https://choosealicense.com/no-permission/https://choosealicense.com/no-permission/
Human RNA-Seq data set GSM2819712 stored in NCBI (GEO)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We analysed the field of expression profiling by high throughput sequencing, or HT-seq, in terms of replicability and reproducibility, using data from the NCBI GEO (Gene Expression Omnibus) repository.
- This release includes GEO series up to Dec-31, 2020;
- Fixed xlrd missing optional dependency, which affected import of some xls files, previously we were using only openpyxl (thanks to anonymous reviewer);
- All files in supplementary _RAW.tar files were checked for p values, previously _RAW.tar files were completely omitted, alas (thanks to anonymous reviewer).
Archived dataset contains following files:
- output/parsed_suppfiles.csv, p-value histograms, histogram classes, estimated number of true null hypotheses (pi0).
- output/document_summaries.csv, document summaries of NCBI GEO series
- output/publications.csv, publication info of NCBI GEO series
- output/scopus_citedbycount.csv, Scopus citation info of NCBI GEO series
- output/single-cell.csv, single cell experiments
- spots.csv, NCBI SRA sequencing run metadata
- suppfilenames.txt, list of all supplementary file names of NCBI GEO submissions. One filename per row.
- suppfilenames_filtered.txt, list of supplementary file names used for downloading files from NCBI GEO. One filename per row.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We aligned and quantified RNA-Seq data present in GEO with a standardized pipeline to homogenize data preprocessing for downstream applications.
All uploaded files are UTF-8, .csv-formatted matrices. The *_expected_count.csv.gz files are unlogged, raw expression counts as reported by rsem-quantify-expression (see details below). The associated *_metadata.csv.gz files contain metadata pertinent to each column of the corresponding expression matrix.Some metadata files may have more rows than the associated number of columns. This is for series that were only partially RNA-Seq based (e.g. combinated RNA-Seq plus miRNA-Seq samples in the same GEO accession ID).
Metadata columns are derived from GEO series files, and follow their definitions. See each GEO entry directly to determine metadata meaning.
Each recompute has at least the gene_id column holding Ensembl Gene IDs. The remaining columns are ENA run accession IDs of the specific recomputed samples.Each associated metadata has at least the following columns:
geo_accession: The GEO sample ID of the sample.
ena_sample: The ENA sample ID of the sample.
ena_run: The ENA run accession ID of the sample, to be cross-referenced with the expression matrices.
The remaining columns are derived from GEO metadata files and other ENA-provided data. Please refer to the x.FASTQ package for more information.
Pipeline Details
The alignment and quantification was made with the x.FASTQ tool available on Github installed locally on an Arch Linux machine on commit 3a93dd77a70df59c74f7b15216c26f12cd918e81 running the Linux 6.7.8-zen1-1-zen kernel with a 11th Gen Intel i7-1185G7 (8) CPU and a Intel TigerLake-LP GT2 [Iris Xe Graphics] GPU. Please note that no sample filtering or omissions were done based on sample quality or sequencing depth. However, sensible trimming (e.g. low-quality bases and common adapters) was performed on all the samples.
Reference genome was downloaded from Ensembl, version hg38. STAR was used to create the index genome with overhang set to 149.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We analyzed the field of expression profiling by high throughput sequencing, or HT-seq, in terms of replicability and reproducibility, using data from the NCBI GEO (Gene Expression Omnibus) repository. Our work puts an upper bound of 62% to field-wide reproducibility, based on the types of files submitted to GEO.
Archived dataset contains following files:
- output/parsed_suppfiles.csv, p-value histograms, histogram classes, estimated number of true null hypotheses (pi0).
- output/document_summaries.csv, document summaries of NCBI GEO series
- output/publications.csv, publication info of NCBI GEO series
- output/scopus_citedbycount.csv, Scopus citation info of NCBI GEO series
- output/single-cell.csv, single cell experiments
- spots.csv, NCBI SRA sequencing run metadata
- suppfilenames.txt, list of all supplementary file names of NCBI GEO submissions. One filename per row.
- suppfilenames_filtered.txt, list of supplementary file names used for downloading files from NCBI GEO. One filename per row.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
*NCBI Gene Expression Omnibus Accession number, it can be used to retrieve the microarray experiment data via http://www.ncbi.nlm.nih.gov/geo/.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background
RNA-seq is a widely adopted affordable method for large scale gene expression profiling. However, user-friendly and versatile tools for wet-lab biologists to analyse RNA-seq data beyond standard analyses such as differential expression, are rare. Especially, the analysis of time-series data is difficult for wet-lab biologists lacking advanced computational training. Furthermore, most meta-analysis tools are tailored for model organisms and not easily adaptable to other species.
Results
With RNfuzzyApp, we provide a user-friendly, web-based R-shiny app for differential expression analysis, as well as time-series analysis of RNA-seq data. RNfuzzyApp offers several methods for normalization and differential expression analysis of RNA-seq data, providing easy-to-use toolboxes, interactive plots and downloadable results. For time-series analysis, RNfuzzyApp presents the first web-based, automated pipeline for soft clustering with the Mfuzz R package, including methods to aid in cluster number selection, Mfuzz loop computations, cluster overlap analysis, as well as cluster enrichments.
Conclusion
RNfuzzyApp is an intuitive, easy to use and interactive R shiny app for RNA-seq differential expression and time-series analysis, offering a rich selection of interactive plots, providing a quick overview of raw data and generating rapid analysis results. Furthermore, its orthology assignment, enrichment analysis, as well as ID conversion functions are accessible to non-model organisms.
Methods Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt: mean values calculated from raw reads of replicates, downloaded from gene expression omnibus (dataset GSE143430 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143430).
Haering_etal_extendedDatatable_1a_Tabulamurissenis_3vs12m_DEA.txt: Tabula muris senis limb muscle data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040) from 3, 12 and 27month males, processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_1b_Tabulamurissenis_3vs27m_DEA.txt: Tabula muris senis limb muscle data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040) from 3, 12 and 27month males, processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_1c_Tabulamurissenis_12vs27m_DEA.txt: Tabula muris senis limb muscle data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040) from 3, 12 and 27month males, processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_1d_Tabulamurissenis_3vs12m_gpofiler.txt: Tabula muris senis limb muscle data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040) from 3, 12 and 27month males, processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_1e_Tabulamurissenis_3vs27m_gpofiler.txt: Tabula muris senis limb muscle data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040) from 3, 12 and 27month males, processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_1f_Tabulamurissenis_12vs27m_gpofiler.txt: Tabula muris senis limb muscle data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040) from 3, 12 and 27month males, processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_2a_Tabulamurissenis_cluster1_gpofiler.txt: Tabula muris senis limb muscle data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040) from 3, 12 and 27month males, processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_2b_Tabulamurissenis_cluster2_gpofiler.txt: Tabula muris senis limb muscle data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040) from 3, 12 and 27month males, processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_2c_Tabulamurissenis_cluster3_gpofiler.txt: Tabula muris senis limb muscle data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040) from 3, 12 and 27month males, processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_2d_Tabulamurissenis_cluster4_gpofiler.txt: Tabula muris senis limb muscle data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040) from 3, 12 and 27month males, processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_2e_Tabulamurissenis_cluster5_gpofiler.txt: Tabula muris senis limb muscle data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040) from 3, 12 and 27month males, processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_3a_DmLeg_cluster1_gpofiler.txt: Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_3b_DmLeg_cluster2_gpofiler.txt: Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_3c_DmLeg_cluster3_gpofiler.txt: Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_3d_DmLeg_cluster4_gpofiler.txt: Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_3e_DmLeg_cluster5_gpofiler.txt: Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_3f_DmLeg_cluster6_gpofiler.txt: Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_3g_DmLeg_cluster7_gpofiler.txt: Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_3h_DmLeg_cluster8_gpofiler.txt: Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_3i_DmLeg_cluster9_gpofiler.txt: Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_3j_DmLeg_cluster10_gpofiler.txt: Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_3k_DmLeg_cluster11_gpofiler.txt: Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Haering_etal_extendedDatatable_3l_DmLeg_cluster12_gpofiler.txt: Haering_etal_extendedData_DmdevLeg_GSE143430_mean.txt processed with RNfuzzyApp (https://gitlab.com/habermann_lab/rna-seq-analysis-app)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We aligned and quantified RNA-Seq data present in GEO regarding HMEC-1 cell lines with a standardized pipeline to homogenize data preprocessing for downstream applications.
All uploaded files are UTF-8, .csv
-formatted matrices. The *_expected_count.csv.gz
files are unlogged, raw expression counts as reported by rsem-quantify-expression
with the 'expected counts' feature. The associated *_metadata.csv.gz
files contain metadata pertinent to each column of the corresponding expression matrix.
Some metadata files may have more rows than the associated number of columns. This is for series that were only partially RNA-Seq based (e.g. combinated RNA-Seq plus miRNA-Seq samples in the same GEO accession ID).
Metadata columns are derived from GEO series files, and follow their definitions. See each GEO entry directly to determine metadata meaning.
Each recompute has at least the gene_id
column holding Ensembl Gene IDs. The remaining columns are ENA run accession IDs of the specific recomputed samples.
Each associated metadata has at least the following columns:
geo_sample
: The GEO sample ID of the sample.geo_series
: The GEO series ID of the sample.ena_sample
: The ENA sample ID of the sample.ena_run
: The ENA run accession ID of the sample, to be cross-referenced with the expression matrices.The remaining columns are derived from GEO metadata files and other ENA-provided data. Please refer to the x.FASTQ
package for more information (https://github.com/TCP-Lab/x.FASTQ).
Reference genome was downloaded from Ensembl, version hg38
. STAR was used to create the index genome with overhang set to 149
.
The different datasets where generated over a long period of time trough a variety of different versions of x.FASTQ. However, the versions of the softwares that acted on the files themselves (e.g. STAR, rsem, etc...) were unchanged, and reported below:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All the processed gene expression profiles available from GEO database and R codes for scRNA-seq analysis or BayesPrism analysis have been deposited in the figshare platform.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains a collection of three datasets we use to introduce the Gene Mover Distance in [1] and described below. The three datasets are exported with a basic text-based format (.csv file) like other public datasets largely used in the Machine Learning community.
The three datasets are extracted from the Gene Expression Omnibus (GEO) database [2], where they appear, respectively, with access number GSE116256 (blood leukemia, [3]), GSE84133 (human pancreas, [4]), and GSE67835 (human brain, [5]). In GEO, the datasets are decomposed into several files, which contain much more details than those reported in this version.
However, the proposed format should facilitate other researchers in using this data.
The Gene Mover's Distance is a measure of similarity between a pair of cells based on their gene expression profiles obtained via single-cell RNA sequencing. The underlying idea of GMD is to interpret the gene expression array of a single cell as a discrete probability measure. The distance between two cells is hence computed by solving an Optimal Transport problem between the two corresponding discrete measures. The Gene Mover's Distance can be used, for instance, to solve two classification problems: the classification of cells according to their condition and according to their type.
The repository contains a python script to check the basic statistics of the data.
[1] Bellazzi, R., Codegoni, A., Gualandi, S., Nicora, G., Vercesi, E. The Gene Mover's Distance: Single-cell similarity via Optimal Transport. https://arxiv.org/abs/2102.01218
[2] Gene Expression Omnibus (GEO) database, http://www.ncbi.nlm.nih.gov/geo
[3] van Galen, P., Hovestadt, V., Wadsworth II, M.H., Hughes, T.K., Griffin, G.K., Battaglia, S., Verga, J.A., Stephansky, J., Pastika, T.J., Story, J.L. and Pinkus, G.S., 2019. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell, 176(6), pp.1265-1281.
[4] Baron, M., Veres, A., Wolock, S.L., Faust, A.L., Gaujoux, R., Vetere, A., Ryu, J.H., Wagner, B.K., Shen-Orr, S.S., Klein, A.M. and Melton, D.A., 2016. A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell systems, 3(4), pp.346-360.
[5] Darmanis, S., Sloan, S.A., Zhang, Y., Enge, M., Caneda, C., Shuer, L.M., Gephart, M.G.H., Barres, B.A. and Quake, S.R., 2015. A survey of human brain transcriptome diversity at the single cell level. Proceedings of the National Academy of Sciences, 112(23), pp.7285-7290.
https://choosealicense.com/no-permission/https://choosealicense.com/no-permission/
Human RNA-Seq data set GSM2819698 stored in NCBI (GEO)
liver tissue sample : 6922_IZ_RNA
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The DEGs from 17,584 protein coding genes are determined given a nominal FDR ≤0.05 and an optimal |logFC| cutoff in Table 3.
This is the GitHub repository for the single cell RNA sequencing data analysis for the human manuscript. The following essential libraries are required for script execution: Seurat scReportoire ggplot2 dplyr ggridges ggrepel ComplexHeatmap Linked File: -------------------------------------- This repository contains code for the analysis of single cell RNA-seq dataset. The dataset contains raw FASTQ files, as well as, the aligned files that were deposited in GEO. Provided below are descriptions of the linked datasets: 1. Gene Expression Omnibus (GEO) ID: GSE229626 - Title: Gene expression profile at single cell level of human T cells stimulated via antibodies against the T Cell Receptor (TCR) - Description: This submission contains the matrix.mtx
, barcodes.tsv
, and genes.tsv
files for each replicate and condition, corresponding to the aligned files for single cell sequencing data. - Submission type: Private. In order to gain access to the repository, you must use a "reviewer token"(https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html). 2. Sequence read archive (SRA) repository - Title: Gene expression profile at single cell level of human T cells stimulated via antibodies against the T Cell Receptor (TCR) - Description: This submission contains the "raw sequencing" or .fastq.gz
files, which are tab delimited text files. - Submission type: Private. In order to gain access to the repository, you must use a "reviewer token" (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html). Please note that since the GSE submission is private, the raw data deposited at SRA may not be accessible until the embargo on GSE229626 has been lifted. Installation and Instructions -------------------------------------- The code included in this submission requires several essential packages, as listed above. Please follow these instructions for installation: > Ensure you have R version 4.1.2 or higher for compatibility. > Although it is not essential, you can use R-Studios (Version 2022.12.0+353 (2022.12.0+353)) for accessing and executing the code. The following code can be used to set working directory in R: > setwd(directory) Steps: 1. Download the "Human_code_April2023.R" and "Install_Packages.R" R scripts, and the processed data from GSE229626. 2. Open "R-Studios"(https://www.rstudio.com/tags/rstudio-ide/) or a similar integrated development environment (IDE) for R. 3. Set your working directory to where the following files are located: - Human_code_April2023.R - Install_Packages.R 4. Open the file titled Install_Packages.R
and execute it in R IDE. This script will attempt to install all the necessary pacakges, and its dependencies. 5. Open the Human_code_April2023.R
R script and execute commands as necessary.
RNA-seq on K562 cells treated by CRISPR interference targeting STAT6.For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf
We introduce a new high-throughput transcriptomics (HTTr) platform comprised of a collagen sandwich primary rat hepatocyte culture and the TempO-Seq assay for screening and prioritizing potential hepatotoxicants. We selected 14 chemicals based on their risk of drug-induced liver injury (DILI) and tested them in hepatocytes at two treatment concentrations. HTTr data was generated using the TempO-Seq whole transcriptome and S1500+ assays. The HTTr platform exhibited high reproducibility between technical replicates (r>0.9) but biological replication was greater for TempO-Seq S1500+ (r>0.85) than for the whole transcriptome (r>0.7). Reproducibility between biological replicates was dependent on the strength of transcriptional effects induced by a chemical treatment. Despite targeting a smaller number of genes, the S1500+ assay clustered chemical treatments and produced gene set enrichment analysis (GSEA) scores comparable to those of the whole transcriptome. Connectivity mapping showed a high-level of reproducibility between TempO-Seq data and Affymetrix GeneChip data from the Open TG-GATES project with high concordance between the S1500+ gene set and whole transcriptome. Taken together, our results provide guidance on selecting the number of technical and biological replicates and support the use of TempO-Seq S1500+ assay for a high-throughput platform for screening hepatotoxicants. FASTQ files and read counts data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (GEO) (GSE152128).
This dataset is associated with the following publication: Lee, F., I. Shah, Y.T. Soong, J. Xing, I.C. Ng, F. Tasnim, and H. Yu. Reproducibility and Robustness of High-Throughput S1500+ Transcriptomics on Primary Rat Hepatocytes for Chemical-Induced Hepatotoxicity Assessment. Current Research in Toxicology. Elsevier B.V., Amsterdam, NETHERLANDS, 2: 282-295, (2021).
We report the scRNA-seq of cells isolated from brain of young and old mice. We isolated single cells from brain of young (6 months, n=2) and old (24 months, n=4) mice and performed the scRNA-seq using 10X Genomics system.
RNA-seq was performed using Thy1- and c-Kit+ spermatogonia from 7-days-old PRC1ctrl or dKO mice. Duplicate RNA-seq analyses using spermatogonia from 7-days-old PRC1ctrl or dKO mice
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We analyzed the field of expression profiling by high throughput sequencing, or RNA-seq, in terms of replicability and reproducibility, using data from the NCBI GEO (Gene Expression Omnibus) repository. Our work puts an upper bound of 56% to field-wide reproducibility, based on the types of files submitted to GEO.
Archived dataset contains following files:
- output/parsed_suppfiles.csv, p-value histograms, histogram classes, estimated number of true null hypotheses (pi0).
- output/document_summaries.csv, document summaries of GEO series
- output/publications.csv, publication info of GEO series
- output/scopus_citedbycount.csv, Scopus citation info of GEO series
- output/single-cell.csv, single cell experiments
- spots.csv, sequencing run metadata: number of spots and bases
- suppfilenames.txt, list of all supplementary file names of GEO submissions. One filename per row.
- suppfilenames_filtered.txt, list of supplementary file names used for downloading files from NCBI GEO. One filename per row.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A curated dataset of RNA-Seq samples. The samples are MDI-induced pre-phagocytes (3T3-L1) at different time points/stage of differentiation. The package document the data collection, pre-processing and processing. In addition to the documentation, the package contains the scripts that was used to generated the data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An observed FPR based on all of 35203 genes is computed given a |logFC| cutoff in parenthesis.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Raw sequencing data to "Comparative Analysis of Single-Cell RNA Sequencing Methods".
https://www.ncbi.nlm.nih.gov/pubmed/28212749
In addition to the GEO submission https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75790, you can find here raw bam files for UMI-methods tagged with cell barcode and UMI sequences.
MD5 checksum: f10825509952fffd9c4dc0c1dcb9eb8e
https://choosealicense.com/no-permission/https://choosealicense.com/no-permission/
Human RNA-Seq data set GSM2819712 stored in NCBI (GEO)