Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).
The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Minnesota's original public land survey plat maps were created between 1848 and 1907 during the first government land survey of the state by the U.S. Surveyor General's Office. This collection of more than 3,600 maps includes later General Land Office (GLO) and Bureau of Land Management maps up through 2001. Scanned images of the maps are available in several digital formats and most have been georeferenced.
The survey plat maps, and the accompanying survey field notes, serve as the fundamental legal records for real estate in Minnesota; all property titles and descriptions stem from them. They also are an essential resource for surveyors and provide a record of the state's physical geography prior to European settlement. Finally, they testify to many years of hard work by the surveying community, often under very challenging conditions.
The deteriorating physical condition of the older maps (drawn on paper, linen, and other similar materials) and the need to provide wider public access to the maps, made handling the original records increasingly impractical. To meet this challenge, the Office of the Secretary of State (SOS), the State Archives of the Minnesota Historical Society (MHS), the Minnesota Department of Transportation (MnDOT), MnGeo (formerly the Land Management Information Center - LMIC) and the Minnesota Association of County Surveyors collaborated in a digitization project which produced high quality (800 dpi), 24-bit color images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes of data. Funding was provided by MnDOT.
In 2010-11, most of the JPEG plat map images were georeferenced. The intent was to locate the plat images to coincide with statewide geographic data without appreciably altering (warping) the image. This increases the value of the images in mapping software where they can be used as a background layer.
800+ GIS Engineers with 25+ years of experience in geospatial, We provide following as Advance Geospatial Services:
Analytics (AI)
Change detection
Feature extraction
Road assets inventory
Utility assets inventory
Map data production
Geodatabase generation
Map data Processing /Classifications
Contour Map Generation
Analytics (AI)
Change Detection
Feature Extraction
Imagery Data Processing
Ortho mosaic
Ortho rectification
Digital Ortho Mapping
Ortho photo Generation
Analytics (Geo AI)
Change Detection
Map Production
Web application development
Software testing
Data migration
Platform development
AI-Assisted Data Mapping Pipeline AI models trained on millions of images are used to predict traffic signs, road markings , lanes for better and faster data processing
Our Value Differentiator
Experience & Expertise -More than Two decade in Map making business with 800+ GIS expertise -Building world class products with our expertise service division & skilled project management -International Brand “Mappls” in California USA, focused on “Advance -Geospatial Services & Autonomous drive Solutions”
Value Added Services -Production environment with continuous improvement culture -Key metrics driven production processes to align customer’s goals and deliverables -Transparency & visibility to all stakeholder -Technology adaptation by culture
Flexibility -Customer driven resource management processes -Flexible resource management processes to ramp-up & ramp-down within short span of time -Robust training processes to address scope and specification changes -Priority driven project execution and management -Flexible IT environment inline with critical requirements of projects
Quality First -Delivering high quality & cost effective services -Business continuity process in place to address situation like Covid-19/ natural disasters -Secure & certified infrastructure with highly skilled resources and management -Dedicated SME team to ensure project quality, specification & deliverables
Web-based GIS mapping application.Contains all available GIS and mapping resources for Cuyahoga County.Use the application to explore data using the available search, identify, and query tools; markup the map with the drawing tools; export the map to a geo-referenced image file; print the map to PDF with a custom title and include a legend and scale.View the 'Help Guide' for FAQs, tool tips, and additional information about the application and the data.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geo Location Technology market size was valued at approximately USD 45.3 billion in 2023 and is expected to reach USD 128.5 billion by 2032, growing at a CAGR of 12.5% during the forecast period. This significant growth is driven by the increasing adoption of location-based services and the rising integration of geolocation technology in various industries. Factors such as the proliferation of smartphones, advancements in GPS technology, and the increasing need for asset tracking and management are key drivers propelling the market forward.
One of the primary growth factors of the Geo Location Technology market is the widespread adoption of smartphones and mobile devices equipped with GPS capabilities. As of 2023, it is estimated that there are over 6 billion smartphone users globally, and this number is expected to increase in the coming years. The integration of geolocation services in these devices has led to a surge in demand for location-based applications such as mapping, navigation, and location-based advertising. These applications enhance user experience by providing real-time information and personalized services based on the user's location, thereby driving the growth of the geolocation technology market.
Another significant growth factor is the increasing use of geolocation technology in the transportation and logistics industry. With the rise of e-commerce and the growing need for efficient supply chain management, companies are increasingly relying on geolocation technology for real-time tracking of goods and assets. This technology helps in optimizing routes, reducing delivery times, and improving overall operational efficiency. Additionally, the implementation of geolocation technology in fleet management systems enables companies to monitor vehicle movements, ensure driver safety, and reduce fuel consumption, further driving the market growth.
The healthcare sector is also contributing to the growth of the Geo Location Technology market. The use of geolocation technology in healthcare applications such as patient tracking, remote monitoring, and emergency response systems has gained significant traction. This technology enables healthcare providers to track the real-time location of patients, especially those with chronic conditions or mental health issues, ensuring timely medical intervention. Moreover, geolocation technology is being used in contact tracing applications to curb the spread of infectious diseases, further boosting its adoption in the healthcare sector.
Location-based Search and Advertising have emerged as pivotal components in the realm of geolocation technology, offering businesses the ability to reach potential customers with unprecedented precision. By leveraging the power of geolocation data, companies can tailor their marketing strategies to target users based on their current or past locations. This not only enhances the relevance of advertisements but also significantly improves conversion rates by reaching audiences at the right place and time. As consumers increasingly rely on mobile devices for information and services, location-based advertising offers a unique opportunity for businesses to engage with their audience in a more personalized and context-aware manner. The integration of location-based search capabilities further empowers users to discover nearby services and products, driving foot traffic to brick-and-mortar stores and enhancing the overall customer experience.
Regionally, North America holds the largest share of the Geo Location Technology market, driven by the presence of major technology companies and the early adoption of advanced technologies. The Asia Pacific region, however, is expected to witness the highest growth rate during the forecast period, owing to the increasing penetration of smartphones, rapid urbanization, and the growing demand for location-based services in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa also present significant growth opportunities due to the rising adoption of geolocation technology across various industries.
The Geo Location Technology market is segmented by component into hardware, software, and services. The hardware segment includes GPS devices, sensors, and other geolocation-enabled devices, while the software segment encompasses mapping and navigation software, geolocation APIs, and other related appli
This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.
Digital Map Market Size 2025-2029
The digital map market size is forecast to increase by USD 31.95 billion at a CAGR of 31.3% between 2024 and 2029.
The market is driven by the increasing adoption of intelligent Personal Digital Assistants (PDAs) and the availability of location-based services. PDAs, such as smartphones and smartwatches, are becoming increasingly integrated with digital map technologies, enabling users to navigate and access real-time information on-the-go. The integration of Internet of Things (IoT) enables remote monitoring of cars and theft recovery. Location-based services, including mapping and navigation apps, are a crucial component of this trend, offering users personalized and convenient solutions for travel and exploration. However, the market also faces significant challenges.
Ensuring the protection of sensitive user information is essential for companies operating in this market, as trust and data security are key factors in driving user adoption and retention. Additionally, the competition in the market is intense, with numerous players vying for market share. Companies must differentiate themselves through innovative features, user experience, and strong branding to stand out in this competitive landscape. Security and privacy concerns continue to be a major obstacle, as the collection and use of location data raises valid concerns among consumers.
What will be the Size of the Digital Map Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the market, cartographic generalization and thematic mapping techniques are utilized to convey complex spatial information, transforming raw data into insightful visualizations. Choropleth maps and dot density maps illustrate distribution patterns of environmental data, economic data, and demographic data, while spatial interpolation and predictive modeling enable the estimation of hydrographic data and terrain data in areas with limited information. Urban planning and land use planning benefit from these tools, facilitating network modeling and location intelligence for public safety and emergency management.
Spatial regression and spatial autocorrelation analyses provide valuable insights into urban development trends and patterns. Network analysis and shortest path algorithms optimize transportation planning and logistics management, enhancing marketing analytics and sales territory optimization. Decision support systems and fleet management incorporate 3D building models and real-time data from street view imagery, enabling effective resource management and disaster response. The market in the US is experiencing robust growth, driven by the integration of Geographic Information Systems (GIS), Global Positioning Systems (GPS), and advanced computer technology into various industries.
How is this Digital Map Industry segmented?
The digital map industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Application
Navigation
Geocoders
Others
Type
Outdoor
Indoor
Solution
Software
Services
Deployment
On-premises
Cloud
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Indonesia
Japan
South Korea
Rest of World (ROW)
By Application Insights
The navigation segment is estimated to witness significant growth during the forecast period. Digital maps play a pivotal role in various industries, particularly in automotive applications for driver assistance systems. These maps encompass raster data, aerial photography, government data, and commercial data, among others. Open-source data and proprietary data are integrated to ensure map accuracy and up-to-date information. Map production involves the use of GPS technology, map projections, and GIS software, while map maintenance and quality control ensure map accuracy. Location-based services (LBS) and route optimization are integral parts of digital maps, enabling real-time navigation and traffic data.
Data validation and map tiles ensure data security. Cloud computing facilitates map distribution and map customization, allowing users to access maps on various devices, including mobile mapping and indoor mapping. Map design, map printing, and reverse geocoding further enhance the user experience. Spatial analysis and data modeling are essential for data warehousing and real-time navigation. The automotive industry's increasing adoption of connected cars and long-term evolution (LTE) technologies have fueled the demand for digital maps. These maps enable driver assistance applications,
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary
Geojson files used to visualize geospatial layers relevant to identifying and assessing trucking fleet decarbonization opportunities with the MIT Climate & Sustainability Consortium's Geospatial Trucking Industry Decarbonization Explorer (Geo-TIDE) tool.
Relevant Links
Link to the online version of the tool (requires creation of a free user account).
Link to GitHub repo with source code to produce this dataset and deploy the Geo-TIDE tool locally.
Funding
This dataset was produced with support from the MIT Climate & Sustainability Consortium.
Original Data Sources
These geojson files draw from and synthesize a number of different datasets and tools. The original data sources and tools are described below:
Filename(s) Description of Original Data Source(s) Link(s) to Download Original Data License and Attribution for Original Data Source(s)
faf5_freight_flows/*.geojson
trucking_energy_demand.geojson
highway_assignment_links_*.geojson
infrastructure_pooling_thought_experiment/*.geojson
Regional and highway-level freight flow data obtained from the Freight Analysis Framework Version 5. Shapefiles for FAF5 region boundaries and highway links are obtained from the National Transportation Atlas Database. Emissions attributes are evaluated by incorporating data from the 2002 Vehicle Inventory and Use Survey and the GREET lifecycle emissions tool maintained by Argonne National Lab.
Shapefile for FAF5 Regions
Shapefile for FAF5 Highway Network Links
FAF5 2022 Origin-Destination Freight Flow database
FAF5 2022 Highway Assignment Results
Attribution for Shapefiles: United States Department of Transportation Bureau of Transportation Statistics National Transportation Atlas Database (NTAD). Available at: https://geodata.bts.gov/search?collection=Dataset.
License for Shapefiles: This NTAD dataset is a work of the United States government as defined in 17 U.S.C. § 101 and as such are not protected by any U.S. copyrights. This work is available for unrestricted public use.
Attribution for Origin-Destination Freight Flow database: National Transportation Research Center in the Oak Ridge National Laboratory with funding from the Bureau of Transportation Statistics and the Federal Highway Administration. Freight Analysis Framework Version 5: Origin-Destination Data. Available from: https://faf.ornl.gov/faf5/Default.aspx. Obtained on Aug 5, 2024. In the public domain.
Attribution for the 2022 Vehicle Inventory and Use Survey Data: United States Department of Transportation Bureau of Transportation Statistics. Vehicle Inventory and Use Survey (VIUS) 2002 [supporting datasets]. 2024. https://doi.org/10.21949/1506070
Attribution for the GREET tool (original publication): Argonne National Laboratory Energy Systems Division Center for Transportation Research. GREET Life-cycle Model. 2014. Available from this link.
Attribution for the GREET tool (2022 updates): Wang, Michael, et al. Summary of Expansions and Updates in GREET® 2022. United States. https://doi.org/10.2172/1891644
grid_emission_intensity/*.geojson
Emission intensity data is obtained from the eGRID database maintained by the United States Environmental Protection Agency.
eGRID subregion boundaries are obtained as a shapefile from the eGRID Mapping Files database.
eGRID database
Shapefile with eGRID subregion boundaries
Attribution for eGRID data: United States Environmental Protection Agency: eGRID with 2022 data. Available from https://www.epa.gov/egrid/download-data. In the public domain.
Attribution for shapefile: United States Environmental Protection Agency: eGRID Mapping Files. Available from https://www.epa.gov/egrid/egrid-mapping-files. In the public domain.
US_elec.geojson
US_hy.geojson
US_lng.geojson
US_cng.geojson
US_lpg.geojson
Locations of direct current fast chargers and refueling stations for alternative fuels along U.S. highways. Obtained directly from the Station Data for Alternative Fuel Corridors in the Alternative Fuels Data Center maintained by the United States Department of Energy Office of Energy Efficiency and Renewable Energy.
US_elec.geojson
US_hy.geojson
US_lng.geojson
US_cng.geojson
US_lpg.geojson
Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy. Alternative Fueling Station Corridors. 2024. Available from: https://afdc.energy.gov/corridors. In the public domain.
These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.
daily_grid_emission_profiles/*.geojson
Hourly emission intensity data obtained from ElectricityMaps.
Original data can be downloaded as csv files from the ElectricityMaps United States of America database
Shapefile with region boundaries used by ElectricityMaps
License: Open Database License (ODbL). Details here: https://www.electricitymaps.com/data-portal
Attribution for csv files: Electricity Maps (2024). United States of America 2022-23 Hourly Carbon Intensity Data (Version January 17, 2024). Electricity Maps Data Portal. https://www.electricitymaps.com/data-portal.
Attribution for shapefile with region boundaries: ElectricityMaps contributors (2024). electricitymaps-contrib (Version v1.155.0) [Computer software]. https://github.com/electricitymaps/electricitymaps-contrib.
gen_cap_2022_state_merged.geojson
trucking_energy_demand.geojson
Grid electricity generation and net summer power capacity data is obtained from the state-level electricity database maintained by the United States Energy Information Administration.
U.S. state boundaries obtained from this United States Department of the Interior U.S. Geological Survey ScienceBase-Catalog.
Annual electricity generation by state
Net summer capacity by state
Shapefile with U.S. state boundaries
Attribution for electricity generation and capacity data: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data/state/. In the public domain.
electricity_rates_by_state_merged.geojson
Commercial electricity prices are obtained from the Electricity database maintained by the United States Energy Information Administration.
Electricity rate by state
Attribution: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data.php. In the public domain.
demand_charges_merged.geojson
demand_charges_by_state.geojson
Maximum historical demand charges for each state and zip code are derived from a dataset compiled by the National Renewable Energy Laboratory in this this Data Catalog.
Historical demand charge dataset
The original dataset is compiled by the National Renewable Energy Laboratory (NREL), the U.S. Department of Energy (DOE), and the Alliance for Sustainable Energy, LLC ('Alliance').
Attribution: McLaren, Joyce, Pieter Gagnon, Daniel Zimny-Schmitt, Michael DeMinco, and Eric Wilson. 2017. 'Maximum demand charge rates for commercial and industrial electricity tariffs in the United States.' NREL Data Catalog. Golden, CO: National Renewable Energy Laboratory. Last updated: July 24, 2024. DOI: 10.7799/1392982.
eastcoast.geojson
midwest.geojson
la_i710.geojson
h2la.geojson
bayarea.geojson
saltlake.geojson
northeast.geojson
Highway corridors and regions targeted for heavy duty vehicle infrastructure projects are derived from a public announcement on February 15, 2023 by the United States Department of Energy.
The shapefile with Bay area boundaries is obtained from this Berkeley Library dataset.
The shapefile with Utah county boundaries is obtained from this dataset from the Utah Geospatial Resource Center.
Shapefile for Bay Area country boundaries
Shapefile for counties in Utah
Attribution for public announcement: United States Department of Energy. Biden-Harris Administration Announces Funding for Zero-Emission Medium- and Heavy-Duty Vehicle Corridors, Expansion of EV Charging in Underserved Communities (2023). Available from https://www.energy.gov/articles/biden-harris-administration-announces-funding-zero-emission-medium-and-heavy-duty-vehicle.
Attribution for Bay area boundaries: San Francisco (Calif.). Department Of Telecommunications and Information Services. Bay Area Counties. 2006. In the public domain.
Attribution for Utah boundaries: Utah Geospatial Resource Center & Lieutenant Governor's Office. Utah County Boundaries (2023). Available from https://gis.utah.gov/products/sgid/boundaries/county/.
License for Utah boundaries: Creative Commons 4.0 International License.
incentives_and_regulations/*.geojson
State-level incentives and regulations targeting heavy duty vehicles are collected from the State Laws and Incentives database maintained by the United States Department of Energy's Alternative Fuels Data Center.
Data was collected manually from the State Laws and Incentives database.
Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Alternative Fuels Data Center. State Laws and Incentives. Accessed on Aug 5, 2024 from: https://afdc.energy.gov/laws/state. In the public domain.
These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.
costs_and_emissions/*.geojson
diesel_price_by_state.geojson
trucking_energy_demand.geojson
Lifecycle costs and emissions of electric and diesel trucking are evaluated by adapting the model developed by Moreno Sader et al., and calibrated to the Run on Less dataset for the Tesla Semi collected from the 2023 PepsiCo Semi pilot by the North American Council for Freight Efficiency.
In
The Digital Geomorphic-GIS Map of the Ocracoke Area (1:24,000 scale 2007 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (occk_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (occk_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (occk_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (occk_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (occk_geomorphology_metadata.txt or occk_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This data set was developed as an information layer for the Washington State Department of Commerce. It is designed to be used as part of the Puget Sound Mapping Project to provide a generalized and standardized depiction of land uses and growth throughout the Puget Sound region.
This map represents land uses, zoning abbreviations and zoning descriptions. Zoning data was collected in raster format and digitized by State Department of Commerce staff. The generalized depiction of intended future land use is based primarily upon 2012 zoning and 2010 assessor's records.NOTE: Because this is a large dataset, some geoprocessing operations (i.e. dissolve) may not work on the entire dataset. You will receive a topoengine error. Clipping out an area of interest (i.e. a county) and performing the operation on it instead of on the full dataset is a way to get around this software limitation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These geospatial data resources and the linked mapping tool below reflect currently available data on three categories of potentially qualifying Low-Income communities:
Note that Category 2 - Indian Lands are not shown on this map. Note that Persistent Poverty is not calculated for US Territories. Note that CEJST Energy disadvantage is not calculated for US Territories besides Puerto Rico.
The excel tool provides the land area percentage of each 2023 census tract meeting each of the above categories. To examine geographic eligibility for a specific address or latitude and longitude, visit the program's mapping tool.
Additional information on this tax credit program can be found on the DOE Landing Page for the 48e program at https://www.energy.gov/diversity/low-income-communities-bonus-credit-program or the IRS Landing Page at https://www.irs.gov/credits-deductions/low-income-communities-bonus-credit.
Maps last updated: September 1st, 2024
Next map update expected: December 7th, 2024
Disclaimer: The spatial data and mapping tool is intended for geolocation purposes. It should not be relied upon by taxpayers to determine eligibility for the Low-Income Communities Bonus Credit Program.
Source Acknowledgements:
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Discover the latest insights from Market Research Intellect's Agricultural Mapping Software Market Report, valued at USD 1.5 billion in 2024, with significant growth projected to USD 3.2 billion by 2033 at a CAGR of 9.5% (2026-2033).
The Digital Geologic-GIS Map of Klondike Gold Rush National Historical Park and Vicinity, Alaska is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (klgo_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (klgo_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (klgo_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (klgo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (klgo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (klgo_geology_metadata_faq.pdf). Please read the klgo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (klgo_geology_metadata.txt or klgo_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:1584,000 and United States National Map Accuracy Standards features are within (horizontally) 804.7 meters or 2640 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This 1m Digital Terrain Model (DTM) is derived from bare-ground Light Detection and Ranging (LiDAR) point cloud data from September 2005 for the Green Lakes Valley, near Boulder Colorado. This dataset is better suited for derived layers such as slope angle, aspect, and contours. The DTM was created from LiDAR point cloud tiles subsampled to 1-meter postings, acquired by the National Center for Airborne Laser Mapping (NCALM) project. This data was collected in collaboration between the University of Colorado, Institute of Arctic and Alpine Research (INSTAAR) and NCALM, which is funded by the National Science Foundation (NSF). The DTM has the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. Total area imaged is 35 km^2. The LiDAR point cloud data was acquired with an Optech 1233 Airborne Laser Terrain Mapper (ALTM) and mounted in a twin engine Piper Chieftain (N931SA) with Inertial Measurement Unit (IMU) at a flying height of 600 m. Data from two GPS (Global Positioning System) ground stations were used for aircraft trajectory determination. The continuous DTM surface was created by mosaicing and then kriging 1 km2 LiDAR point cloud LAS-formated tiles using Golden Software's Surfer 8 Kriging algorithm. Horizontal accuracy and vertical accuracy is unknown. The layer is available in GEOTIF format approx. 265 MB of data. It has a UTM zone 13 projection, with a NAD83 horizonal datum and a NAVD88 vertical datum computed using NGS GEOID03 model, with FGDC-compliant metadata. A shaded relief model was also generated. A similar layer, the Digital Surface Model (DSM), is a first-stop elevation layer. A processing report and readme file are included with this data release. The DTM is available through an unrestricted public license. The LiDAR DEMs will be of interest to land managers, scientists, and others for study of topography, ecosystems, and environmental change. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Gain in-depth insights into Application Dependency Mapping Tools Market Report from Market Research Intellect, valued at USD 650 million in 2024, and projected to grow to USD 1.5 billion by 2033 with a CAGR of 10.5% from 2026 to 2033.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Soil fertility maps are crucial for sustainable soil and land use management system for predicting soil health status. However, many regions of Nepal lack updated or reliable soil fertility maps. This study aimed to develop the soil fertility map of agricultural areas in Resunga Municipality, Gulmi district of Nepal using the geographical information system (GIS) technique. A total of 57 composite geo-referenced soil samples from the depth (0–20 cm) were taken from the agricultural land of an area of 52 km2. Soil samples were analyzed for their texture, pH, organic matter, total nitrogen, available phosphorous, available potassium, available boron, and available zinc. These parameters were modelled to develop a soil quality index (SQI). Using the kriging tool, obtained parameters were interpolated and digital maps were produced along with soil quality and nutrient indices. The result showed that the study area lies within the fair (0.4 to 0.6) and good (0.6 to 0.8) range of SQI representing 96% and 3% respectively. Soil organic matter and nitrogen showed moderate variability exhibiting a low status in 95% and 86% of the total study area. Phosphorous and potassium showed medium status in 88% and 75% of the study area, respectively. Zinc was low and boron status was medium in most of the area. To maintain soil fertility is by improving the rate of exogenous application of fertilizers and manures. The application of micronutrients like boron and zinc is highly recommended in the study area along with organic manures. The soil fertility map can be used as a baseline for soil and land use management in Resunga Municipality. We recommend further studies to validate the map and assess the factors affecting soil fertility in this region. Soil fertility maps provide researchers, farmers, students, and land use planners with easier decision-making tools for sustainable crop production systems and land use management systems.
From gridded National Soil Survey Geographic Database (gNATSGO). Used Soil Data Development Toolbox > gSSURGO Mapping Toolset > Create Soil Map Tool, Exported Data Layer to TIFF, and Used Spatial Analyst > Reclass > Lookup Tool to create this data layer and display the HYDROLGRP_. Follow instructions in "How to Create an On-Demand Soil Property or Interpretation Grid from gNATSGO". Shows sSSURGO data for California. A - sand, loamy sand, sandy loam B - loam, silt, loam or silt C - sandy clay loam D - clay loam, silty clay loam, sandy clay, silty clay, or clay The gridded National Soil Survey Geographic Database (gNATSGO) is a USDA-NRCS Soil & Plant Science Division (SPSD) composite database that provides complete coverage of the best available soils information for all areas of the United States and Island Territories. It was created by combining data from the Soil Survey Geographic Database (SSURGO), State Soil Geographic Database (STATSGO2), and Raster Soil Survey Databases (RSS) into a single seamless ESRI file geodatabase. The state-wide gNATSGO databases contain a 10-meter raster of the soil map units and 70 related tables of soil properties and interpretations. It is designed to work with the SPSD gSSURGO ArcTools. Users can create full coverage thematic maps and grids of soil properties and interpretations for large geographic areas, such as the extent of a State or the conterminous United States. Please note that for the CONUS database, only a 30 meter raster is included. SSURGO is the SPSD flagship soils database that has over 100 years of field-validated detailed soil mapping data. SSURGO contains soils information for more than 90 percent of the United States and island territories, but unmapped land remains. Click here for the current completion status of SSURGO mapping. STATSGO2 is a general soil map that has soils data for all of the United States and island territories, but the data is not as detailed as the SSURGO data. The Raster Soil Surveys (RSSs) are the next generation soil survey databases developed using advanced digital soil mapping methods. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcseprd1464625) Use the Create A Soil Map ArcTool from the gSSURGO Mapping Toolset in the Soil Data Development Toolbox to make a TIFF data layer (Instructions: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcseprd1464625#grid). Make a Hydrological Soils Group Map, and display it using the Hydrolgrp_ attribute. NotesThe SPSD refreshes all published soil databases annually. gNATSGO will be included in the refresh cycle, which will provide a new up-to-date version of the database each year. gNATSGO is an ESRI file geodatabase. The soil map units are delivered only as a 10-meter raster version and are uniquely identified by the mukey, which is included in the attribute table. No vectorized version of the soil map units is included in gNATSGO. The database has 70 tables that contain soil attributes, and relationship classes are built into the database to define relationships among tables. The raster can be joined to the Mapunit and Muaggatt tables in the MUKEY field. The database contains a feature class called SAPOLYGON. The “source” field in this feature class indicates whether the data was derived from SSURGO, STATSGO2, or an RSS. A gNATSGO database was created for the conterminous United States and for each state or island territory that does not have complete coverage in SSURGO or has a published RSS. If you encounter an ArcMap error when working with a gNATSGO dataset that reads “The number of unique values exceeds the limit” try increasing the maximum number of unique values to render in your Raster ArcMap Options. Specific instructions can be obtained here: https://support.esri.com/en/technical-article/000010117
The Digital Surficial Geologic-GIS Map of the East Stroudsburg Quadrangle, Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (east_surficial_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (east_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (east_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (dewa_surficial_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (dewa_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (east_surficial_geology_metadata_faq.pdf). Please read the dewa_surficial_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Pennsylvania Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (east_surficial_geology_metadata.txt or east_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This presentation shows how to use the geography part of the DLI collection. Mapping software, such as MapInfo, is discussed. Census geography is also discussed.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).