Functional genomics data repository supporting MIAME-compliant data submissions. Includes microarray-based experiments measuring the abundance of mRNA, genomic DNA, and protein molecules, as well as non-array-based technologies such as serial analysis of gene expression (SAGE) and mass spectrometry proteomic technology. Array- and sequence-based data are accepted. Collection of curated gene expression DataSets, as well as original Series and Platform records. The database can be searched using keywords, organism, DataSet type and authors. DataSet records contain additional resources including cluster tools and differential expression queries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A summary of the each individual microarray datasets from different GEO dataset.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Today, everybody around the world is living and working under the coverage of Geographic Information system (GIS) application and services such as the Google Earth, GPS and much more. Big Data visualization tools are increasingly creating a wonder in the world of GIS. GIS has diverse application, from geo-positioning services to 3D demonstrations and virtual reality. Big Data and its tools of visualization has boosted the field of GIS. This article seeks to explore how Big data visualization has expanded the field of Geo- spatial analysis with the intention to present practicable GIS-based tools required to stay ahead in this field.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All the processed gene expression profiles available from GEO database and R codes for scRNA-seq analysis or BayesPrism analysis have been deposited in the figshare platform.
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover
BackgroundParkinson’s disease is the second most common neurodegenerative disease in the world. However, current diagnostic methods are still limited, and available treatments can only mitigate the symptoms of the disease, not reverse it at the root. The immune function has been identified as playing a role in PD, but the exact mechanism is unknown. This study aimed to search for potential immune-related hub genes in Parkinson’s disease, find relevant immune infiltration patterns, and develop a categorical diagnostic model.MethodsWe downloaded the GSE8397 dataset from the GEO database, which contains gene expression microarray data for 15 healthy human SN samples and 24 PD patient SN samples. Screening for PD-related DEGs using WGCNA and differential expression analysis. These PD-related DEGs were analyzed for GO and KEGG enrichment. Subsequently, hub genes (dld, dlk1, iars and ttd19) were screened by LASSO and mSVM-RFE machine learning algorithms. We used the ssGSEA algorithm to calculate and evaluate the differences in nigrostriatal immune cell types in the GSE8397 dataset. The association between dld, dlk1, iars and ttc19 and 28 immune cells was investigated. Using the GSEA and GSVA algorithms, we analyzed the biological functions associated with immune-related hub genes. Establishment of a ceRNA regulatory network for immune-related hub genes. Finally, a logistic regression model was used to develop a PD classification diagnostic model, and the accuracy of the model was verified in three independent data sets. The three independent datasets are GES49036 (containing 8 healthy human nigrostriatal tissue samples and 15 PD patient nigrostriatal tissue samples), GSE20292 (containing 18 healthy human nigrostriatal tissue samples and 11 PD patient nigrostriatal tissue samples) and GSE7621 (containing 9 healthy human nigrostriatal tissue samples and 16 PD patient nigrostriatal tissue samples).ResultsUltimately, we screened for four immune-related Parkinson’s disease hub genes. Among them, the AUC values of dlk1, dld and ttc19 in GSE8397 and three other independent external datasets were all greater than 0.7, indicating that these three genes have a certain level of accuracy. The iars gene had an AUC value greater than 0.7 in GES8397 and one independent external data while the AUC values in the other two independent external data sets ranged between 0.5 and 0.7. These results suggest that iars also has some research value. We successfully constructed a categorical diagnostic model based on these four immune-related Parkinson’s disease hub genes, and the AUC values of the joint diagnostic model were greater than 0.9 in both GSE8397 and three independent external datasets. These results indicate that the categorical diagnostic model has a good ability to distinguish between healthy individuals and Parkinson’s disease patients. In addition, ceRNA networks reveal complex regulatory relationships based on immune-related hub genes.ConclusionIn this study, four immune-related PD hub genes (dld, dlk1, iars and ttd19) were obtained. A reliable diagnostic model for PD classification was developed. This study provides algorithmic-level support to explore the immune-related mechanisms of PD and the prediction of immune-related drug targets.
This dataset supports the journal article "Geographic Analysis of the Vulnerability of U.S. Lakes to Cyanobacterial Blooms under Future Climate", by Butcher et al. Two Excel spreadsheets containing the data presented/discussed in this paper will be uploaded to Science HUB. Data summaries include (1) a list of lakes included in the analysis (from 2007 National Lakes Assessment), including latitude/longitude coordinates, key lake physical attributes, and the set of vulnerability and risk metric developed and used in this analysis, and (2) a list of relevant articles identified in the literature and used to develop risk hypotheses used in this analysis. All Variable names and units are defined in column headings of each file uploaded to Science HUB. Details about the data and methodology used to develop risk metrics will be described in detail in a published journal article (draft paper will be submitted to the journal Earth Interactions, titled “Geographic Analysis of the Vulnerability of U.S. Lakes to Cyanobacterial Blooms under Future Climate”. This dataset is associated with the following publication: Butcher, J., M. Fernandez, T. Johnson, A. Shabani, and S. Lee. Geographic Analysis of the Vulnerability of U.S. Lakes to Cyanobacterial Blooms under Future Climate. Earth Interactions. American Meteorological Society, Boston, MA, USA, 27(1): e230004, (2023).
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disorder, affecting the pilosebaceous unit in apocrine gland-rich areas, characterized by painful nodules, abscesses and draining tunnels. The underlying molecular and immunological mechanisms remain poorly understood. This study aimed to identify key gene expression patterns, hub genes, and analyze the potential role of the CCL19/CCL21-CCR7 axis in HS lesions and peripheral blood using bulk and single-cell RNA sequencing analyses. By employing an integrative approach that included three machine learning methods and subsequent validation on an independent dataset, we successfully identified AKR1B10, IGFL2, WNK2, SLAMF7, and CCR7 as potential hub genes and therapeutic targets for HS treatment. Furthermore, our study found that CCL19 and CCL21 may originate from various cells such as fibroblasts and dendritic cells, playing a crucial role in recruiting CCR7-associated immune cells, particularly Treg cells. The involvement of the CCL19/CCL21-CCR7 axis in HS pathogenesis suggests that other CCR7-expressing cells may also be recruited, contributing to disease progression. These findings significantly advance our understanding of HS pathogenesis offer promising avenues for future CCR7-targeted therapeutic interventions.
This dataset was created by DEBJYOTI SAHA
Parkinson’s disease is the second most common neurodegenerative disease in the world. We downloaded data on Parkinson’s disease and Ferroptosis-related genes from the GEO and FerrDb databases. We used WCGAN and Random Forest algorithm to screen out five Parkinson’s disease ferroptosis-related hub genes. Two genes were identified for the first time as possibly playing a role in Braak staging progression. Unsupervised clustering analysis based on hub genes yielded ferroptosis isoforms, and immune infiltration analysis indicated that these isoforms are associated with immune cells and may represent different immune patterns. FRHGs scores were obtained to quantify the level of ferroptosis modifications in each individual. In addition, differences in interleukin expression were found between the two ferroptosis subtypes. The biological functions involved in the hub gene are analyzed. The ceRNA regulatory network of hub genes was mapped. The disease classification diagnosis model and risk prediction model were also constructed by applying hub genes based on logistic regression. Multiple external datasets validated the hub gene and classification diagnostic model with some accuracy. This study explored hub genes associated with ferroptosis in Parkinson’s disease and their molecular patterns and immune signatures to provide new ideas for finding new targets for intervention and predictive biomarkers.
Xverum’s Point of Interest (POI) Data is a comprehensive dataset containing 230M+ verified locations across 5000 business categories. Our dataset delivers structured geographic data, business attributes, location intelligence, and mapping insights, making it an essential tool for GIS applications, market research, urban planning, and competitive analysis.
With regular updates and continuous POI discovery, Xverum ensures accurate, up-to-date information on businesses, landmarks, retail stores, and more. Delivered in bulk to S3 Bucket and cloud storage, our dataset integrates seamlessly into mapping, geographic information systems, and analytics platforms.
🔥 Key Features:
Extensive POI Coverage: ✅ 230M+ Points of Interest worldwide, covering 5000 business categories. ✅ Includes retail stores, restaurants, corporate offices, landmarks, and service providers.
Geographic & Location Intelligence Data: ✅ Latitude & longitude coordinates for mapping and navigation applications. ✅ Geographic classification, including country, state, city, and postal code. ✅ Business status tracking – Open, temporarily closed, or permanently closed.
Continuous Discovery & Regular Updates: ✅ New POIs continuously added through discovery processes. ✅ Regular updates ensure data accuracy, reflecting new openings and closures.
Rich Business Insights: ✅ Detailed business attributes, including company name, category, and subcategories. ✅ Contact details, including phone number and website (if available). ✅ Consumer review insights, including rating distribution and total number of reviews (additional feature). ✅ Operating hours where available.
Ideal for Mapping & Location Analytics: ✅ Supports geospatial analysis & GIS applications. ✅ Enhances mapping & navigation solutions with structured POI data. ✅ Provides location intelligence for site selection & business expansion strategies.
Bulk Data Delivery (NO API): ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured format (.json) for seamless integration.
🏆Primary Use Cases:
Mapping & Geographic Analysis: 🔹 Power GIS platforms & navigation systems with precise POI data. 🔹 Enhance digital maps with accurate business locations & categories.
Retail Expansion & Market Research: 🔹 Identify key business locations & competitors for market analysis. 🔹 Assess brand presence across different industries & geographies.
Business Intelligence & Competitive Analysis: 🔹 Benchmark competitor locations & regional business density. 🔹 Analyze market trends through POI growth & closure tracking.
Smart City & Urban Planning: 🔹 Support public infrastructure projects with accurate POI data. 🔹 Improve accessibility & zoning decisions for government & businesses.
💡 Why Choose Xverum’s POI Data?
Access Xverum’s 230M+ POI dataset for mapping, geographic analysis, and location intelligence. Request a free sample or contact us to customize your dataset today!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Literature review dataset
This table lists the surveyed papers concerning the application of spatial analysis, GIS (Geographic Information Systems) as well as general geographic approaches and geostatistics, to the assessment of CoViD-19 dynamics. The period of survey is from January 1st, 2020 to December 15th, 2020. The first column lists the reference. The second lists the date of publication (preferably, the date of online publication). The third column lists the Country or the Countries and/or the subnational entities investigated. The fourth column lists the epidemiological data utilized in each paper. The fifth column lists other types of data utilized for the analysis. The sixth column lists the more traditionally statistically-based methods, if utilized. The seventh column lists the geo-statistical, GIS or geographic methods, if utilized. The eight column sums up the findings of each paper. The papers are also classified within seven thematic categories. The full references are available at the end of the table in alphabetical order.
This table was the basis for the realization of a comprehensive geographic literature review. It aims to be a useful tool to ease the "due-diligence" activity of all the researchers interested in the spatial analysis of the pandemic.
The reference to cite the related paper is the following:
Pranzo, A.M.R., Dai Prà, E. & Besana, A. Epidemiological geography at work: An exploratory review about the overall findings of spatial analysis applied to the study of CoViD-19 propagation along the first pandemic year. GeoJournal (2022). https://doi.org/10.1007/s10708-022-10601-y
To read the manuscript please follow this link: https://doi.org/10.1007/s10708-022-10601-y
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary of human DNA methylation data available on GEO listed by sequencing technology on 01/03/2019.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Based on open access data, 79 Mediterranean passenger ports are analyzed to compare their infrastructure, hinterland accessibility and offered multi-modality categories. Comparative Geo-spatial analysis is also carried out by using the data normalization method in order to visualize the ports' performance on maps. These data driven comprehensive analytical results can bring added value to sustainable development policy and planning initiatives in the Mediterranean Region. The analyzed elements can be also contributed to the development of passenger port performance indicators. The empirical research methods used for the Mediterranean passenger ports can be replicated for transport nodes of any region around the world to determine their relative performance on selected criteria for improvement and planning.
The Mediterranean passenger ports were initially categorized into cruise and ferry ports. The cruise ports were identified from the member list of the Association for the Mediterranean Cruise Ports (MedCruise), representing more than 80% of the cruise tourism activities per country. The identified cruise ports were mapped by selecting the corresponding geo-referenced ports from the map layer developed by the European Marine Observation and Data Network (EMODnet). The United Nations (UN) Code for Trade and Transport Locations (LOCODE) was identified for each of the cruise ports as the common criteria to carry out the selection. The identified cruise ports not listed by the EMODnet were added to the geo-database by using under license the editing function of the ArcMap (version 10.1) geographic information system software. The ferry ports were identified from the open access industry initiative data provided by the Ferrylines, and were mapped in a similar way as the cruise ports (Figure 1).
Based on the available data from the identified cruise ports, a database (see Table A1–A3) was created for a Mediterranean scale analysis. The ferry ports were excluded due to the unavailability of relevant information on selected criteria (Table 2). However, the cruise ports serving as ferry passenger ports were identified in order to maximize the scope of the analysis. Port infrastructure and hinterland accessibility data were collected from the statistical reports published by the MedCruise, which are a compilation of data provided by its individual member port authorities and the cruise terminal operators. Other supplementary sources were the European Sea Ports Organization (ESPO) and the Global Ports Holding, a cruise terminal operator with an established presence in the Mediterranean. Additionally, open access data sources (e.g. the Google Maps and Trip Advisor) were consulted in order to identify the multi-modal transports and bridge the data gaps on hinterland accessibility by measuring the approximate distances.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Market Analysis for Geographic Information Systems (GIS) The global Geographic Information Systems (GIS) market is projected to reach a value of USD 2890.3 million by 2033, expanding at a CAGR of 5.3% during the forecast period (2025-2033). This growth is driven by increasing adoption of GIS in various industries, such as utilities, transportation, government, and defense. Additionally, the rising demand for real-time data visualization, spatial analysis, and decision-making is fueling the market expansion. The GIS market is segmented based on type (hardware, software, service) and application (public, private). Public sector applications, such as urban planning, land management, and emergency response, are expected to witness significant growth. Private sector applications, including asset management, supply chain optimization, and environmental conservation, are also gaining traction. Key players in the market include Pasco, Ubisense Group, Beijing SuperMap Software, Hexagon, and Schneider Electric. The market is highly competitive, with established players and emerging startups vying for market share. North America and Europe are the largest markets for GIS, with Asia Pacific expected to exhibit the highest growth potential in the coming years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We analysed the field of expression profiling by high throughput sequencing, or HT-seq, in terms of replicability and reproducibility, using data from the NCBI GEO (Gene Expression Omnibus) repository.
- This release includes GEO series published up to Dec-31, 2020;
geo-htseq.tar.gz archive contains following files:
- output/parsed_suppfiles.csv, p-value histograms, histogram classes, estimated number of true null hypotheses (pi0).
- output/document_summaries.csv, document summaries of NCBI GEO series.
- output/suppfilenames.txt, list of all supplementary file names of NCBI GEO submissions.
- output/suppfilenames_filtered.txt, list of supplementary file names used for downloading files from NCBI GEO.
- output/publications.csv, publication info of NCBI GEO series.
- output/scopus_citedbycount.csv, Scopus citation info of NCBI GEO series
- output/spots.csv, NCBI SRA sequencing run metadata.
- output/cancer.csv, cancer related experiment accessions.
- output/transcription_factor.csv, TF related experiment accessions.
- output/single-cell.csv, single cell experiment accessions.
- blacklist.txt, list of supplementary files that were either too large to import or were causing computing environment crash during import.
Workflow to produce this dataset is available on Github at rstats-tartu/geo-htseq.
geo-htseq-updates.tar.gz archive contains files:
- results/detools_from_pmc.csv, differential expression analysis programs inferred from published articles
- results/n_data.csv, manually curated sample size info for NCBI GEO HT-seq series
- results/simres_df_parsed.csv, pi0 values estimated from differential expression results obtained from simulated RNA-seq data
- results/data/parsed_suppfiles_rerun.csv, pi0 values estimated using smoother method from anti-conservative p-value sets
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data files for the examples in the book Geographic Data Science in R: Visualizing and Analyzing Environmental Change by Michael C. Wimberly.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the third column overlaps with gene set in the selected MSigDB gene set collection are reported. The fourth column displays the false discovery rate (FDR) analog of hypergeometric p-value after correction for multiple hypothesis testing according to Benjamini and Hochberg [43]. The table shows seven most significant enrichments.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Global Employment Organization (GEO) market is expanding rapidly, estimated to reach a value of USD XXX million by 2033, with a CAGR of XX% during the forecast period 2025-2033. The market is primarily driven by the increasing demand for flexible and cost-effective employment solutions, such as temporary staffing, independent contracting, and managed services. Furthermore, the growing trend of outsourcing non-core business functions to specialized organizations is bolstering market growth. The market is fragmented, with a mix of established players like Adecco, Randstad, and ADP, as well as emerging players such as Shield GEO and New Horizons Global Partners. Regionally, North America is the largest market for GEO services, followed by Europe and Asia Pacific. Emerging markets in Latin America, Middle East & Africa, and Asia Pacific are poised to witness substantial growth as companies seek cost-effective and efficient employment solutions. Key trends shaping the market include the rise of independent contracting, the adoption of technology platforms for recruitment and management, and the increasing focus on compliance and risk mitigation in the employment process. Restraints to market growth include regulatory challenges, economic downturns, and skill shortages.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Top 20 Genes Co-expressed with vimentin (VIM) identified by CORD.
Functional genomics data repository supporting MIAME-compliant data submissions. Includes microarray-based experiments measuring the abundance of mRNA, genomic DNA, and protein molecules, as well as non-array-based technologies such as serial analysis of gene expression (SAGE) and mass spectrometry proteomic technology. Array- and sequence-based data are accepted. Collection of curated gene expression DataSets, as well as original Series and Platform records. The database can be searched using keywords, organism, DataSet type and authors. DataSet records contain additional resources including cluster tools and differential expression queries.