install vllm
    
    # Step 2 - Authenticate HuggingFace CLI (for model weights)
    >>> huggingface-cli login --token
    
  15. Self Driving Synthetic Dataset 1

    • kaggle.com
    zip
    Updated Sep 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Barton Mi (2024). Self Driving Synthetic Dataset 1 [Dataset]. https://www.kaggle.com/datasets/bartonmi/synthetic-data
    Explore at:
    zip(536681660 bytes)Available download formats
    Dataset updated
    Sep 26, 2024
    Authors
    Barton Mi
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Overview This dataset contains synthetic images of road scenarios designed for training and testing autonomous vehicle AI systems. Each image simulates common driving conditions, featuring various elements such as vehicles, pedestrians, and potential obstacles like animals. Notably, specific elements—like the synthetically generated dog in the images—are included to challenge machine learning models in detecting unexpected road hazards. This dataset is ideal for projects focusing on computer vision, object detection, and autonomous driving simulations.

    To learn more about the challenges of autonomous driving and how synthetic data can aid in overcoming them, check out our article: Autonomous Driving Challenge: Can Your AI See the Unseen? https://www.neurobot.co/use-cases-posts/autonomous-driving-challenge

    Want to see more synthetic data in action? Visit www.neurobot.co to schedule a demo or sign up to upload your own images and generate custom synthetic data tailored to your projects.

    Note Important Disclaimer: This dataset has not been part of any official research study or peer-reviewed article reviewed by autonomous driving authorities or safety experts. It is recommended for educational purposes only. The synthetic elements included in the images are not based on real-world data and should not be used in production-level autonomous vehicle systems without proper review by experts in AI safety and autonomous vehicle regulations. Please use this dataset responsibly, considering ethical implications.

  16. D

    Synthetic Data Generation For Training LE AI Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Synthetic Data Generation For Training LE AI Market Research Report 2033 [Dataset]. https://dataintelo.com/report/synthetic-data-generation-for-training-le-ai-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Data Generation for Training LE AI Market Outlook



    According to our latest research, the global market size for Synthetic Data Generation for Training LE AI was valued at USD 1.42 billion in 2024, with a robust compound annual growth rate (CAGR) of 33.8% projected through the forecast period. By 2033, the market is expected to reach an impressive USD 18.4 billion, reflecting the surging demand for scalable, privacy-compliant, and cost-effective data solutions. The primary growth factor underpinning this expansion is the increasing need for high-quality, diverse datasets to train large enterprise artificial intelligence (LE AI) models, especially as real-world data becomes more restricted due to privacy regulations and ethical considerations.




    One of the most significant growth drivers for the Synthetic Data Generation for Training LE AI market is the escalating adoption of artificial intelligence across multiple sectors such as healthcare, finance, automotive, and retail. As organizations strive to build and deploy advanced AI models, the requirement for large, diverse, and unbiased datasets has intensified. However, acquiring and labeling real-world data is often expensive, time-consuming, and fraught with privacy risks. Synthetic data generation addresses these challenges by enabling the creation of realistic, customizable datasets without exposing sensitive information, thereby accelerating AI development cycles and improving model performance. This capability is particularly crucial for industries dealing with stringent data regulations, such as healthcare and finance, where synthetic data can be used to simulate rare events, balance class distributions, and ensure regulatory compliance.




    Another pivotal factor propelling the growth of the Synthetic Data Generation for Training LE AI market is the technological advancements in generative models, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and other deep learning techniques. These innovations have significantly enhanced the fidelity, scalability, and versatility of synthetic data, making it nearly indistinguishable from real-world data in many applications. As a result, organizations can now generate high-resolution images, complex tabular datasets, and even nuanced audio and video samples tailored to specific use cases. Furthermore, the integration of synthetic data solutions with cloud-based platforms and AI development tools has democratized access to these technologies, allowing both large enterprises and small-to-medium businesses to leverage synthetic data for training, testing, and validation of LE AI models.




    The increasing focus on data privacy and security is also fueling market growth. With regulations such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States, organizations are under immense pressure to safeguard personal and sensitive information. Synthetic data offers a compelling solution by allowing businesses to generate artificial datasets that retain the statistical properties of real data without exposing any actual personal information. This not only mitigates the risk of data breaches and compliance violations but also enables seamless data sharing and collaboration across departments and organizations. As privacy concerns continue to mount, the adoption of synthetic data generation technologies is expected to accelerate, further driving the growth of the market.




    From a regional perspective, North America currently dominates the Synthetic Data Generation for Training LE AI market, accounting for the largest share in 2024, followed by Europe and Asia Pacific. The presence of leading technology companies, robust R&D investments, and a mature AI ecosystem have positioned North America as a key innovation hub for synthetic data solutions. Meanwhile, Asia Pacific is anticipated to witness the highest CAGR during the forecast period, driven by rapid digital transformation, government initiatives supporting AI adoption, and a burgeoning startup landscape. Europe, with its strong emphasis on data privacy and security, is also emerging as a significant market, particularly in sectors such as healthcare, automotive, and finance.



    Component Analysis



    The Component segment of the Synthetic Data Generation for Training LE AI market is primarily divided into Software and

  17. Synthetic datasets of the UK Biobank cohort

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, pdf, zip
    Updated Sep 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio Gasparrini; Antonio Gasparrini; Jacopo Vanoli; Jacopo Vanoli (2025). Synthetic datasets of the UK Biobank cohort [Dataset]. http://doi.org/10.5281/zenodo.13983170
    Explore at:
    bin, csv, zip, pdfAvailable download formats
    Dataset updated
    Sep 17, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Antonio Gasparrini; Antonio Gasparrini; Jacopo Vanoli; Jacopo Vanoli
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository stores synthetic datasets derived from the database of the UK Biobank (UKB) cohort.

    The datasets were generated for illustrative purposes, in particular for reproducing specific analyses on the health risks associated with long-term exposure to air pollution using the UKB cohort. The code used to create the synthetic datasets is available and documented in a related GitHub repo, with details provided in the section below. These datasets can be freely used for code testing and for illustrating other examples of analyses on the UKB cohort.

    The synthetic data have been used so far in two analyses described in related peer-reviewed publications, which also provide information about the original data sources:

    • Vanoli J, et al. Long-term associations between time-varying exposure to ambient PM2.5 and mortality: an analysis of the UK Biobank. Epidemiology. 2025;36(1):1-10. DOI: 10.1097/EDE.0000000000001796 [freely available here, with code provided in this GitHub repo]
    • Vanoli J, et al. Confounding issues in air pollution epidemiology: an empirical assessment with the UK Biobank cohort. International Journal of Epidemiology. 2025;54(5):dyaf163. DOI: 10.1093/ije/dyaf163 [freely available here, with code provided in this GitHub repo]

    Note: while the synthetic versions of the datasets resemble the real ones in several aspects, the users should be aware that these data are fake and must not be used for testing and making inferences on specific research hypotheses. Even more importantly, these data cannot be considered a reliable description of the original UKB data, and they must not be presented as such.

    The work was supported by the Medical Research Council-UK (Grant ID: MR/Y003330/1).

    Content

    The series of synthetic datasets (stored in two versions with csv and RDS formats) are the following:

    • synthbdcohortinfo: basic cohort information regarding the follow-up period and birth/death dates for 502,360 participants.
    • synthbdbasevar: baseline variables, mostly collected at recruitment.
    • synthpmdata: annual average exposure to PM2.5 for each participant reconstructed using their residential history.
    • synthoutdeath: death records that occurred during the follow-up with date and ICD-10 code.

    In addition, this repository provides these additional files:

    • codebook: a pdf file with a codebook for the variables of the various datasets, including references to the fields of the original UKB database.
    • asscentre: a csv file with information on the assessment centres used for recruitment of the UKB participants, including code, names, and location (as northing/easting coordinates of the British National Grid).
    • Countries_December_2022_GB_BUC: a zip file including the shapefile defining the boundaries of the countries in Great Britain (England, Wales, and Scotland), used for mapping purposes [source].

    Generation of the synthetic data

    The datasets resemble the real data used in the analysis, and they were generated using the R package synthpop (www.synthpop.org.uk). The generation process involves two steps, namely the synthesis of the main data (cohort info, baseline variables, annual PM2.5 exposure) and then the sampling of death events. The R scripts for performing the data synthesis are provided in the GitHub repo (subfolder Rcode/synthcode).

    The first part merges all the data, including the annual PM2.5 levels, into a single wide-format dataset (with a row for each subject), generates a synthetic version, adds fake IDs, and then extracts (and reshapes) the single datasets. In the second part, a Cox proportional hazard model is fitted on the original data to estimate risks associated with various predictors (including the main exposure represented by PM2.5), and then these relationships are used to simulate death events in each year. Details on the modelling aspects are provided in the article.

    This process guarantees that the synthetic data do not hold specific information about the original records, thus preserving confidentiality. At the same time, the multivariate distribution and correlation across variables, as well as the mortality risks, resemble those of the original data, so the results of descriptive and inferential analyses are similar to those in the original assessments. However, as noted above, the data are used only for illustrative purposes, and they must not be used to test other research hypotheses.

  18. p

    Data from: Transformer models trained on MIMIC-III to generate synthetic...

    • physionet.org
    Updated May 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Amin-Nejad; Julia Ive; Sumithra Velupillai (2020). Transformer models trained on MIMIC-III to generate synthetic patient notes [Dataset]. http://doi.org/10.13026/m34x-fq90
    Explore at:
    Dataset updated
    May 27, 2020
    Authors
    Ali Amin-Nejad; Julia Ive; Sumithra Velupillai
    License

    https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts

    Description

    Natural Language Processing can help to unlock knowledge in the vast troves of unstructured clinical data that are collected during patient care. Patient confidentiality presents a barrier to the sharing and analysis of such data, however, meaning that only small, fragmented and sequestered datasets are available for research. To help side-step this roadblock, we explore the use of Transformer models for the generation of synthetic notes. We demonstrate how models trained on notes from the MIMIC-III clinical database can be used to generate synthetic data with potential to support downstream research studies. We release these trained models to the research community to stimulate further research in this area.

  19. Synthetic Data for Khmer Word Detection

    • kaggle.com
    zip
    Updated Oct 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chanveasna ENG (2025). Synthetic Data for Khmer Word Detection [Dataset]. https://www.kaggle.com/datasets/veasnaecevilsna/synthetic-data-for-khmer-word-detection
    Explore at:
    zip(8863660119 bytes)Available download formats
    Dataset updated
    Oct 12, 2025
    Authors
    Chanveasna ENG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Synthetic Data for Khmer Word Detection

    This dataset contains 10,000 synthetic images and corresponding bounding box labels for training object detection models to detect Khmer words.

    The dataset is generated using a custom tool designed to create diverse and realistic training data for computer vision tasks, especially where real annotated data is scarce.

    ✨ Highlights

    • 100,000 images (.png) with random backgrounds and styles.
    • Bounding boxes provided in YOLO (.txt) and Pascal VOC (.xml) formats.
    • 50+ real background images + unlimited random background colors.
    • 250+ different Khmer fonts.
    • Randomized effects: brightness, contrast, blur, color jitter, and more.
    • Wide variety of text sizes, positions, and layouts.

    📂 Folder Structure

    /
    ├── synthetic_images/   # Synthetic images (.png)
    ├── synthetic_labels/   # YOLO format labels (.txt)
    ├── synthetic_xml_labels/ # Pascal VOC format labels (.xml)
    

    Each image has corresponding .txt and .xml files with the same filename.

    📏 Annotation Formats

    • YOLO Format (.txt):
      Each line represents a word, with format: class_id center_x center_y width height All values are normalized between 0 and 1.
      Example: 0 0.235 0.051 0.144 0.081

    • Pascal VOC Format (.xml):
      Standard XML structure containing image metadata and bounding box coordinates (absolute pixel values).
      Example: ```xml

    🖼️ Image Samples

    Each image contains random Khmer words placed naturally over backgrounds, with different font styles, sizes, and visual effects.
    The dataset was carefully generated to simulate real-world challenges like:

    • Different lighting conditions
    • Different text sizes
    • Motion blur and color variations

    🧠 Use Cases

    • Train YOLOv5, YOLOv8, EfficientDet, and other object detection models.
    • Fine-tune OCR (Optical Character Recognition) systems for Khmer language.
    • Research on low-resource language computer vision tasks.
    • Data augmentation for scene text detection.

    ⚙️ How It Was Generated

    1. A random real-world background or random color is chosen.
    2. Random Khmer words are selected from a large cleaned text file.
    3. Words are rendered with random font, size, color, spacing, and position.
    4. Image effects like motion blur and color jitter are randomly applied.
    5. Bounding boxes are automatically generated for each word.

    🧹 Data Cleaning

    • Words were sourced from a cleaned Khmer corpus to avoid duplicates and garbage data.
    • Fonts were tested to make sure they render Khmer characters properly.

    📢 Important Notes

    • This dataset is synthetic. While it simulates real-world conditions, it may not fully replace real-world labeled data for final model evaluation.
    • All labels assume one class only (i.e., "word" = class_id 0).

    ❤️ Credits

    📈 Future Updates

    We plan to release:

    • Datasets with rotated bounding boxes for detecting skewed text.
    • More realistic mixing of real-world backgrounds and synthetic text.
    • Advanced distortions (e.g., handwriting-like simulation).

    Stay tuned!

    📜 License

    This project is licensed under MIT license.

    Please credit the original authors when using this data and provide a link to this dataset.

    ✉️ Contact

    If you have any questions or want to collaborate, feel free to reach out:

  20. G

    Synthetic Data Generation Engine Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Synthetic Data Generation Engine Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/synthetic-data-generation-engine-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Data Generation Engine Market Outlook



    According to our latest research, the global Synthetic Data Generation Engine market size reached USD 1.42 billion in 2024, reflecting a rapidly expanding sector driven by the escalating demand for advanced data solutions. The market is expected to achieve a robust CAGR of 37.8% from 2025 to 2033, propelling it to an estimated value of USD 21.8 billion by 2033. This exceptional growth is primarily fueled by the increasing need for high-quality, privacy-compliant datasets to train artificial intelligence and machine learning models in sectors such as healthcare, BFSI, and IT & telecommunications. As per our latest research, the proliferation of data-centric applications and stringent data privacy regulations are acting as significant catalysts for the adoption of synthetic data generation engines globally.



    One of the key growth factors for the synthetic data generation engine market is the mounting emphasis on data privacy and compliance with regulations such as GDPR and CCPA. Organizations are under immense pressure to protect sensitive customer information while still deriving actionable insights from data. Synthetic data generation engines offer a compelling solution by creating artificial datasets that mimic real-world data without exposing personally identifiable information. This not only ensures compliance but also enables organizations to accelerate their AI and analytics initiatives without the constraints of data access or privacy risks. The rising awareness among enterprises about the benefits of synthetic data in mitigating data breaches and regulatory penalties is further propelling market expansion.



    Another significant driver is the exponential growth in artificial intelligence and machine learning adoption across industries. Training robust and unbiased models requires vast and diverse datasets, which are often difficult to obtain due to privacy concerns, labeling costs, or data scarcity. Synthetic data generation engines address this challenge by providing scalable and customizable datasets for various applications, including machine learning model training, data augmentation, and fraud detection. The ability to generate balanced and representative data has become a critical enabler for organizations seeking to improve model accuracy, reduce bias, and accelerate time-to-market for AI solutions. This trend is particularly pronounced in sectors such as healthcare, automotive, and finance, where data diversity and privacy are paramount.



    Furthermore, the increasing complexity of data types and the need for multi-modal data synthesis are shaping the evolution of the synthetic data generation engine market. With the proliferation of unstructured data in the form of images, videos, audio, and text, organizations are seeking advanced engines capable of generating synthetic data across multiple modalities. This capability enhances the versatility of synthetic data solutions, enabling their application in emerging use cases such as autonomous vehicle simulation, natural language processing, and biometric authentication. The integration of generative AI techniques, such as GANs and diffusion models, is further enhancing the realism and utility of synthetic datasets, expanding the addressable market for synthetic data generation engines.



    From a regional perspective, North America continues to dominate the synthetic data generation engine market, accounting for the largest revenue share in 2024. The region's leadership is attributed to the strong presence of technology giants, early adoption of AI and machine learning, and stringent regulatory frameworks. Europe follows closely, driven by robust data privacy regulations and increasing investments in digital transformation. Meanwhile, the Asia Pacific region is emerging as the fastest-growing market, supported by expanding IT infrastructure, government-led AI initiatives, and a burgeoning startup ecosystem. Latin America and the Middle East & Africa are also witnessing gradual adoption, fueled by the growing recognition of synthetic data's potential to overcome data access and privacy challenges.





    &l

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin (2025). Data Sheet 2_Large language models generating synthetic clinical datasets: a feasibility and comparative analysis with real-world perioperative data.xlsx [Dataset]. http://doi.org/10.3389/frai.2025.1533508.s002

Data Sheet 2_Large language models generating synthetic clinical datasets: a feasibility and comparative analysis with real-world perioperative data.xlsx

Related Article
Explore at:
xlsxAvailable download formats
Dataset updated
Feb 5, 2025
Dataset provided by
Frontiers
Authors
Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.

Search
Clear search
Close search
Google apps
Main menu