Facebook
TwitterTHIS RESOURCE IS NO LONGER IN SERVICE, documented August 29, 2016. Database containing structural annotations for the proteomes of just under 100 organisms. Using data derived from public databases of translated genomic sequences, representatives from the major branches of Life are included: Prokaryota, Eukaryota and Archaea. The annotations stored in the database may be accessed in a number of ways. The help page provides information on how to access the database. 3D-GENOMICS is now part of a larger project, called e-Protein. The project brings together similar databases at three sites: Imperial College London , University College London and the European Bioinformatics Institute . e-Protein''s mission statement is To provide a fully automated distributed pipeline for large-scale structural and functional annotation of all major proteomes via the use of cutting-edge computer GRID technologies. The following databases are incorporated: NRprot, SCOP, ASTRAL, PFAM, Prosite, taxonomy, COG The following eukaryotic genomes are incorporated: Anopheles gambiae, protein sequences from the mosquito genome; Arabidopsis thaliana, protein sequences from the Arabidopsis genome; Caenorhabditis briggsae, protein sequences from the C.briggsae genome; Caenorhabditis elegans protein sequences from the worm genome; Ciona intestinalis protein sequences from the sea squirt genome; Danio rerio protein sequences from the zebrafish genome; Drosophila melanogaster protein sequences from the fruitfly genome; Encephalitozoon cuniculi protein sequences from the E.cuniculi genome; Fugu rubripes protein sequences from the pufferfish genome; Guillardia theta protein sequences from the G.theta genome; Homo sapiens protein sequences from the human genome; Mus musculus protein sequences from the mouse genome; Neurospora crassa protein sequences from the N.crassa genome; Oryza sativa protein sequences from the rice genome; Plasmodium falciparum protein sequences from the P.falciparum genome; Rattus norvegicus protein sequences from the rat genome; Saccharomyces cerevisiae protein sequences from the yeast genome; Schizosaccharomyces pombe protein sequences from the yeast genome
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The primary mission of the Alliance of Genome Resources (the Alliance) is to develop and maintain sustainable genome information resources that facilitate the use of diverse model organisms in understanding the genetic and genomic basis of human biology, health and disease. This understanding is fundamental for advancing genome biology research and for translating human genome data into clinical utility. The unified Alliance information system will represent the union of the data and information represented in the current individual MODs rather than the intersection, and thus provide the best of each in one place while maintaining community integrity and preserving the unique aspects of each model organism. By working together we can be more comprehensive and efficient, and hence more sustainable. Through the implementation of a shared, modular information system architecture, the Alliance seeks to serve diverse user communities including (i) human geneticists who want access to all model organism data for orthologous human genes; (ii) basic science researchers who use specific model organisms to understand fundamental biology; (iii) computational biologists and data scientists who need access to standardized, well-structured data, both big and small; and (iv) educators and students. Community genome resources such as the Model Organism Databases and the Gene Ontology Consortium have developed high quality resources enabling cost and time effective information retrieval and aggregation that would otherwise require countless hours to achieve. Regardless of their success and utility, there remain challenges to using and sustaining MODs. Searching across multiple model organism database resources remains a barrier to realizing the full impact of these resources in advancing genome biology and genomic medicine. In addition, despite a growing need for MODs by the biomedical research community as well as the increasing volumes of data and publications, the financial resources available to sustain MODs and related information resources are being reduced. We believe that one contribution to solving these challenges while continuing to serve our diverse user communities is to unify our efforts. To this end, six MODs (Saccharomyces Genome Database, WormBase, FlyBase, Zebrafish Information Network, Mouse Genome Database, Rat Genome Database) and the Gene Ontology (GO) project joined together in the fall of 2016 to form the Alliance of Genome Resources (the Alliance) consortium. Resources in this dataset:Resource Title: Alliance of Genome Resources. File Name: Web Page, url: https://www.alliancegenome.org/
Facebook
TwitterThe MicrobesOnline genome database contains over 1000 prokaryotic genomes. Genomes were last updated in late 2011 and no further database updates are planned.
All genomes are analyzed through the VIMSS genome pipeline. We use publicly available sequence analysis tools and databases to search for homologs (NCBI BLAST, UCSC Blat, SwissProt, COG) and protein domains (HMMer, InterPro), to assign gene ontologies (Gene Ontology Consortium) and EC numbers and to map the metabolic pathways (KEGG). We then link the orthology relationships between genes and predict operon structures.
Most genome data is downloaded from RefSeq. When an incomplete genome is directly downloaded from a sequencing center, we submit the genome sequence to RAST for automated annotation. For all genomes, we also search for CRISPR regions using PILER-CR and CRT.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Genome Database for Vaccinium (GDV) is a curated and integrated web-based relational database. The GDV is being developed to house and integrate genomic, genetic and breeding data for blueberry, cranberry and other Vaccinium species. The GDV will include the blueberry genome being sequenced by North Carolina State University, and annotated transcripts, traits, maps and markers being generated by Vaccinium researchers. The GDV is implemented using Chado and Drupal (Tripal) and will include public and private sites to meet individual research group needs. The amount of genetic research data for Vaccinium is steadily increasing and there is a need for a system that can organize, filter and provide analysis of the available research to be directly applied in breeding programs. The idea of creating this database emerged from several group discussions, in which scientists, breeders, data curators, university professors and bioinformaticians started working on the publicly available genetic and genomic information to make it available for practical use in breeding programs. The GDV home page allows for quick access to species specific data and popular tools. Tools to view and compare genetic maps, BLAST tool for genomes and reference transcriptomes, and search interfaces to find and download marker, map, QTL, and sequence data are also included. Crop pages have quick links to data and tools in the sidebar, and MapViewer allows for dynamic visualization of genetic maps. Resources in this dataset:Resource Title: Genome Database for Vaccinium. File Name: Web Page, url: https://www.vaccinium.org/
Facebook
TwitterThe Stanley Online Genomics Database uses samples from the Stanley Medical Research Institute (SMRI) Brain Bank. These samples were processed and run on gene expression arrays by a variety of researchers in collaboration with the SMRI. These researchers have performed analyses on their respective studies using a range of analytic approaches. All of the genomic data have been aggregated in this online database, and a consistent set of analyses have been applied to each study. Additionally, a comprehensive set of cross-study analyses have been performed. A thorough collection of gene expression summaries are provided, inclusive of patient demographics, disease subclasses, regulated biological pathways, and functional classifications. Raw data is also available to download. The database is derived from two sets of brain samples, the Stanley Array collection and the Stanley Consortium collection. The Stanley Array collection contains 105 patients, and the Stanley Consortium collection contains 60 patients. Multiple genomic studies have been conducted using these brain samples. From these studies, twelve were selected for inclusion in the database on the basis of number of patients studied, genomic platform used, and data quality. The Consortium collection studies have fewer patients but more diversity in brain regions and array platforms, while the Array collection studies are more homogenous. There are tradeoffs, the Consortium results will be more variable, but findings may be more broadly representative. The collections contain brain samples from subjects in four main groups: Bipolar Schizophrenia, Depression, and Controls Brain regions used in the studies include: Broadman Area 6, Broadman Area 8/9, Broadman Area 10, Broadman Area 46, Cerebellum The 12 studies encompass a range of microarray platforms: Affymetrix HG-U95Av2, Affymetrix HG-U133A, Affymetrix HG-U133 2.0+, Codelink Human 20K, Agilent Human I, Custom cDNA Publications based on any of the clinical or genomic data should credit the Stanley Medical Research Institute, as well as any individual SMRI collaborators whose data is being used. Publications which make use of analytic results/methods in the database should additionally cite Dr. Michael Elashoff. Registration is required to access the data.
Facebook
TwitterManually curated database of all conditions with known genetic causes, focusing on medically significant genetic data with available interventions. Includes gene symbol, conditions, allelic conditions, inheritance, age in which interventions are indicated, clinical categorization, and general description of interventions/rationale. Contents are intended to describe types of interventions that might be considered. Includes only single gene alterations and does not include genetic associations or susceptibility factors related to more complex diseases.
Facebook
TwitterMaizeMine is the data mining resource of the Maize Genetics and Genome Database (MaizeGDB; http://maizemine.maizegdb.org). It enables researchers to create and export customized annotation datasets that can be merged with their own research data for use in downstream analyses. MaizeMine uses the InterMine data warehousing system to integrate genomic sequences and gene annotations from the Zea mays B73 RefGen_v3 and B73 RefGen_v4 genome assemblies, Gene Ontology annotations, single nucleotide polymorphisms, protein annotations, homologs, pathways, and precomputed gene expression levels based on RNA-seq data from the Z. mays B73 Gene Expression Atlas. MaizeMine also provides database cross references between genes of alternative gene sets from Gramene and NCBI RefSeq. MaizeMine includes several search tools, including a keyword search, built-in template queries with intuitive search menus, and a QueryBuilder tool for creating custom queries. The Genomic Regions search tool executes queries based on lists of genome coordinates, and supports both the B73 RefGen_v3 and B73 RefGen_v4 assemblies. The List tool allows you to upload identifiers to create custom lists, perform set operations such as unions and intersections, and execute template queries with lists. When used with gene identifiers, the List tool automatically provides gene set enrichment for Gene Ontology (GO) and pathways, with a choice of statistical parameters and background gene sets. With the ability to save query outputs as lists that can be input to new queries, MaizeMine provides limitless possibilities for data integration and meta-analysis.
Facebook
TwitterDatabase developed to assist the phylogeneticist user in retrieving individual gene sequence alignments for genes in complete mammalian mitochondrial genomes. Data retrieval in MamMiBase requires three stages. At the first stage, the user must select the mammalian species or group that (s)he wishes to study. In the second stage, the user will select the outgroup from a list that included all species selected in the first stage plus Xenopus laevis and Gallus gallus. Finally, at the third stage, the user will select individual mitochondrial gene alignments or a phylogenetic tree that (s)he wishes to download.
Facebook
TwitterTHIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A database of information on bacterial phages. It contains multiple phage genomes, which users can BLAST and MegaBLAST, and also hosts a Phage Forum in which users can discuss phage data. Interactive browsing of completed phage genomes is available using the program. The browser allows users to scan the genome for particular features and to download sequence information plus analyses of those features. Views of the genome are generated showing named genes BLAST similarities to other phages predicted tRNAs and other sequence features.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
SoyBase is a repository for genetics, genomics and related data resources for soybean. It contains current genetic, physical and genomic sequence maps integrated with qualitative and quantitative traits. SoyBase database was established in the 1990s as the USDA Soybean Genetics Database. Originally, it contained only genetic information about soybeans such as genetic maps and information about the Mendelian genetics of soybean. In time SoyBase was expanded to include molecular data regarding soybean genes and sequences as they became available. In 2010, the soybean genome sequence was published and it and supporting gene sequences have been integrated into the SoyBase sequence browser. SoyBase genetic maps were used in the assembly of both the Williams 82 2010 assembly (Wm82.a1.v1) and the newest genome assembly (Wm82.a2.v1). SoyBase also incorporates information about mutant and other soybean genetic stocks and serves as a contact point for ordering strains from those populations. As association analyses continue due to various re-sequencing efforts SoyBase will also incorporate those data into the soybean genome browser as they become available. Gene expression patterns are also available at SoyBase through the SoyBase expression pages and the Soybean Gene Atlas. Other expression/transcriptome/methylomic data sets also have been and continue to be incorporated into the SoyBase genome browser. Project No:3625-21000-062-00D Accession No: 0425040 Resources in this dataset:Resource Title: SoyBase, the USDA-ARS soybean genetics and genomics database web site. File Name: Web Page, url: https://soybase.org SoyBase database was established in the 1990s as the USDA Soybean Genetics Database. Originally, it contained only genetic information about soybeans such as genetic maps and information about the Mendelian genetics of soybean. In time SoyBase was expanded to include molecular data regarding soybean genes and sequences as they became available. In 2010, the soybean genome sequence was published and it and supporting gene sequences have been integrated into the SoyBase sequence browser. SoyBase genetic maps were used in the assembly of both the Williams 82 2010 assembly (Wm82.a1.v1) and the newest genome assembly (Wm82.a2.v1).
Soybean Pods and Seeds SoyBase also incorporates information about mutant and other soybean genetic stocks and serves as a contact point for ordering strains from those populations. As association analyses continue due to various re-sequencing efforts SoyBase will also incorporate those data into the soybean genome browser as they become available. Gene expression patterns are also available at SoyBase through the SoyBase expression pages and the Soybean Gene Atlas. Other expression/transcriptome/methylomic data sets also have been and continue to be incorporated into the SoyBase genome browser.
Facebook
TwitterThe Sol Genomics Network (SGN) is a clade-oriented database dedicated to the biology of the Solanaceae family which includes a large number of closely related and many agronomically important species such as tomato, potato, tobacco, eggplant, pepper, and the ornamental Petunia hybrida. SGN is part of the International Solanaceae Initiative (SOL), which has the long-term goal of creating a network of resources and information to address key questions in plant adaptation and diversification. A key problem of the post-genomic era is the linking of the phenome to the genome, and SGN allows to track and help discover new such linkages. Data: Solanaceae and other Genomes SGN is a home for Solanaceae and closely related genomes, such as selected Rubiaceae genomes (e.g., Coffea). The tomato, potato, pepper, and eggplant genome are examples of genomes that are currently available. If you would like to include a Solanaceae genome that you sequenced in SGN, please contact us. ESTs SGN houses EST collections for tomato, potato, pepper, eggplant and petunia and corresponding unigene builds. EST sequence data and cDNA clone resources greatly facilitate cloning strategies based on sequence similarity, the study of syntenic relationships between species in comparative mapping projects, and are essential for microarray technology. Unigenes SGN assembles and publishes unigene builds from these EST sequences. For more information, see Unigene Methods. Maps and Markers SGN has genetic maps and a searchable catalog of markers for tomato, potato, pepper, and eggplant. Tools SGN makes available a wide range of web-based bioinformatics tools for use by anyone, listed here. Some of our most popular tools include BLAST searches, the SolCyc biochemical pathways database, a CAPS experiment designer, an Alignment Analyzer and browser for phylogenetic trees. The VIGS tool can help predict the properties of VIGS (Viral Induced Gene Silencing) constructs. The data in SGN have been submitted by many different research groups around the world. A web form is available to submit data for display on SGN. SGN community-driven gene and phenotype database: Simple web interfaces have been developed for the SGN user-community to submit, annotate, and curate the Solanaceae locus and phenotype databases. The goal is to share biological information, and have the experts in their field review existing data and submit information about their favorite genes and phenotypes. Resources in this dataset:Resource Title: Website Pointer to Sol Genomics Network. File Name: Web Page, url: https://solgenomics.net/ Specialized Search interfaces are provided for: Organisms/Taxon; Genes and Loci; Genomic sequences and annotations; QTLs, Mutants & Accessions, Traits; Transcripts: Unigenes, ESTs, & Libraries; Unigene families; Markers; Genomic clones; Images; Expression: Templates, Experiments, Platforms; Traits.
Facebook
TwitterDatabase and integrated tools to improve annotation of the bovine genome and to integrate the genome sequence with other genomics data.
Facebook
TwitterDatabase of peer-reviewed, continually updated annotation for the Pseudomonas aeruginosa PAO1 reference strain genome expanded to include all Pseudomonas species to facilitate cross-strain and cross-species genome comparisons with high quality comparative genomics. The database contains robust assessment of orthologs, a novel ortholog clustering method, and incorporates five views of the data at the sequence and annotation levels (Gbrowse, Mauve and custom views) to facilitate genome comparisons. Other features include more accurate protein subcellular localization predictions and a user-friendly, Boolean searchable log file of updates for the reference strain PAO1. The current annotation is updated using recent research literature and peer-reviewed submissions by a worldwide community of PseudoCAP (Pseudomonas aeruginosa Community Annotation Project) participating researchers. If you are interested in participating, you are invited to get involved. Many annotations, DNA sequences, Orthologs, Intergenic DNA, and Protein sequences are available for download.
Facebook
TwitterMBGD is a database for comparative analysis of completely sequenced microbial genomes, the number of which is now growing rapidly. The aim of MBGD is to facilitate comparative genomics from various points of view such as ortholog identification, paralog clustering, motif analysis and gene order comparison. The heart of MBGD function is to create orthologous or homologous gene cluster table. For this purpose, similarities between all genes are precomputed and stored into the database, in addition to the annotations of genes such as function categories that were assigned by the original authors and motifs that were found in the translated sequence. Using these homology data, MBGD dynamically creates orthologous gene cluster table. Users can change a set of organisms or cutoff parameters to create their own orthologous grouping. Based on this cluster table, users can further analyze multiple genomes from various points of view with the functions such as global map comparison, local map comparison, multiple sequence alignment and phylogenetic tree construction.
Facebook
TwitterDatabase facilitating information integration and mining within the pig and across species of all genomics / genetics research results accumulated over the years including pig gene expression, quantitative trait loci (QTL), candidate gene, and whole genome association study (WGAS) results. The key functions developed so far include pig gene pages (a centralized gene search tool), a local copy of Biomart (for customizable genome information queries), genome feature alignment tools (Pig QTLdb and Gbrowse), integrated gene expression information (ANEXDB and ESTdb), a dedicated pig genome and gene set BLAST server, and virtual comparative map database and tools (VCmap). By developing the PGD, it is our aim to collaboratively utilize existing databases and tools via networked functions, such as web services, database API, etc., to maximize the potential of all related databases through the PGD implementation.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
PeanutBase (peanutbase.org) is the primary genetics and genomics database for cultivated peanut and its wild relatives. It houses information about genome sequences, genes and predicted functions, genetic maps, markers, links to germplasm resources, and maps of peanut germplasm origins. This resource is being developed for U.S. and International peanut researchers and breeders, with support from The Peanut Foundation and the many contributors that have made the Peanut Genomics Initiative possible. Funded by The Peanut Foundation as part of the Peanut Genomics Initiative. Additional support from USDA-ARS. Database developed and hosted by the USDA-ARS SoyBase and Legume Clade Database group at Ames, IA, with NCGR and other participants. Resources in this dataset:Resource Title: PeanutBase.org. File Name: Web Page, url: https://peanutbase.org Website pointer for PeanutBase.org - Genetic and genomic data to enable more rapid crop improvement in peanuts. The peanut genome has been sequenced and analyzed as part of the International Peanut Genomic Initiative, in order to accelerate breeding progress and get more productive, disease-resistant, stress-tolerant varieties to farmers. The two diploid progenitors have been sequenced and are available, along with predicted genes and descriptions. The genomes of the diploid progenitors will be used to help identify and assemble the similar chromosomes in cultivated peanut. Cultivated peanut, Arachis hypogaea, is an allotetraploid (2n=4x=40) that contains two complete genomes, labeled the A and B genomes. A. duranensis (2n=2x=20) has likely contributed the A genome, and A. ipaensis has likely contributed the B genome. It may be helpful to remember these two associations by using the mnemonic: "A" comes before "B" and "duranensis" comes before "ipaensis". Because of the difficulty of assembly a tetraploid genome, the two diploids, A. duranensis and A. ipaensis, have been sequenced and assembled first. Together these provide a good initial basis for the tetraploid genome. Additionally, the two will help guide assembly of the tetraploid genome. Sequencing work on the tetraploid genome is underway; stay tuned for updates in 2015.
Facebook
TwitterStellaBase is a genomics database of Nematostella vectensis. It allows users to query the assembled Nematostella genome, a confirmed gene library, and a predicted genome using both keyword and homology based search functions. Data provided by these searches will elucidate gene family evolution in early animals. Unique research tools, including a Nematostella genetic stock library, a primer library, a literature repository and a gene expression library will provide support to the burgeoning Nematostella research community. Supported by: National Science Foundation (Grant No. 0212773 to JRF)
Facebook
TwitterIn the late 80s, around **** gigabyte (** megabyte) of genomics data was generated annually. Compared to that, in the late 2010s, the amount of genomics data generated annually was around twenty petabytes (** million gigabytes).
Facebook
TwitterDatabase to facilitate genomic and genetic data distribution, analysis, mining and integration for cucurbits. To store, mine, analyze, integrate and disseminate Cucurbitaceae family datasets and to provide central portal for cucurbit research and breeding community. Central portal for comparative and functional genomics of cucurbit crops.
Facebook
Twitterhttps://www.genomicsengland.co.uk/about-gecip/joining-research-community/https://www.genomicsengland.co.uk/about-gecip/joining-research-community/
To identify and enrol participants for the 100,000 Genomes Project we have created NHS Genomic Medicine Centres (GMCs). Each centre includes several NHS Trusts and hospitals. GMCs recruit and consent patients. They then provide DNA samples and clinical information for analysis.
Illumina, a biotechnology company, have been commissioned to sequence the DNA of participants. They return the whole genome sequences to Genomics England. We have created a secure, monitored, infrastructure to store the genome sequences and clinical data. The data is analysed within this infrastructure and any important findings, like a diagnosis, are passed back to the patient’s doctor.
To help make sure that the project brings benefits for people who take part, we have created the Genomics England Clinical Interpretation Partnership (GeCIP). GeCIP brings together funders, researchers, NHS teams and trainees. They will analyse the data – to help ensure benefits for patients and an increased understanding of genomics. The data will also be used for medical and scientific research. This could be research into diagnosing, understanding or treating disease.
To learn more about how we work you can read the 100,000 Genomes Project protocol. It has details of the development, delivery and operation of the project. It also sets out the patient and clinical benefit, scientific and transformational objectives, the implementation strategy and the ethical and governance frameworks.
Facebook
TwitterTHIS RESOURCE IS NO LONGER IN SERVICE, documented August 29, 2016. Database containing structural annotations for the proteomes of just under 100 organisms. Using data derived from public databases of translated genomic sequences, representatives from the major branches of Life are included: Prokaryota, Eukaryota and Archaea. The annotations stored in the database may be accessed in a number of ways. The help page provides information on how to access the database. 3D-GENOMICS is now part of a larger project, called e-Protein. The project brings together similar databases at three sites: Imperial College London , University College London and the European Bioinformatics Institute . e-Protein''s mission statement is To provide a fully automated distributed pipeline for large-scale structural and functional annotation of all major proteomes via the use of cutting-edge computer GRID technologies. The following databases are incorporated: NRprot, SCOP, ASTRAL, PFAM, Prosite, taxonomy, COG The following eukaryotic genomes are incorporated: Anopheles gambiae, protein sequences from the mosquito genome; Arabidopsis thaliana, protein sequences from the Arabidopsis genome; Caenorhabditis briggsae, protein sequences from the C.briggsae genome; Caenorhabditis elegans protein sequences from the worm genome; Ciona intestinalis protein sequences from the sea squirt genome; Danio rerio protein sequences from the zebrafish genome; Drosophila melanogaster protein sequences from the fruitfly genome; Encephalitozoon cuniculi protein sequences from the E.cuniculi genome; Fugu rubripes protein sequences from the pufferfish genome; Guillardia theta protein sequences from the G.theta genome; Homo sapiens protein sequences from the human genome; Mus musculus protein sequences from the mouse genome; Neurospora crassa protein sequences from the N.crassa genome; Oryza sativa protein sequences from the rice genome; Plasmodium falciparum protein sequences from the P.falciparum genome; Rattus norvegicus protein sequences from the rat genome; Saccharomyces cerevisiae protein sequences from the yeast genome; Schizosaccharomyces pombe protein sequences from the yeast genome