67 datasets found
  1. LLM prompts in the context of machine learning

    • kaggle.com
    Updated Jul 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jordan Nelson (2024). LLM prompts in the context of machine learning [Dataset]. https://www.kaggle.com/datasets/jordanln/llm-prompts-in-the-context-of-machine-learning
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 1, 2024
    Dataset provided by
    Kaggle
    Authors
    Jordan Nelson
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is an extension of my previous work on creating a dataset for natural language processing tasks. It leverages binary representation to characterise various machine learning models. The attributes in the dataset are derived from a dictionary, which was constructed from a corpus of prompts typically provided to a large language model (LLM). These prompts reference specific machine learning algorithms and their implementations. For instance, consider a user asking an LLM or a generative AI to create a Multi-Layer Perceptron (MLP) model for a particular application. By applying this concept to multiple machine learning models, we constructed our corpus. This corpus was then transformed into the current dataset using a bag-of-words approach. In this dataset, each attribute corresponds to a word from our dictionary, represented as a binary value: 1 indicates the presence of the word in a given prompt, and 0 indicates its absence. At the end of each entry, there is a label. Each entry in the dataset pertains to a single class, where each class represents a distinct machine learning model or algorithm. This dataset is intended for multi-class classification tasks, not multi-label classification, as each entry is associated with only one label and does not belong to multiple labels simultaneously. This dataset has been utilised with a Convolutional Neural Network (CNN) using the Keras Automodel API, achieving impressive training and testing accuracy rates exceeding 97%. Post-training, the model's predictive performance was rigorously evaluated in a production environment, where it continued to demonstrate exceptional accuracy. For this evaluation, we employed a series of questions, which are listed below. These questions were intentionally designed to be similar to ensure that the model can effectively distinguish between different machine learning models, even when the prompts are closely related.

    KNN How would you create a KNN model to classify emails as spam or not spam based on their content and metadata? How could you implement a KNN model to classify handwritten digits using the MNIST dataset? How would you use a KNN approach to build a recommendation system for suggesting movies to users based on their ratings and preferences? How could you employ a KNN algorithm to predict the price of a house based on features such as its location, size, and number of bedrooms etc? Can you create a KNN model for classifying different species of flowers based on their petal length, petal width, sepal length, and sepal width? How would you utilise a KNN model to predict the sentiment (positive, negative, or neutral) of text reviews or comments? Can you create a KNN model for me that could be used in malware classification? Can you make me a KNN model that can detect a network intrusion when looking at encrypted network traffic? Can you make a KNN model that would predict the stock price of a given stock for the next week? Can you create a KNN model that could be used to detect malware when using a dataset relating to certain permissions a piece of software may have access to?

    Decision Tree Can you describe the steps involved in building a decision tree model to classify medical images as malignant or benign for cancer diagnosis and return a model for me? How can you utilise a decision tree approach to develop a model for classifying news articles into different categories (e.g., politics, sports, entertainment) based on their textual content? What approach would you take to create a decision tree model for recommending personalised university courses to students based on their academic strengths and weaknesses? Can you describe how to create a decision tree model for identifying potential fraud in financial transactions based on transaction history, user behaviour, and other relevant data? In what ways might you apply a decision tree model to classify customer complaints into different categories determining the severity of language used? Can you create a decision tree classifier for me? Can you make me a decision tree model that will help me determine the best course of action across a given set of strategies? Can you create a decision tree model for me that can recommend certain cars to customers based on their preferences and budget? How can you make a decision tree model that will predict the movement of star constellations in the sky based on data provided by the NASA website? How do I create a decision tree for time-series forecasting?

    Random Forest Can you describe the steps involved in building a random forest model to classify different types of anomalies in network traffic data for cybersecurity purposes and return the code for me? In what ways could you implement a random forest model to predict the severity of traffic congestion in urban areas based on historical traffic patterns, weather...

  2. CO2 emissions of LLMs during training in 2022 (in CO2 eq tonnes)

    • statista.com
    Updated Feb 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). CO2 emissions of LLMs during training in 2022 (in CO2 eq tonnes) [Dataset]. https://www.statista.com/statistics/1384418/co2-emissions-when-training-llm-models/
    Explore at:
    Dataset updated
    Feb 8, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    Energy consumption of artificial intelligence (AI) models in training is considerable, with both GPT-3, the original release of the current iteration of OpenAI's popular ChatGPT, and Gopher consuming well over a thousand megawatt hours of energy simply for training. As this is only for the training model it is likely that the energy consumption for the entire usage and lifetime of GPT-3 and other large language models (LLMs) is significantly higher.

  3. F

    Japanese Closed Ended Question Answer Text Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Japanese Closed Ended Question Answer Text Dataset [Dataset]. https://www.futurebeeai.com/dataset/prompt-response-dataset/japanese-closed-ended-question-answer-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    The Japanese Closed-Ended Question Answering Dataset is a meticulously curated collection of 5000 comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and question-answering models in the Japanese language, advancing the field of artificial intelligence.

    Dataset Content:

    This closed-ended QA dataset comprises a diverse set of context paragraphs and questions paired with corresponding answers in Japanese. There is a context paragraph given for each question to get the answer from. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.

    Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native Japanese people, and references were taken from diverse sources like books, news articles, websites, web forums, and other reliable references.

    This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.

    Question Diversity:

    To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. The QA dataset also contains questions with constraints, which makes it even more useful for LLM training.

    Answer Formats:

    To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraphs types of answers. The answers contain text strings, numerical values, date and time formats as well. Such diversity strengthens the language model's ability to generate coherent and contextually appropriate answers.

    Data Format and Annotation Details:

    This fully labeled Japanese Closed-Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as a unique id, context paragraph, context reference link, question, question type, question complexity, question category, domain, prompt type, answer, answer type, and rich text presence.

    Quality and Accuracy:

    The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.

    The Japanese versions is grammatically accurate without any spelling or grammatical errors. No toxic or harmful content is used while building this dataset.

    Continuous Updates and Customization:

    The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.

    License:

    The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy Japanese Closed-Ended Question Answer Dataset to enhance the language understanding capabilities of their generative AI models, improve response generation, and explore new approaches to NLP question-answering tasks.

  4. i

    Prompt Datasets to Evaluate LLM Safety

    • ieee-dataport.org
    Updated May 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hima Thota (2024). Prompt Datasets to Evaluate LLM Safety [Dataset]. https://ieee-dataport.org/documents/prompt-datasets-evaluate-llm-safety
    Explore at:
    Dataset updated
    May 19, 2024
    Authors
    Hima Thota
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The rise in Generative Artificial Intelligence technology through applications like ChatGPT has increased awareness about the presence of biases within machine learning models themselves. The data that Large Language Models (LLMs) are trained upon contain inherent biases as they reflect societal biases and stereotypes. This can lead to the further propagation of biases. In this paper

  5. f

    Implications for future LLM research.

    • plos.figshare.com
    xls
    Updated Jan 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jack Gallifant; Amelia Fiske; Yulia A. Levites Strekalova; Juan S. Osorio-Valencia; Rachael Parke; Rogers Mwavu; Nicole Martinez; Judy Wawira Gichoya; Marzyeh Ghassemi; Dina Demner-Fushman; Liam G. McCoy; Leo Anthony Celi; Robin Pierce (2024). Implications for future LLM research. [Dataset]. http://doi.org/10.1371/journal.pdig.0000417.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 18, 2024
    Dataset provided by
    PLOS Digital Health
    Authors
    Jack Gallifant; Amelia Fiske; Yulia A. Levites Strekalova; Juan S. Osorio-Valencia; Rachael Parke; Rogers Mwavu; Nicole Martinez; Judy Wawira Gichoya; Marzyeh Ghassemi; Dina Demner-Fushman; Liam G. McCoy; Leo Anthony Celi; Robin Pierce
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The study provides a comprehensive review of OpenAI’s Generative Pre-trained Transformer 4 (GPT-4) technical report, with an emphasis on applications in high-risk settings like healthcare. A diverse team, including experts in artificial intelligence (AI), natural language processing, public health, law, policy, social science, healthcare research, and bioethics, analyzed the report against established peer review guidelines. The GPT-4 report shows a significant commitment to transparent AI research, particularly in creating a systems card for risk assessment and mitigation. However, it reveals limitations such as restricted access to training data, inadequate confidence and uncertainty estimations, and concerns over privacy and intellectual property rights. Key strengths identified include the considerable time and economic investment in transparent AI research and the creation of a comprehensive systems card. On the other hand, the lack of clarity in training processes and data raises concerns about encoded biases and interests in GPT-4. The report also lacks confidence and uncertainty estimations, crucial in high-risk areas like healthcare, and fails to address potential privacy and intellectual property issues. Furthermore, this study emphasizes the need for diverse, global involvement in developing and evaluating large language models (LLMs) to ensure broad societal benefits and mitigate risks. The paper presents recommendations such as improving data transparency, developing accountability frameworks, establishing confidence standards for LLM outputs in high-risk settings, and enhancing industry research review processes. It concludes that while GPT-4’s report is a step towards open discussions on LLMs, more extensive interdisciplinary reviews are essential for addressing bias, harm, and risk concerns, especially in high-risk domains. The review aims to expand the understanding of LLMs in general and highlights the need for new reflection forms on how LLMs are reviewed, the data required for effective evaluation, and addressing critical issues like bias and risk.

  6. L

    Large Language Models (LLMs) Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Large Language Models (LLMs) Software Report [Dataset]. https://www.datainsightsmarket.com/reports/large-language-models-llms-software-529420
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 21, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Large Language Models (LLM) software market is experiencing explosive growth, driven by increasing demand for advanced AI capabilities across diverse sectors. While precise market sizing data was not provided, observing current market trends and the involvement of major tech players like Microsoft, Google, and OpenAI suggests a substantial market value. Considering the rapid advancements in LLM technology and its integration into various applications, a conservative estimate would place the 2025 market size at approximately $15 billion USD, with a Compound Annual Growth Rate (CAGR) of 35% projected through 2033. This growth is fueled by several key drivers: the escalating need for automated customer service, efficient content creation, and improved data analysis across large enterprises and SMEs. The rising adoption of cloud-based LLMs, offering scalability and cost-effectiveness, is a significant trend. Furthermore, the increasing availability of powerful and specialized hardware like GPUs accelerates model training and deployment, contributing to market expansion. However, the market also faces certain restraints. High development and implementation costs can hinder adoption, especially for smaller businesses. Data privacy concerns and the potential for misuse of LLMs are also significant challenges requiring robust regulatory frameworks and ethical guidelines. Market segmentation reveals strong demand from large enterprises seeking to integrate LLMs into their core operations, while SMEs are gradually adopting these technologies for targeted applications. The competition is fierce, with established tech giants alongside innovative startups vying for market share. The continued innovation in model architectures, training techniques, and application development will be crucial in shaping the future of this dynamic market. Geographical distribution shows a strong initial concentration in North America and Europe, but rapid growth is anticipated in Asia Pacific regions, particularly India and China, driven by increasing digitalization and technological investments.

  7. F

    German Open Ended Question Answer Text Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). German Open Ended Question Answer Text Dataset [Dataset]. https://www.futurebeeai.com/dataset/prompt-response-dataset/german-open-ended-question-answer-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    The German Open-Ended Question Answering Dataset is a meticulously curated collection of comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and Question-answering models in the German language, advancing the field of artificial intelligence.

    Dataset Content:

    This QA dataset comprises a diverse set of open-ended questions paired with corresponding answers in German. There is no context paragraph given to choose an answer from, and each question is answered without any predefined context content. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.

    Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native German people, and references were taken from diverse sources like books, news articles, websites, and other reliable references.

    This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.

    Question Diversity:

    To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. Additionally, questions are further classified into fact-based and opinion-based categories, creating a comprehensive variety. The QA dataset also contains the question with constraints and persona restrictions, which makes it even more useful for LLM training.

    Answer Formats:

    To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraph types of answers. The answer contains text strings, numerical values, date and time formats as well. Such diversity strengthens the Language model's ability to generate coherent and contextually appropriate answers.

    Data Format and Annotation Details:

    This fully labeled German Open Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as id, language, domain, question_length, prompt_type, question_category, question_type, complexity, answer_type, rich_text.

    Quality and Accuracy:

    The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.

    Both the question and answers in German are grammatically accurate without any word or grammatical errors. No copyrighted, toxic, or harmful content is used while building this dataset.

    Continuous Updates and Customization:

    The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.

    License:

    The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy German Open Ended Question Answer Dataset to enhance the language understanding capabilities of their generative ai models, improve response generation, and explore new approaches to NLP question-answering tasks.

  8. G

    Generative AI for Business Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Generative AI for Business Report [Dataset]. https://www.datainsightsmarket.com/reports/generative-ai-for-business-1405011
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    May 14, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Generative AI for Business market is experiencing explosive growth, driven by the increasing adoption of AI-powered solutions across diverse sectors. While precise market sizing requires proprietary data, considering a conservative estimate based on reported market sizes for related AI segments and the rapid advancement of generative AI capabilities, we can project a 2025 market value of approximately $15 billion. This market is projected to achieve a Compound Annual Growth Rate (CAGR) of 35% from 2025 to 2033, reaching an estimated $150 billion by 2033. Key drivers include the automation of creative tasks, enhanced customer experiences through personalized content and services, and improvements in operational efficiency. The automotive industry is leveraging generative AI for design optimization and autonomous driving system development, while the natural sciences are benefiting from accelerated drug discovery and materials science research. Entertainment is seeing the rise of AI-generated content, and the "Others" segment encompasses a wide range of applications from finance to healthcare. Within the types of generative AI, language generation currently holds the largest market share, but visual and synthetic data generation are rapidly gaining traction. Growth is propelled by advancements in deep learning models, particularly large language models (LLMs), and the increasing availability of high-quality training data. However, challenges remain. Ethical concerns around bias in AI models, data privacy issues, and the need for robust regulatory frameworks are significant restraints. Furthermore, the high cost of development and implementation, along with the requirement for specialized expertise, can limit adoption in smaller businesses. Despite these challenges, the long-term outlook for the Generative AI for Business market remains exceptionally positive, with significant opportunities for innovation and market expansion across various applications and geographical regions. North America and Europe currently dominate the market, but Asia-Pacific is poised for rapid growth due to increasing digitalization and technological advancements. Competition is fierce, with major technology companies like Google, OpenAI, Meta, Microsoft, and smaller specialized players vying for market share.

  9. A

    AI Training Dataset Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Feb 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). AI Training Dataset Market Report [Dataset]. https://www.marketresearchforecast.com/reports/ai-training-dataset-market-5125
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Recent developments include: December 2023: TELUS International, a digital customer experience innovator in AI and content moderation, launched Experts Engine, a fully managed, technology-driven, on-demand expert acquisition solution for generative AI models. It programmatically brings together human expertise and Gen AI tasks, such as data collection, data generation, annotation, and validation, to build high-quality training sets for the most challenging master models, including the Large Language Model (LLM)., September 2023: Cogito Tech, a player in data labeling for AI development, launched an appeal to AI vendors globally by introducing a “Nutrition Facts” style model for an AI training dataset known as DataSum. The company has been actively encouraging a more Ethical approach to AI, ML, and employment practices., June 2023: Sama, a provider of data annotation solutions that power AI models, launched Platform 2.0, a new computer vision platform designed to reduce the risk of ML algorithm failure in AI training models., May 2023: Appen Limited, a player in AI lifecycle data, announced a partnership with Reka AI, an emerging AI company making its way from stealth. This partnership aims to combine Appen's data services with Reka's proprietary multimodal language models., March 2022: Appen Limited invested in Mindtech, a synthetic data company focusing on the development of training data for AI computer vision models. This investment is part of Appen's strategy to invest capital in product-led businesses generating new and emerging sources of training data for supporting the AI lifecycle.. Key drivers for this market are: Rapid Adoption of AI Technologies for Training Datasets to Aid Market Growth. Potential restraints include: Lack of Skilled AI Professionals and Data Privacy Concerns to Hinder Market Expansion. Notable trends are: Rising Usage of Synthetic Data for Enhancing Authentication to Propel Market Growth.

  10. F

    Polish Open Ended Question Answer Text Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Polish Open Ended Question Answer Text Dataset [Dataset]. https://www.futurebeeai.com/dataset/prompt-response-dataset/polish-open-ended-question-answer-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    The Polish Open-Ended Question Answering Dataset is a meticulously curated collection of comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and Question-answering models in the Polish language, advancing the field of artificial intelligence.

    Dataset Content:

    This QA dataset comprises a diverse set of open-ended questions paired with corresponding answers in Polish. There is no context paragraph given to choose an answer from, and each question is answered without any predefined context content. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.

    Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native Polish people, and references were taken from diverse sources like books, news articles, websites, and other reliable references.

    This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.

    Question Diversity:

    To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. Additionally, questions are further classified into fact-based and opinion-based categories, creating a comprehensive variety. The QA dataset also contains the question with constraints and persona restrictions, which makes it even more useful for LLM training.

    Answer Formats:

    To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraph types of answers. The answer contains text strings, numerical values, date and time formats as well. Such diversity strengthens the Language model's ability to generate coherent and contextually appropriate answers.

    Data Format and Annotation Details:

    This fully labeled Polish Open Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as id, language, domain, question_length, prompt_type, question_category, question_type, complexity, answer_type, rich_text.

    Quality and Accuracy:

    The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.

    Both the question and answers in Polish are grammatically accurate without any word or grammatical errors. No copyrighted, toxic, or harmful content is used while building this dataset.

    Continuous Updates and Customization:

    The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.

    License:

    The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy Polish Open Ended Question Answer Dataset to enhance the language understanding capabilities of their generative ai models, improve response generation, and explore new approaches to NLP question-answering tasks.

  11. G

    Generative AI Infrastructure Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Generative AI Infrastructure Software Report [Dataset]. https://www.datainsightsmarket.com/reports/generative-ai-infrastructure-software-528950
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 27, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Generative AI Infrastructure Software market is experiencing explosive growth, fueled by the increasing adoption of generative AI technologies across various industries. While precise market sizing data wasn't provided, considering the rapid advancements and significant investments in this sector, a reasonable estimate for the 2025 market size could be around $5 billion, growing at a Compound Annual Growth Rate (CAGR) of 35% between 2025 and 2033. This robust growth is primarily driven by the need for scalable and efficient infrastructure to support the computationally intensive tasks associated with training and deploying large language models (LLMs) and other generative AI applications. Key drivers include the rising demand for personalized customer experiences, automation of complex tasks, and the growing need for data-driven decision-making across various business functions. Furthermore, the market is witnessing a shift towards cloud-based solutions due to their scalability, cost-effectiveness, and ease of deployment. This trend is further amplified by the availability of robust cloud platforms offered by major players like AWS, Microsoft Azure, and Google Cloud Platform, providing pre-built infrastructure and tools for generative AI development. However, the market also faces certain restraints. These include the high initial investment costs associated with implementing and maintaining generative AI infrastructure, the complexity of managing and securing large datasets, and concerns about data privacy and ethical implications. The segment comprising large enterprises is currently the dominant revenue contributor, but the small and medium-sized enterprises (SME) segment is expected to exhibit significant growth in the coming years as cloud-based solutions become more accessible and affordable. The competitive landscape is highly dynamic, with established tech giants like Microsoft and AWS competing with specialized generative AI infrastructure providers like Vertex AI and Clarifai, along with a plethora of emerging startups. The diversity of solutions, ranging from cloud-based platforms to on-premise deployments, caters to varied needs and budgets. The geographic distribution of the market is broad, with North America and Europe currently leading, but rapid growth is anticipated in the Asia-Pacific region, particularly in countries like China and India, driven by increasing digitalization and technological adoption.

  12. Generative Artificial Intelligence (AI) Market Analysis, Size, and Forecast...

    • technavio.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio, Generative Artificial Intelligence (AI) Market Analysis, Size, and Forecast 2025-2029: North America (Canada and Mexico), APAC (China, India, Japan, South Korea), Europe (France, Germany, Italy, Spain, The Netherlands, UK), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/generative-ai-market-analysis
    Explore at:
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    Generative Artificial Intelligence (AI) Market Size 2025-2029

    The generative artificial intelligence (AI) market size is forecast to increase by USD 185.82 billion at a CAGR of 59.4% between 2024 and 2029.

    The market is experiencing significant growth due to the increasing demand for AI-generated content. This trend is being driven by the accelerated deployment of large language models (LLMs), which are capable of generating human-like text, music, and visual content. However, the market faces a notable challenge: the lack of quality data. Despite the promising advancements in AI technology, the availability and quality of data remain a significant obstacle. To effectively train and improve AI models, high-quality, diverse, and representative data are essential. The scarcity and biases in existing data sets can limit the performance and generalizability of AI systems, posing challenges for businesses seeking to capitalize on the market opportunities presented by generative AI.
    Companies must prioritize investing in data collection, curation, and ethics to address this challenge and ensure their AI solutions deliver accurate, unbiased, and valuable results. By focusing on data quality, businesses can navigate this challenge and unlock the full potential of generative AI in various industries, including content creation, customer service, and research and development.
    

    What will be the Size of the Generative Artificial Intelligence (AI) Market during the forecast period?

    Request Free Sample

    The market continues to evolve, driven by advancements in foundation models and large language models. These models undergo constant refinement through prompt engineering and model safety measures, ensuring they deliver personalized experiences for various applications. Research and development in open-source models, language modeling, knowledge graph, product design, and audio generation propel innovation. Neural networks, machine learning, and deep learning techniques fuel data analysis, while model fine-tuning and predictive analytics optimize business intelligence. Ethical considerations, responsible AI, and model explainability are integral parts of the ongoing conversation.
    Model bias, data privacy, and data security remain critical concerns. Transformer models and conversational AI are transforming customer service, while code generation, image generation, text generation, video generation, and topic modeling expand content creation possibilities. Ongoing research in natural language processing, sentiment analysis, and predictive analytics continues to shape the market landscape.
    

    How is this Generative Artificial Intelligence (AI) Industry segmented?

    The generative artificial intelligence (AI) industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Component
    
      Software
      Services
    
    
    Technology
    
      Transformers
      Generative adversarial networks (GANs)
      Variational autoencoder (VAE)
      Diffusion networks
    
    
    Application
    
      Computer Vision
      NLP
      Robotics & Automation
      Content Generation
      Chatbots & Intelligent Virtual Assistants
      Predictive Analytics
      Others
    
    
    End-Use
    
      Media & Entertainment
      BFSI
      IT & Telecommunication
      Healthcare
      Automotive & Transportation
      Gaming
      Others
    
    
    Model
    
      Large Language Models
      Image & Video Generative Models
      Multi-modal Generative Models
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        Italy
        Spain
        The Netherlands
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        India
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Component Insights

    The software segment is estimated to witness significant growth during the forecast period.

    Generative Artificial Intelligence (AI) is revolutionizing the tech landscape with its ability to create unique and personalized content. Foundation models, such as GPT-4, employ deep learning techniques to generate human-like text, while large language models fine-tune these models for specific applications. Prompt engineering and model safety are crucial in ensuring accurate and responsible AI usage. Businesses leverage these technologies for various purposes, including content creation, customer service, and product design. Research and development in generative AI is ongoing, with open-source models and transformer models leading the way. Neural networks and deep learning power these models, enabling advanced capabilities like audio generation, data analysis, and predictive analytics.

    Natural language processing, sentiment analysis, and conversational AI are essential applications, enhancing business intelligence and customer experiences. Ethica

  13. G

    Generative AI Chipset Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Generative AI Chipset Report [Dataset]. https://www.datainsightsmarket.com/reports/generative-ai-chipset-163124
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Jun 1, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Generative AI Chipset market is experiencing explosive growth, fueled by the increasing demand for advanced AI applications across various sectors. While precise market sizing data is unavailable, considering the rapid advancements in generative AI and the significant investments from major tech players like NVIDIA, Google, and AMD, a reasonable estimate for the 2025 market size could be placed at $5 billion. This represents a substantial increase from previous years, driven by factors such as the rising adoption of large language models (LLMs), the proliferation of generative AI applications in diverse fields (from healthcare and finance to entertainment and marketing), and the ongoing need for faster and more efficient chipsets to handle the immense computational demands. The Compound Annual Growth Rate (CAGR) for this period is estimated to be around 40%, reflecting a market primed for significant expansion throughout the forecast period (2025-2033). Key market drivers include the increasing availability of large datasets for training AI models, improvements in deep learning algorithms, and growing cloud computing infrastructure supporting AI workloads. However, market growth is not without its challenges. One primary restraint is the high cost of developing and deploying generative AI chipsets, particularly those featuring advanced architectures like specialized AI accelerators. The complex nature of these technologies necessitates substantial Research and Development (R&D) investments, limiting immediate accessibility for smaller companies. Another constraint involves potential ethical concerns related to generative AI, necessitating careful consideration of regulatory frameworks and responsible AI development practices. Further, the market is concentrated among a few major players; while this reflects the substantial technical expertise required, it also poses a potential barrier to entry for new competitors. Segment analysis would show a strong dominance of GPUs and specialized AI accelerators in the near term, with potential growth in neuromorphic and other emerging architectures in the long term. The forecast period will see intensified competition and potential consolidation among existing players, ultimately leading to further market evolution.

  14. f

    Data_Sheet_1_Advanced large language models and visualization tools for data...

    • frontiersin.figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jorge Valverde-Rebaza; Aram González; Octavio Navarro-Hinojosa; Julieta Noguez (2024). Data_Sheet_1_Advanced large language models and visualization tools for data analytics learning.csv [Dataset]. http://doi.org/10.3389/feduc.2024.1418006.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Frontiers
    Authors
    Jorge Valverde-Rebaza; Aram González; Octavio Navarro-Hinojosa; Julieta Noguez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionIn recent years, numerous AI tools have been employed to equip learners with diverse technical skills such as coding, data analysis, and other competencies related to computational sciences. However, the desired outcomes have not been consistently achieved. This study aims to analyze the perspectives of students and professionals from non-computational fields on the use of generative AI tools, augmented with visualization support, to tackle data analytics projects. The focus is on promoting the development of coding skills and fostering a deep understanding of the solutions generated. Consequently, our research seeks to introduce innovative approaches for incorporating visualization and generative AI tools into educational practices.MethodsThis article examines how learners perform and their perspectives when using traditional tools vs. LLM-based tools to acquire data analytics skills. To explore this, we conducted a case study with a cohort of 59 participants among students and professionals without computational thinking skills. These participants developed a data analytics project in the context of a Data Analytics short session. Our case study focused on examining the participants' performance using traditional programming tools, ChatGPT, and LIDA with GPT as an advanced generative AI tool.ResultsThe results shown the transformative potential of approaches based on integrating advanced generative AI tools like GPT with specialized frameworks such as LIDA. The higher levels of participant preference indicate the superiority of these approaches over traditional development methods. Additionally, our findings suggest that the learning curves for the different approaches vary significantly. Since learners encountered technical difficulties in developing the project and interpreting the results. Our findings suggest that the integration of LIDA with GPT can significantly enhance the learning of advanced skills, especially those related to data analytics. We aim to establish this study as a foundation for the methodical adoption of generative AI tools in educational settings, paving the way for more effective and comprehensive training in these critical areas.DiscussionIt is important to highlight that when using general-purpose generative AI tools such as ChatGPT, users must be aware of the data analytics process and take responsibility for filtering out potential errors or incompleteness in the requirements of a data analytics project. These deficiencies can be mitigated by using more advanced tools specialized in supporting data analytics tasks, such as LIDA with GPT. However, users still need advanced programming knowledge to properly configure this connection via API. There is a significant opportunity for generative AI tools to improve their performance, providing accurate, complete, and convincing results for data analytics projects, thereby increasing user confidence in adopting these technologies. We hope this work underscores the opportunities and needs for integrating advanced LLMs into educational practices, particularly in developing computational thinking skills.

  15. F

    Hindi Brainstorming Prompt & Response Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Hindi Brainstorming Prompt & Response Dataset [Dataset]. https://www.futurebeeai.com/dataset/prompt-response-dataset/hindi-brainstorming-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Welcome to the Hindi Brainstorming Prompt-Response Dataset, a meticulously curated collection of 2000 prompt and response pairs. This dataset is a valuable resource for enhancing the creative and generative abilities of Language Models (LMs), a critical aspect in advancing generative AI.

    Dataset Content:

    This brainstorming dataset comprises a diverse set of prompts and responses where the prompt contains instruction, context, constraints, and restrictions while completion contains the most accurate response list for the given prompt. Both these prompts and completions are available in Hindi language.

    These prompt and completion pairs cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more. Each prompt is accompanied by a response, providing valuable information and insights to enhance the language model training process. Both the prompt and response were manually curated by native Hindi people, and references were taken from diverse sources like books, news articles, websites, and other reliable references.

    This dataset encompasses various prompt types, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. Additionally, you'll find prompts and responses containing rich text elements, such as tables, code, JSON, etc., all in proper markdown format.

    Prompt Diversity:

    To ensure diversity, our brainstorming dataset features prompts of varying complexity levels, ranging from easy to medium and hard. The prompts also vary in length, including short, medium, and long prompts, providing a comprehensive range. Furthermore, the dataset includes prompts with constraints and persona restrictions, making it exceptionally valuable for LLM training.

    Response Formats:

    Our dataset accommodates diverse learning experiences, offering responses across different domains depending on the prompt. For these brainstorming prompts, responses are generally provided in list format. These responses encompass text strings, numerical values, and dates, enhancing the language model's ability to generate reliable, coherent, and contextually appropriate answers.

    Data Format and Annotation Details:

    This fully labeled Hindi Brainstorming Prompt Completion Dataset is available in both JSON and CSV formats. It includes comprehensive annotation details, including a unique ID, prompt, prompt type, prompt length, prompt complexity, domain, response, and the presence of rich text.

    Quality and Accuracy:

    Our dataset upholds the highest standards of quality and accuracy. Each prompt undergoes meticulous validation, and the corresponding responses are thoroughly verified. We prioritize inclusivity, ensuring that the dataset incorporates prompts and completions representing diverse perspectives and writing styles, maintaining an unbiased and discrimination-free stance.

    The Hindi version is grammatically accurate without any spelling or grammatical errors. No copyrighted, toxic, or harmful content is used during the construction of this dataset.

    Continuous Updates and Customization:

    The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. We continuously work to expand this dataset, ensuring its ongoing growth and relevance. Additionally, FutureBeeAI offers the flexibility to curate custom brainstorming prompt and completion datasets tailored to specific requirements, providing you with customization options.

    License:

    This dataset, created by FutureBeeAI, is now available for commercial use. Researchers, data scientists, and developers can leverage this fully labeled and ready-to-deploy Hindi Brainstorming Prompt-Completion Dataset to enhance the creative and accurate response generation capabilities of their generative AI models and explore new approaches to NLP tasks.

  16. D

    Data Science Platform Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Science Platform Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/data-science-platform-industry-12961
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 12, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Science Platform market is experiencing robust growth, projected to reach $10.15 billion in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 23.50% from 2025 to 2033. This expansion is driven by several key factors. The increasing availability and affordability of cloud computing resources are lowering the barrier to entry for organizations of all sizes seeking to leverage data science capabilities. Furthermore, the growing volume and complexity of data generated across various industries necessitates sophisticated platforms for efficient data processing, analysis, and model deployment. The rise of AI and machine learning further fuels demand, as organizations strive to gain competitive advantages through data-driven insights and automation. Strong demand from sectors like IT and Telecom, BFSI (Banking, Financial Services, and Insurance), and Retail & E-commerce are major contributors to market growth. The preference for cloud-based deployment models over on-premise solutions is also accelerating market expansion, driven by scalability, cost-effectiveness, and accessibility. Market segmentation reveals a diverse landscape. While large enterprises are currently major consumers, the increasing adoption of data science by small and medium-sized enterprises (SMEs) represents a significant growth opportunity. The platform offering segment is anticipated to maintain a substantial market share, driven by the need for comprehensive tools that integrate data ingestion, processing, modeling, and deployment capabilities. Geographically, North America and Europe are currently leading the market, but the Asia-Pacific region, particularly China and India, is poised for significant growth due to expanding digital economies and increasing investments in data science initiatives. Competitive intensity is high, with established players like IBM, SAS, and Microsoft competing alongside innovative startups like DataRobot and Databricks. This competitive landscape fosters innovation and further accelerates market expansion. Recent developments include: November 2023 - Stagwell announced a partnership with Google Cloud and SADA, a Google Cloud premier partner, to develop generative AI (gen AI) marketing solutions that support Stagwell agencies, client partners, and product development within the Stagwell Marketing Cloud (SMC). The partnership will help in harnessing data analytics and insights by developing and training a proprietary Stagwell large language model (LLM) purpose-built for Stagwell clients, productizing data assets via APIs to create new digital experiences for brands, and multiplying the value of their first-party data ecosystems to drive new revenue streams using Vertex AI and open source-based models., May 2023 - IBM launched a new AI and data platform, watsonx, it is aimed at allowing businesses to accelerate advanced AI usage with trusted data, speed and governance. IBM also introduced GPU-as-a-service, which is designed to support AI intensive workloads, with an AI dashboard to measure, track and help report on cloud carbon emissions. With watsonx, IBM offers an AI development studio with access to IBMcurated and trained foundation models and open-source models, access to a data store to gather and clean up training and tune data,. Key drivers for this market are: Rapid Increase in Big Data, Emerging Promising Use Cases of Data Science and Machine Learning; Shift of Organizations Toward Data-intensive Approach and Decisions. Potential restraints include: Lack of Skillset in Workforce, Data Security and Reliability Concerns. Notable trends are: Small and Medium Enterprises to Witness Major Growth.

  17. F

    Arabic Closed Ended Question Answer Text Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Arabic Closed Ended Question Answer Text Dataset [Dataset]. https://www.futurebeeai.com/dataset/prompt-response-dataset/arabic-closed-ended-question-answer-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    The Arabic Closed-Ended Question Answering Dataset is a meticulously curated collection of 5000 comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and question-answering models in the Arabic language, advancing the field of artificial intelligence.

    Dataset Content:

    This closed-ended QA dataset comprises a diverse set of context paragraphs and questions paired with corresponding answers in Arabic. There is a context paragraph given for each question to get the answer from. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.

    Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native Arabic people, and references were taken from diverse sources like books, news articles, websites, web forums, and other reliable references.

    This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.

    Question Diversity:

    To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. The QA dataset also contains questions with constraints, which makes it even more useful for LLM training.

    Answer Formats:

    To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraphs types of answers. The answers contain text strings, numerical values, date and time formats as well. Such diversity strengthens the language model's ability to generate coherent and contextually appropriate answers.

    Data Format and Annotation Details:

    This fully labeled Arabic Closed-Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as a unique id, context paragraph, context reference link, question, question type, question complexity, question category, domain, prompt type, answer, answer type, and rich text presence.

    Quality and Accuracy:

    The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.

    The Arabic versions is grammatically accurate without any spelling or grammatical errors. No toxic or harmful content is used while building this dataset.

    Continuous Updates and Customization:

    The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.

    License:

    The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy Arabic Closed-Ended Question Answer Dataset to enhance the language understanding capabilities of their generative AI models, improve response generation, and explore new approaches to NLP question-answering tasks.

  18. A

    AIGC Generates Algorithmic Models and Datasets Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). AIGC Generates Algorithmic Models and Datasets Report [Dataset]. https://www.datainsightsmarket.com/reports/aigc-generates-algorithmic-models-and-datasets-1391336
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jun 5, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The AIGC (AI-Generated Content) market for algorithmic models and datasets is experiencing rapid growth, driven by increasing demand for AI-powered solutions across various sectors. The market, while currently estimated at approximately $5 billion in 2025, is projected to expand significantly, exhibiting a robust Compound Annual Growth Rate (CAGR) of 35% from 2025 to 2033. This growth is fueled by several key factors: the proliferation of large language models (LLMs), advancements in deep learning techniques enabling more sophisticated model generation, and the increasing availability of high-quality training datasets. Companies like Meta, Baidu, and several Chinese technology firms are heavily invested in this space, competing to develop and deploy cutting-edge AIGC technologies. The market is segmented by model type (e.g., generative adversarial networks (GANs), transformers), dataset type (e.g., image, text, video), and application (e.g., natural language processing (NLP), computer vision). While data security and ethical concerns pose potential restraints, the overall market outlook remains extremely positive, driven by the relentless innovation in artificial intelligence. Further fueling this expansion is the increasing adoption of AIGC in diverse industries. Businesses are leveraging AIGC to automate content creation, personalize user experiences, and gain valuable insights from complex data sets. The ability of AIGC to generate synthetic data for training and testing purposes is also proving invaluable, particularly in scenarios where real-world data is scarce or expensive to acquire. The competitive landscape is dynamic, with both established tech giants and emerging startups vying for market share. Geographic distribution is likely skewed towards regions with advanced technological infrastructure and strong AI research capabilities, including North America, Europe, and East Asia. While regulatory hurdles and potential biases in AI-generated content require careful attention, the long-term growth trajectory for this segment of the AIGC market remains exceptionally strong, promising substantial economic and technological advancements.

  19. f

    Data Sheet 1_On the potential of agentic workflows for animal training plan...

    • frontiersin.figshare.com
    pdf
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jörg Schultz (2025). Data Sheet 1_On the potential of agentic workflows for animal training plan generation.pdf [Dataset]. http://doi.org/10.3389/fvets.2025.1563233.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset provided by
    Frontiers
    Authors
    Jörg Schultz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Effective animal training depends on well-structured training plans that ensure consistent progress and measurable outcomes. However, the creation of such plans is often time-intensive, repetitive, and detracts from hands-on training. Recent advancements in generative AI powered by large language models (LLMs) provide potential solutions but frequently fail to produce actionable, individualized plans tailored to specific contexts. This limitation is particularly significant given the diverse tasks performed by dogs–ranging from working roles in military and police operations to competitive sports–and the varying training philosophies among practitioners. To address these challenges, a modular agentic workflow framework is proposed, leveraging LLMs while mitigating their shortcomings. By decomposing the training plan generation process into specialized building blocks–autonomous agents that handle subtasks such as structuring progressions, ensuring welfare compliance, and adhering to team-specific standard operating procedures (SOPs)—this approach facilitates the creation of specific, actionable plans. The modular design further allows workflows to be tailored to the unique requirements of individual tasks and philosophies. As a proof of concept, a complete training plan generation workflow is presented, integrating these agents into a cohesive system. This framework prioritizes flexibility and adaptability, empowering trainers to create customized solutions while leveraging generative AI's capabilities. In summary, agentic workflows bridge the gap between cutting-edge technology and the practical, diverse needs of the animal training community. As such, they could form a crucial foundation for advancing computer-assisted animal training methodologies.

  20. F

    Finnish Open Ended Question Answer Text Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Finnish Open Ended Question Answer Text Dataset [Dataset]. https://www.futurebeeai.com/dataset/prompt-response-dataset/finnish-open-ended-question-answer-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    The Finnish Open-Ended Question Answering Dataset is a meticulously curated collection of comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and Question-answering models in the Finnish language, advancing the field of artificial intelligence.

    Dataset Content:

    This QA dataset comprises a diverse set of open-ended questions paired with corresponding answers in Finnish. There is no context paragraph given to choose an answer from, and each question is answered without any predefined context content. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.

    Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native Finnish people, and references were taken from diverse sources like books, news articles, websites, and other reliable references.

    This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.

    Question Diversity:

    To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. Additionally, questions are further classified into fact-based and opinion-based categories, creating a comprehensive variety. The QA dataset also contains the question with constraints and persona restrictions, which makes it even more useful for LLM training.

    Answer Formats:

    To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraph types of answers. The answer contains text strings, numerical values, date and time formats as well. Such diversity strengthens the Language model's ability to generate coherent and contextually appropriate answers.

    Data Format and Annotation Details:

    This fully labeled Finnish Open Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as id, language, domain, question_length, prompt_type, question_category, question_type, complexity, answer_type, rich_text.

    Quality and Accuracy:

    The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.

    Both the question and answers in Finnish are grammatically accurate without any word or grammatical errors. No copyrighted, toxic, or harmful content is used while building this dataset.

    Continuous Updates and Customization:

    The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.

    License:

    The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy Finnish Open Ended Question Answer Dataset to enhance the language understanding capabilities of their generative ai models, improve response generation, and explore new approaches to NLP question-answering tasks.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jordan Nelson (2024). LLM prompts in the context of machine learning [Dataset]. https://www.kaggle.com/datasets/jordanln/llm-prompts-in-the-context-of-machine-learning
Organization logo

LLM prompts in the context of machine learning

Chatbot prompts relating to Machine Learning models

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jul 1, 2024
Dataset provided by
Kaggle
Authors
Jordan Nelson
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

This dataset is an extension of my previous work on creating a dataset for natural language processing tasks. It leverages binary representation to characterise various machine learning models. The attributes in the dataset are derived from a dictionary, which was constructed from a corpus of prompts typically provided to a large language model (LLM). These prompts reference specific machine learning algorithms and their implementations. For instance, consider a user asking an LLM or a generative AI to create a Multi-Layer Perceptron (MLP) model for a particular application. By applying this concept to multiple machine learning models, we constructed our corpus. This corpus was then transformed into the current dataset using a bag-of-words approach. In this dataset, each attribute corresponds to a word from our dictionary, represented as a binary value: 1 indicates the presence of the word in a given prompt, and 0 indicates its absence. At the end of each entry, there is a label. Each entry in the dataset pertains to a single class, where each class represents a distinct machine learning model or algorithm. This dataset is intended for multi-class classification tasks, not multi-label classification, as each entry is associated with only one label and does not belong to multiple labels simultaneously. This dataset has been utilised with a Convolutional Neural Network (CNN) using the Keras Automodel API, achieving impressive training and testing accuracy rates exceeding 97%. Post-training, the model's predictive performance was rigorously evaluated in a production environment, where it continued to demonstrate exceptional accuracy. For this evaluation, we employed a series of questions, which are listed below. These questions were intentionally designed to be similar to ensure that the model can effectively distinguish between different machine learning models, even when the prompts are closely related.

KNN How would you create a KNN model to classify emails as spam or not spam based on their content and metadata? How could you implement a KNN model to classify handwritten digits using the MNIST dataset? How would you use a KNN approach to build a recommendation system for suggesting movies to users based on their ratings and preferences? How could you employ a KNN algorithm to predict the price of a house based on features such as its location, size, and number of bedrooms etc? Can you create a KNN model for classifying different species of flowers based on their petal length, petal width, sepal length, and sepal width? How would you utilise a KNN model to predict the sentiment (positive, negative, or neutral) of text reviews or comments? Can you create a KNN model for me that could be used in malware classification? Can you make me a KNN model that can detect a network intrusion when looking at encrypted network traffic? Can you make a KNN model that would predict the stock price of a given stock for the next week? Can you create a KNN model that could be used to detect malware when using a dataset relating to certain permissions a piece of software may have access to?

Decision Tree Can you describe the steps involved in building a decision tree model to classify medical images as malignant or benign for cancer diagnosis and return a model for me? How can you utilise a decision tree approach to develop a model for classifying news articles into different categories (e.g., politics, sports, entertainment) based on their textual content? What approach would you take to create a decision tree model for recommending personalised university courses to students based on their academic strengths and weaknesses? Can you describe how to create a decision tree model for identifying potential fraud in financial transactions based on transaction history, user behaviour, and other relevant data? In what ways might you apply a decision tree model to classify customer complaints into different categories determining the severity of language used? Can you create a decision tree classifier for me? Can you make me a decision tree model that will help me determine the best course of action across a given set of strategies? Can you create a decision tree model for me that can recommend certain cars to customers based on their preferences and budget? How can you make a decision tree model that will predict the movement of star constellations in the sky based on data provided by the NASA website? How do I create a decision tree for time-series forecasting?

Random Forest Can you describe the steps involved in building a random forest model to classify different types of anomalies in network traffic data for cybersecurity purposes and return the code for me? In what ways could you implement a random forest model to predict the severity of traffic congestion in urban areas based on historical traffic patterns, weather...

Search
Clear search
Close search
Google apps
Main menu