This site provides free access to Iowa geographic map data, including aerial photography, orthophotos, elevation maps, and historical maps. The data is available through an on-line map viewer and through Web Map Service (WMS) connections for GIS. The site was developed by the Iowa State University Geographic Information Systems Support and Research Facility in cooperation with the Iowa Department of Natural Resources, the USDA Natural Resources Conservation Service, and the Massachusetts Institute of Technology. This site was first launched in March 1999.
This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.
The Human Geography Map (World Edition) web map provides a detailed vector basemap with a monochromatic style and content adjusted to support Human Geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Base, a simple basemap consisting of land areas in a very light gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in Introducing a Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.
The geographic data are built from the Technical Information Management System (TIMS). TIMS consists of two separate databases: an attribute database and a spatial database. The attribute information for offshore activities is stored in the TIMS database. The spatial database is a combination of the ARC/INFO and FINDER databases and contains all the coordinates and topology information for geographic features. The attribute and spatial databases are interconnected through the use of common data elements in both databases, thereby creating the spatial datasets. The data in the mapping files are made up of straight-line segments. If an arc existed in the original data, it has been replaced with a series of straight lines that approximate the arc. The Gulf of America OCS Region stores all its mapping data in longitude and latitude format. All coordinates are in NAD 27. Data can be obtained in three types of digital formats: INTERACTIVE MAP: The ArcGIS web maps are an interactive display of geographic information, containing a basemap, a set of data layers (many of which include interactive pop-up windows with information about the data), an extent, navigation tools to pan and zoom, and additional tools for geospatial analysis. SHP: A Shapefile is a digital vector (non-topological) storage format for storing geometric location and associated attribute information. Shapefiles can support point, line, and area features with attributes held in a dBASE format file. GEODATABASE: An ArcGIS geodatabase is a collection of geographic datasets of various types held in a common file system folder, a Microsoft Access database, or a multiuser relational DBMS (such as Oracle, Microsoft SQL Server, PostgreSQL, Informix, or IBM DB2). The geodatabase is the native data structure for ArcGIS and is the primary data format used for editing and data management.
The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://webtechsurvey.com/termshttps://webtechsurvey.com/terms
A complete list of live websites using the Interactive Geo Maps technology, compiled through global website indexing conducted by WebTechSurvey.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This entry provides access to surficial geology maps that have been published by the Geological survey of Canada. Two series of maps are available: "A Series" maps, published from 1909 to 2010 and "Canadian Geoscience Maps", published since 2010. Three types of CGM-series maps are available: 1)Surficial Geology: based on expert-knowledge full air photo interpretation (may include interpretive satellite imagery, Digital Elevation Models (DEM)), incorporating field data and ground truthing resulting from extensive, systematic fieldwork across the entire map area. Air photo interpretation includes map unit/deposit genesis, texture, thickness, structure, morphology, depositional or erosional environment, ice flow or meltwater direction, age/cross-cutting relationships, landscape evolution and associated geological features, complemented by additional overlay modifiers, points and linear features, selected from over 275 different geological elements in the Surficial Data Model. Wherever possible, legacy data is also added to the map. 2)Reconnaissance Surficial Geology: based on expert-knowledge full air photo interpretation (may include interpretive satellite imagery, DEMs), with limited or no fieldwork. Air photo interpretation includes map unit/deposit genesis, texture, thickness, structure, morphology, depositional or erosional environment, ice flow or meltwater direction, age/cross-cutting relationships, landscape evolution and associated geological features, complemented by additional overlay modifiers, points and linear features, selected from over 275 different geological elements in the Surficial Data Model. Wherever possible, legacy data is also added to the map. 3)Predictive Surficial Geology: derived from one or more methods of remote predictive mapping (RPM) using different satellite imagery, spectral characteristics of vegetation and surface moisture, machine processing, algorithms etc., DEMs, where raster data are converted to vector, with some expert-knowledge air photo interpretation (training areas or post-verification areas), varying degrees of non-systematic fieldwork, and the addition of any legacy data available. Each map is based on a version of the Geological Survey of Canada's Surficial Data Model (https://doi.org/10.4095/315021), thus providing an easily accessible national surficial geological framework and context in a standardized format to all users. "A series" maps were introduced in 1909 and replaced by CGM maps in 2010. The symbols and vocabulary used on those maps was not as standardized as they are in the CGM maps. Some "A series" maps were converted into, or redone, as CGM maps, Both versions are available whenever that is the case. In addition to CGM and "A series" maps, some surficial geology maps are published in the Open File series. Those maps are not displayed in this entry, but can be found and accessed using the NRCan publications website, GEOSCAN:(https://geoscan.nrcan.gc.ca).
The Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points). All of the Digital City Map (DCM) datasets are featured on the Streets App All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
The Digital Geologic Map of the U.S. Geological Survey Mapping in the Western Portion of Amistad National Recreation Area, Texas is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Eddie Collins, Amanda Masterson and Tom Tremblay (Texas Bureau of Economic Geology); Rick Page (U.S. Geological Survey); Gilbert Anaya (International Boundary and Water Commission). Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (wpam_metadata.txt; available at http://nrdata.nps.gov/amis/nrdata/geology/gis/wpam_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (wpam_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 14N. The data is within the area of interest of Amistad National Recreation Area.
This is a subset of World Biomass Image Layer to focus on Central Asia and Caucasus Region. Use this web map to visualize and understand the Biomass for that region. Use image layer for your analysis. Plants play a central role in the carbon cycle by absorbing carbon dioxide from the atmosphere and incorporating it in the structure of the plant. Globally living plants contain 500 billion metric tons of carbon, more than 60 times the amount of carbon released to the atmosphere by humans each year. Understanding the distribution of the carbon stored in living plants, known as biomass, is key to estimating the effects of land use change on the climate.Dataset SummaryThis layer provides access to a 1-km cell-sized raster with data on the density of carbon stored in living plants in metric tons per hectare for the year 2000. It was published by the Oak Ridge National Laboratory Carbon Dioxide Information Analysis Center in 2008.The authors of these data request that they be cited as:Ruesch, Aaron, and Holly K. Gibbs. 2008. New IPCC Tier-1 Global Biomass Carbon Map For the Year 2000. Available online from the Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
This layer of the GeoIndex shows the location of available 1:10000 scale digital geological maps within Great Britain. The Digital Geological Map of Great Britain project (DiGMapGB) has prepared 1:625 000, 1:250 000 and 1:50 000 scale datasets for England, Wales and Scotland. The datasets themselves are available as vector data in a variety of formats in which they are structured into themes primarily for use in geographical information systems (GIS) where they can be integrated with other types of spatial data for analysis and problem solving in many earth-science-related issues. The DiGMapGB-10 dataset is as yet incomplete, current work is concentrated on extending the geographical cover, especially to cover high priority urban areas.
This layer shows the Geological Map of Hong Kong in 1: 20000. It is a subset of the geo-referenced data made available by the Civil Engineering and Development Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data has been processed and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.
This vector tile layer presents the Human Geography Label style (World Edition) and provides a detailed vector basemap for world labels designed to draw attention to your thematic content. This is similar in content and style to the popular Light Gray Canvas map. The map includes labels for highways, major roads, minor roads, water features, cities, landmarks, and administrative boundaries. This vector tile layer provides unique capabilities for customization, high-resolution display, and use in mobile devices.This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.This layer is used in the Human Geography Map web map included in ArcGIS Living Atlas of the World.See the Vector Basemaps group for other vector tile layers. Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.
This map consists of vector tile layers that form a detailed basemap for the world, featuring a monochromatic style with content adjusted to support Human Geography information. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the Human Geography Map.
http://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply
Inventory of geological maps, map data sets and other sources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A dataset describing exposed bedrock and surficial geology of Antarctica constructed by the GeoMAP Action Group of SCAR (The Scientific Committee on Antarctic Research) and GNS Science, New Zealand. Legacy geological map data have been captured into a geographic information system (GIS), refining its spatial reliability, harmonising classification, then improving representation of glacial sequences and geomorphology. A total 99,080 polygons have been unified for depicting geology at 1:250,000 scale, but locally there are some areas with higher spatial precision. Geological definition in GeoMAP v.2022-08 is founded on a mixed chronostratigraphic- and lithostratigraphic-based classification. Description of rock and moraine polygons employs international GeoSciML data protocols to provide attribute-rich and queriable data; including bibliographic links to 589 source maps and scientific literature. Data are provided under CC-BY License as zipped ArcGIS geodatabase, QGIS geopackage or GoogleEarth kmz files. GeoMAP is the first detailed geological dataset covering all of Antarctica. GeoMAP depicts 'known geology' of rock exposures rather than 'interpreted' sub-ice features and is suitable for continent-wide perspectives and cross-discipline interrogation.
Interactive web map for Understanding World Regional Geography, 1st Edition. Fouberg, Erin H., and William G. Moseley. Understanding World Regional Geography. 1st ed. John Wiley & Sons, 2015.
Spatial coverage index compiled by East View Geospatial of set "Israel 1:200,000 Scale Geological Maps". Source data from GSI (publisher). Type: Geoscientific - Geology. Scale: 1:200,000. Region: Middle East.
Web application with the ability to search any geographical feature in Saskatchewan including city, town, lake, etc., and Provincial Highway
Spatial coverage index compiled by East View Geospatial of set "Global AMS 1:250,000 Scale Geological Maps". Source data from AMS (publisher). Type: Geoscientific - Geology. Scale: 1:250,000.
This site provides free access to Iowa geographic map data, including aerial photography, orthophotos, elevation maps, and historical maps. The data is available through an on-line map viewer and through Web Map Service (WMS) connections for GIS. The site was developed by the Iowa State University Geographic Information Systems Support and Research Facility in cooperation with the Iowa Department of Natural Resources, the USDA Natural Resources Conservation Service, and the Massachusetts Institute of Technology. This site was first launched in March 1999.