21 datasets found
  1. Digital Property Maps

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Jan 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of New Brunswick (2025). Digital Property Maps [Dataset]. https://open.canada.ca/data/en/dataset/56f75efc-3681-34ce-6440-c2c8a8457332
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 9, 2025
    Dataset provided by
    Government of New Brunswickhttps://www.gnb.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Approximate boundaries for all land parcels in New Brunswick. The boundaries are structured as Polygons. The Property Identifier number or PID is included for each parcel.

  2. Outdoor NB-IoT and 5G coverage and channel information data in urban...

    • data-staging.niaid.nih.gov
    • data.niaid.nih.gov
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luca De Nardis; Giuseppe Caso; Özgü Alay; Marco Neri; Anna Brunstrom; Maria-Gabriella Di Benedetto (2025). Outdoor NB-IoT and 5G coverage and channel information data in urban environments [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_7674298
    Explore at:
    Dataset updated
    Feb 13, 2025
    Dataset provided by
    Rohde & Schwarzhttp://rohde-schwarz.com/
    University of Oslo
    Sapienza University of Rome
    Karlstad University
    Authors
    Luca De Nardis; Giuseppe Caso; Özgü Alay; Marco Neri; Anna Brunstrom; Maria-Gabriella Di Benedetto
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes data for NB-IoT and 5G networks as collected in two cities: Oslo, Norway (NB-IoT only) and Rome, Italy (both NB-IoT and 5G).

    Data were collected using the Rohde & Schwarz TSMA6 mobile network scanner. 7 measurement campaigns are provided for Oslo, and 6 for Rome. Additional data collected in Rome are provided in the following large-scale dataset, focusing on the two major mobile network operators: https://ieee-dataport.org/documents/large-scale-dataset-4g-nb-iot-and-5g-non-standalone-network-measurements

    The dataset includes a metadata file providing the following information for each campaign:

    date of collection;

    start time and end time of collection;

    length;

    type (walking/driving).

    Two additional metadata files are provided: two .kml files, one for each city, allowing the import of coordinates of data points organized by campaign in a GIS engine, such as Google Earth, for interactive visualization.

    The dataset contains the following data for NB-IoT:

    Raw data for each campaign, stored in two .csv files. For a generic campaign , the files are:

    NB-IoT_coverage_C.csv including a geo-tagged data entry in each row. Each entry provides information on a Narrowband Physical Cell Identifier (NPCI), with data related to the time stamp the NPCI was detected, GPS information, network (NPCI, Operator, Country Code, eNodeB-ID) and RF signal (RSSI, SINR, RSRP and RSRQ values);

    NB-IoT_RefSig_cir_C.csv, also including a geo-tagged data entry in each row. Each entry provides information on a NPCI, with data related to the time stamp the NPCI was detected, GPS information, network (NPCI, Operator ID, Country Code, eNodeB-ID) and Channel Impulse Response (CIR) statistics, including the maximum delay.

    Processed data, stored in a Matlab workspace (.mat) file for each city: data are grouped in data points, identified by pairs. Each data point provides RF and CIR maximum delay measurements for each unique combination detected at the coordinates of the data point.

    Estimated positions of eNodeBs, stored in a csv file for each city;

    A matlab script and a function to extract and generate processed data from the raw data for each city.

    The dataset contains the following data for 5G:

    Raw data for each campaign, stored in two .xslx files. For a generic campaign , the files are:

    5G_coverage_C.xslx including a geo-tagged data entry in each row. Each entry provides information on a Physical Cell Identifier (PCI), with data related to the time stamp the PCI was detected, GPS information, network (PCI, Beamforming Index, Operator, Country Code) and RF data (SSB-RSSI, SSS-SINR, SSS-RSRP and SSS-RSRQ values, and similar information for the PBCH signal);

    5G_RefSig_cir_C.csv, also including a geo-tagged data entry in each row. Each entry provides information on a PCI, with data related to the time stamp the PCI was detected, GPS information, network (PCI, Beamforming Index, Operator ID, Country Code) and Channel Impulse Response (CIR) statistics, including the maximum delay.

    Processed data, stored in a Matlab workspace (.mat) file: data are grouped in data points, identified by pairs. Each data point provides RF and CIR maximum delay measurements for each unique combination detected at the coordinates of the data point.

    A matlab script and a supporting function to extract and generate processed data from the raw data.

    In addition, in the case of the Rome data additional matlab workspaces are provided, containing interpolated data in the feature dimensions according to two different approaches:

    A campaign-by-campaign linear interpolation (both NB-IoT and 5G);

    A bidimensional interpolation on all campaigns combined (NB-IoT only).

    A function to interpolate missing data in the original data according to the first approach is also provided for each technology. The interpolation rationale and procedure for the first approach is detailed in:

    L. De Nardis, G. Caso, Ö. Alay, U. Ali, M. Neri, A. Brunstrom and M.-G. Di Benedetto, "Positioning by Multicell Fingerprinting in Urban NB-IoT networks," Sensors, Volume 23, Issue 9, Article ID 4266, April 2023. DOI: 10.3390/s23094266.

    The second interpolation approach is instead introduced and described in:

    L. De Nardis, M. Savelli, G. Caso, F. Ferretti, L. Tonelli, N. Bouzar, A. Brunstrom, O. Alay, M. Neri, F. Elbahhar and M.-G. Di Benedetto, " Range-free Positioning in NB-IoT Networks by Machine Learning: beyond WkNN", under major revision in IEEE Journal of Indoor and Seamless Positioning and Navigation.

    Positioning using the 5G data was furthermore in investigated in:

    K. Kousias, M. Rajiullah, G. Caso, U. Ali, Ö. Alay, A. Brunstrom, L. De Nardis, M. Neri, and M.-G. Di Benedetto, "A Large-Scale Dataset of 4G, NB-IoT, and 5G Non-Standalone Network Measurements," IEEE Communications Magazine, Volume 62, Issue 5, pp. 44-49, May 2024. DOI: 10.1109/MCOM.011.2200707.

    G. Caso, M. Rajiullah, K. Kousias, U. Ali, N. Bouzar, L. De Nardis, A. Brunstrom, Ö. Alay, M. Neri and M.-G. Di Benedetto,"The Chronicles of 5G Non-Standalone: An Empirical Analysis of Performance and Service Evolution", IEEE Open Journal of the Communications Society, Volume 5, pp. 7380 - 7399, 2024. DOI: 10.1109/OJCOMS.2024.3499370.

    Please refer to the above publications when using and citing the dataset.

  3. o

    NB-0017 from Asia/China/Jiangsu/C14 Geo Group 31750220

    • opencontext.org
    Updated Jul 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Darcy Bird; Lux Miranda; Marc Vander Linden; Erick Robinson; R. Kyle Bocinsky; Chris Nicholson; Jose Capriles; Judson Byrd Finley; Eugenia M. Gayo; Adolfo Gil; Jade d’Alpoim Guedes; Julie A. Hoggarth; Andrea Kay; Emma Loftus; Umberto Lombardo; Madeline Mackie; Alessio Palmisano; Steinar Solheim; Robert L. Kelly; Jacob Freeman (2024). NB-0017 from Asia/China/Jiangsu/C14 Geo Group 31750220 [Dataset]. https://opencontext.org/subjects/52f9b8f1-3637-4636-b4e2-7e7e0669fccc
    Explore at:
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Open Context
    Authors
    Darcy Bird; Lux Miranda; Marc Vander Linden; Erick Robinson; R. Kyle Bocinsky; Chris Nicholson; Jose Capriles; Judson Byrd Finley; Eugenia M. Gayo; Adolfo Gil; Jade d’Alpoim Guedes; Julie A. Hoggarth; Andrea Kay; Emma Loftus; Umberto Lombardo; Madeline Mackie; Alessio Palmisano; Steinar Solheim; Robert L. Kelly; Jacob Freeman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    An Open Context "subjects" dataset item. Open Context publishes structured data as granular, URL identified Web resources. This "Radiocarbon Sample" record is part of the "Cross-referenced p3k14c" data publication.

  4. u

    MBON Pole to Pole: Sandy beach biodiversity of southwest New Brunswick,...

    • data.urbandatacentre.ca
    • open.canada.ca
    Updated Oct 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). MBON Pole to Pole: Sandy beach biodiversity of southwest New Brunswick, Canada [Dataset]. https://data.urbandatacentre.ca/dataset/gov-canada-3f854a5f-2dbe-4a16-b6e0-aaa92aa713f2
    Explore at:
    Dataset updated
    Oct 19, 2025
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada, New Brunswick
    Description

    The Marine Biodiversity Observation Network Pole to Pole (MBON P2P) effort seeks to develop a framework for the collection, use and sharing of marine biodiversity data in a coordinated, standardized manner leveraging on existing infrastructure managed by the Global Ocean Observing System (GOOS; IOC-UNESCO), the GEO Biodiversity Observation Network (GEO BON), and the Ocean Biogeographic Information System (OBIS). The MBON Pole to Pole aims to become a key resource for decision-making and management of living resource across countries in the Americas for reporting requirements under the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), Aichi Targets of the Convention of Biological Diversity (CBD), and the UN 2030 Agenda for Sustainable Development Goals (SDGs). This collection corresponds to the species registered on sandy beaches of the Musquash Harbour, Mispec Bay, and New River Beach, New Brunswick, Canada, using the MBON P2P sampling protocol for sandy beaches, with funding from the Government of Canada's Coastal Environmental Baseline Program. Citation: Reinhart B (2024). MBON POLE TO POLE: SANDY BEACH BIODIVERSITY OF SOUTHWEST NEW BRUNSWICK, CANADA. Version 1.5. Caribbean OBIS Node. Samplingevent dataset. https://ipt.iobis.org/mbon/resource?r=sandybeachesbayoffundynb&v=1.5

  5. s

    Consumer Price Index, by geography, monthly, percentage change, not...

    • www150.statcan.gc.ca
    Updated Nov 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Consumer Price Index, by geography, monthly, percentage change, not seasonally adjusted, provinces, Whitehorse and Yellowknife [Dataset]. http://doi.org/10.25318/1810000401-eng
    Explore at:
    Dataset updated
    Nov 17, 2025
    Dataset provided by
    Government of Canada, Statistics Canada
    Area covered
    Canada
    Description

    Monthly indexes and percentage changes for major components, selected sub-groups and special aggregates of the Consumer Price Index (CPI), not seasonally adjusted, for Canada, provinces, Whitehorse and Yellowknife. Data are presented for the corresponding month of the previous year, the previous month and the current month. The base year for the index is 2002=100.

  6. MBON POLE TO POLE: SANDY BEACH BIODIVERSITY OF SOUTHWEST NEW BRUNSWICK,...

    • obis.org
    • search.dataone.org
    zip
    Updated Nov 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Fisheries and Oceans - St. Andrews Biological Station (2025). MBON POLE TO POLE: SANDY BEACH BIODIVERSITY OF SOUTHWEST NEW BRUNSWICK, CANADA [Dataset]. https://obis.org/dataset/b77e7c2e-d796-478a-b110-8a647a887a4a
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 18, 2025
    Dataset provided by
    St. Andrews Biological Station
    Authors
    Department of Fisheries and Oceans - St. Andrews Biological Station
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2021 - 2024
    Area covered
    New Brunswick, Canada
    Variables measured
    abundance
    Description

    The MBON Pole to Pole effort seeks to develop a framework for the collection, use and sharing of marine biodiversity data in a coordinated, standardized manner leveraging on existing infrastructure managed by the Global Ocean Observing System (GOOS; IOC-UNESCO), the GEO Biodiversity Observation Network (GEO BON), and the Ocean Biogeographic Information System (OBIS). The MBON Pole to Pole aims to become a key resource for decision-making and management of living resource across countries in the Americas for reporting requirements under the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), Aichi Targets of the Convention of Biological Diversity (CBD), and the UN 2030 Agenda for Sustainable Development Goals (SDGs). This collection corresponds to the species registered on sandy beaches of the Musquash Harbour, Mispec Bay, and New River Beach, New Brunswick, Canada, using the MBON P2P sampling protocol for sandy beaches, with funding from the Government of Canada's Coastal Environmental Baseline Program.

  7. QuickFacts: New Brunswick city, New Jersey

    • census.gov
    csv
    Updated Jul 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (2021). QuickFacts: New Brunswick city, New Jersey [Dataset]. https://www.census.gov/quickfacts/geo/chart/newbrunswickcitynewjersey/AFN120212
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 1, 2021
    Dataset authored and provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    New Brunswick City School District, New Brunswick, New Jersey
    Description

    U.S. Census Bureau QuickFacts statistics for New Brunswick city, New Jersey. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.

  8. e

    Численность населения в разбивке по сельским и городским | Population by...

    • repository.econdata.tech
    Updated Nov 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Численность населения в разбивке по сельским и городским | Population by rural / urban areas -- UN [Dataset]. https://repository.econdata.tech/dataset/ilostat-pop-2pop-geo-nb
    Explore at:
    Dataset updated
    Nov 5, 2025
    Description

    Численность населения в разбивке по сельским и городским районам - оценки и прогнозы ООН на июль 2024 года (в тысячах) Population by rural / urban areas -- UN estimates and projections, July 2024 (thousands)

  9. The group division of GEO database.

    • plos.figshare.com
    xlsx
    Updated Nov 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jing Chu (2024). The group division of GEO database. [Dataset]. http://doi.org/10.1371/journal.pone.0313939.s004
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Jing Chu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundNeuroblastoma (NB) is the most common extracranial solid tumor in children, and the AURKA gene encodes a protein kinase involved in cell cycle regulation that plays an oncogenic role in a variety of human cancers. The aim of this study was to validate the biological function and prognostic significance of AURKA in NB using basic experiments and bioinformatics.MethodsData obtained from Target and GEO databases were analyzed using various bioinformatic techniques. The expression of AURKA in 77 NB samples was detected by immunohistochemistry (IHC) method. The lentiviral RNA interference technique was employed to downregulate AURKA gene expression in NB cell lines. Additionally, cell counting kit-8 and flow cytometry analysis were conducted to investigate the impact of AURKA expression on cell proliferation, cell cycle progression, and apoptosis.ResultsA bioinformatic analysis showed that patients with NB in the AURKA-high-expression group had shorter OS (Overall Survival). Immune cell infiltration analysis showed that only activated CD4 T cell and type 2 T helper cell infiltration levels were higher in the AURKA-high-expression group than in the AURKA-low-expression group, with the infiltration levels of most other immune cells and cytokines lower in the high-expression group. Furthermore, the enhanced infiltration of activated CD4 T cells was associated with worse OS in patients with NB.IHC results showed that the AURKA expression was correlated with MYCN status and INSS stage. Log-rank test showed that pathological type, MYCN status, INSS stage, COG risk group, and AURKA expression was related to PFS (Progression-free survival) of NB patients, but COX regression analysis showed that none of the above factors were independently prognostic for PFS.In vitro, shRNA delivered via an AURKA-specific lentivirus significantly and consistently silenced endogenous AURKA expression in the human NB cell line SK-N-AS. This inhibited tumor cell proliferation, induced apoptosis, and caused G2/M-phase cell cycle arrest. Moreover, western blot assay showed significant reductions in the levels of mTOR, p70S6K, and 4E-BP1 phosphorylation in the AURKA-knockdown group. I found in subsequent experiments that NFYB can bind to the AURKA promoter and thus promote AURKA expression.ConclusionsHigh-level AURKA expression in NB is associated with poor patient prognosis. Silencing AURKA inhibited tumor cell proliferation, induced tumor cell apoptosis, and led to cell cycle arrest in the G2/M phase. Mechanistically, AURKA knockdown inhibited the phosphorylation and the activation of the mTOR1/p70S6K/4E-BP1 signaling pathway. In addition, AURKA was observed to regulate the infiltration levels of various immune cells in the NB tumor microenvironment, resulting in remodeling of the immunosuppressive tumor microenvironment.

  10. e

    Численность детского населения в разбивке по полу, возрасту | Child...

    • repository.econdata.tech
    Updated Nov 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Численность детского населения в разбивке по полу, возрасту | Child population by sex, age and rural / urban areas [Dataset]. https://repository.econdata.tech/dataset/ilostat-cld-tpop-sex-age-geo-nb
    Explore at:
    Dataset updated
    Nov 5, 2025
    Description

    Численность детского населения в разбивке по полу, возрасту и сельским/городским районам (в тысячах) Child population by sex, age and rural / urban areas (thousands)

  11. e

    Работники в разбивке по полу и сельским/городским районам | Employees by sex...

    • repository.econdata.tech
    Updated Nov 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Работники в разбивке по полу и сельским/городским районам | Employees by sex and rural / urban areas [Dataset]. https://repository.econdata.tech/dataset/ilostat-ees-tees-sex-geo-nb
    Explore at:
    Dataset updated
    Nov 5, 2025
    Description

    Работники в разбивке по полу и сельским/городским районам (тыс.) Employees by sex and rural / urban areas (thousands)

  12. e

    Занятость в разбивке по полу, фактически отработанным часам | Employment by...

    • repository.econdata.tech
    Updated Nov 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Занятость в разбивке по полу, фактически отработанным часам | Employment by sex, weekly hours actually worked and [Dataset]. https://repository.econdata.tech/dataset/ilostat-emp-temp-sex-how-geo-nb
    Explore at:
    Dataset updated
    Nov 5, 2025
    Description

    Занятость в разбивке по полу, фактически отработанным часам в неделю и сельским/ городским районам (тыс.) Employment by sex, weekly hours actually worked and rural / urban areas (thousands)

  13. e

    Среднее количество фактически отработанных часов в неделю на | Mean weekly...

    • repository.econdata.tech
    Updated Nov 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Среднее количество фактически отработанных часов в неделю на | Mean weekly hours actually worked per employee by [Dataset]. https://repository.econdata.tech/dataset/ilostat-how-xees-sex-geo-nb
    Explore at:
    Dataset updated
    Nov 5, 2025
    Description

    Среднее количество фактически отработанных часов в неделю на одного работника в разбивке по полу и сельским/городским районам Mean weekly hours actually worked per employee by sex and rural / urban areas

  14. e

    Занятость в разбивке по секторам МОТ, полу и | Employment by ILO sector and...

    • repository.econdata.tech
    Updated Nov 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Занятость в разбивке по секторам МОТ, полу и | Employment by ILO sector and sex and rural / urban areas [Dataset]. https://repository.econdata.tech/dataset/ilostat-emp-temp-sex-ind-geo-nb
    Explore at:
    Dataset updated
    Nov 5, 2025
    Description

    Занятость в разбивке по секторам МОТ, полу и сельским/городским районам (в тысячах) Employment by ILO sector and sex and rural / urban areas (thousands)

  15. e

    Работающие дети в разбивке по полу, возрасту и | Children in employment by...

    • repository.econdata.tech
    Updated Nov 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Работающие дети в разбивке по полу, возрасту и | Children in employment by sex, age and rural / urban areas [Dataset]. https://repository.econdata.tech/dataset/ilostat-cld-xsna-sex-age-geo-nb
    Explore at:
    Dataset updated
    Nov 5, 2025
    Description

    Работающие дети в разбивке по полу, возрасту и сельским/городским районам (тыс.) Children in employment by sex, age and rural / urban areas (thousands)

  16. e

    Дети, занятые на опасных работах, в разбивке по | Children in hazardous work...

    • repository.econdata.tech
    Updated Nov 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Дети, занятые на опасных работах, в разбивке по | Children in hazardous work by sex, age and [Dataset]. https://repository.econdata.tech/dataset/ilostat-cld-xhaz-sex-age-geo-nb
    Explore at:
    Dataset updated
    Nov 5, 2025
    Description

    Дети, занятые на опасных работах, в разбивке по полу, возрасту и сельским/городским районам (тысячи) Children in hazardous work by sex, age and rural / urban areas (thousands)

  17. e

    Занятость в государственном секторе в разбивке по полу | Public sector...

    • repository.econdata.tech
    Updated Nov 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Занятость в государственном секторе в разбивке по полу | Public sector employment by sex and rural / urban areas [Dataset]. https://repository.econdata.tech/dataset/ilostat-emp-publ-sex-geo-nb
    Explore at:
    Dataset updated
    Nov 5, 2025
    Description

    Занятость в государственном секторе в разбивке по полу и сельским/городским районам (тыс. человек) Public sector employment by sex and rural / urban areas (thousands)

  18. e

    Занятость в разбивке по полу и сельским/городским районам | Employment by...

    • repository.econdata.tech
    Updated Nov 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Занятость в разбивке по полу и сельским/городским районам | Employment by sex and rural / urban areas [Dataset]. https://repository.econdata.tech/dataset/ilostat-emp-temp-sex-geo-nb
    Explore at:
    Dataset updated
    Nov 5, 2025
    Description

    Занятость в разбивке по полу и сельским/городским районам (в тысячах) Employment by sex and rural / urban areas (thousands)

  19. e

    Работники в разбивке по полу, размеру предприятия и | Employees by sex,...

    • repository.econdata.tech
    Updated Nov 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Работники в разбивке по полу, размеру предприятия и | Employees by sex, establishment size and rural / [Dataset]. https://repository.econdata.tech/dataset/ilostat-ees-tees-sex-est-geo-nb
    Explore at:
    Dataset updated
    Nov 5, 2025
    Description

    Работники в разбивке по полу, размеру предприятия и сельским/городским районам (тыс.) Employees by sex, establishment size and rural / urban areas (thousands)

  20. e

    Численность рабочей силы в разбивке по полу и | Labour force by sex and...

    • repository.econdata.tech
    Updated Nov 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Численность рабочей силы в разбивке по полу и | Labour force by sex and rural / urban areas [Dataset]. https://repository.econdata.tech/dataset/ilostat-eap-teap-sex-geo-nb
    Explore at:
    Dataset updated
    Nov 5, 2025
    Description

    Численность рабочей силы в разбивке по полу и сельским/городским районам (в тысячах) Labour force by sex and rural / urban areas (thousands)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Government of New Brunswick (2025). Digital Property Maps [Dataset]. https://open.canada.ca/data/en/dataset/56f75efc-3681-34ce-6440-c2c8a8457332
Organization logo

Digital Property Maps

Explore at:
htmlAvailable download formats
Dataset updated
Jan 9, 2025
Dataset provided by
Government of New Brunswickhttps://www.gnb.ca/
License

Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically

Description

Approximate boundaries for all land parcels in New Brunswick. The boundaries are structured as Polygons. The Property Identifier number or PID is included for each parcel.

Search
Clear search
Close search
Google apps
Main menu