100+ datasets found
  1. Geospatial data for the Vegetation Mapping Inventory Project of Pictured...

    • catalog.data.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Pictured Rocks National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-pictured-rocks-national-la
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Pictured Rocks
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

  2. U

    Geospatial data for bedrock elevation and overburden thickness maps of the...

    • data.usgs.gov
    • catalog.data.gov
    Updated May 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura Demott; Frederick Stumm; Michael Como; Jason Finkelstein (2023). Geospatial data for bedrock elevation and overburden thickness maps of the Five Boroughs, New York City, New York [Dataset]. http://doi.org/10.5066/P911CSI3
    Explore at:
    Dataset updated
    May 25, 2023
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Laura Demott; Frederick Stumm; Michael Como; Jason Finkelstein
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    1905 - 2021
    Area covered
    New York
    Description

    Using a combination of public and proprietary historical construction test borings, recent exploration drilling, USGS observation wells, outcrops, and seismic measurements, a series of geospatial overlays for bedrock elevation and overburden thickness were created for the Five Boroughs of New York City, New York. Rasters were interpolated from a point elevation data set and refined using published and interpretive bedrock contours, and interpreted glacial valleys and faults. Contours for bedrock elevation were generated at 100-ft contour intervals and smoothed. This data release includes shapefiles containing the input point elevation features and output contours, and rasters of interpolated bedrock elevation and overburden thickness surfaces.

  3. d

    Geospatial Data | Global Map data | Administrative boundaries | Global...

    • datarade.ai
    .json, .xml
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Geospatial Data | Global Map data | Administrative boundaries | Global coverage | 245k Polygons [Dataset]. https://datarade.ai/data-products/geopostcodes-geospatial-data-global-map-data-administrati-geopostcodes-a4bf
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  4. Geospatial data for the Vegetation Mapping Inventory Project of Great Basin...

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Great Basin National Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-great-basin-national-park
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. GRBA’s spatial database and map layer was produced from high-resolution 2007 Digital Map, Inc. imagery provided to CTI by the NPS. By comparing the signatures on the imagery to field and ground data, 64 map units (48 vegetated, four barren geology and snow, and 12 land-use / land-cover) were developed and the vegetation map units were directly cross-walked or matched to their corresponding rUSNVC plant associations. The interpreted and remotely sensed data were converted to Geographic Information System (GIS) spatial geodatabases and maps were printed, field tested, reviewed, and revised.

  5. g

    Geospatial Data Annotation for Mapping

    • gts.ai
    json
    Updated Nov 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GTS (2023). Geospatial Data Annotation for Mapping [Dataset]. https://gts.ai/case-study/geospatial-data-annotation-for-mapping/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 20, 2023
    Dataset provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    Authors
    GTS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Enhance map accuracy with geospatial data annotation. Mark, classify, and refine geographical data for clearer, more detailed, reliable maps.

  6. Geospatial data for the Vegetation Mapping Inventory Project of King...

    • catalog.data.gov
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of King Mountain National Military Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-king-mountain-national-mil
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Large scale final map products were created within ArcMap and designed to show both the orthophoto coverage and the vegetation maps. For the vegetation maps, colors were assigned and the polygons labeled with the dominant vegetation and modifier and, where present, the second vegetation and modifier. For the orthophoto maps, the photos were simply plotted at the same scale and area coverage as the vegetation maps. Additional planimetric map data included roads, trails, hydrology, boundaries and a UTM coordinate grid. Legends are designed to provide full definitions of the vegetation and buffer classes and modifiers, as well as information about the park, map projection, data sources and authorship (Figure 19). All maps are projected to the Universal Transverse Mercator Coordinate System, North American Datum of 1984, in the local zone for the specific park. Photo Date: 10/24/2000 Area (ac): 3945 Area (ha): 1597 Completion Date: Oct, 2008 Veg Class: 20 Polygons: 382 Avg Polygon Size: 4.18 Map Scale: 1:9,000

  7. d

    Geospatial mapping products derived from 2018, 2020, and 2022 NAIP aerial...

    • catalog.data.gov
    • data.usgs.gov
    Updated Sep 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Geospatial mapping products derived from 2018, 2020, and 2022 NAIP aerial imagery for the Scotts Creek Watershed, Lake County, CA [Dataset]. https://catalog.data.gov/dataset/geospatial-mapping-products-derived-from-2018-2020-and-2022-naip-aerial-imagery-for-the-sc
    Explore at:
    Dataset updated
    Sep 24, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Lake County, California, Scotts Creek
    Description

    The USGS, in cooperation with the U.S. Bureau of Land Management (BLM), created a series of geospatial mapping products of the Scotts Creek Watershed in Lake County, California, using National Agriculture Imagery Program (NAIP) imagery from 2018, 2020 and 2022 and Open Street Map (OSM) from 2019. The imagery was downloaded from United States Department of Agriculture (USDA) - Natural Resources Conservation Service (NRCS) Geospatial Data Gateway (https://datagateway.nrcs.usda.gov/) and Geofabrik GmbH - Open Street Map (https://www.geofabrik.de/geofabrik/openstreetmap.html), respectively. The imagery was classified using Random Forest (RF) Modeling to produce land cover maps with three main classifications - bare, vegetation, and shadows. An updated roads and trails map for the Upper Scotts Creek Watershed, including the BLM Recreational Area, was created to estimate road and trail densities in the watershed. Separate metadata records for each product (Land_Cover_Maps_Scotts_Creek_Watershed_CA_2018_2020_2022_metadata.xml, and Roads_and_Trails_Map_Upper_Scotts_Creek_Watershed_CA _2022_metadata.xml) are provided on the ScienceBase page for each child item. Users should be aware of the inherent errors in remote sensing products.

  8. Geospatial Data Gateway

    • agdatacommons.nal.usda.gov
    bin
    Updated Nov 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA, Natural Resources Conservation Service (NRCS); USDA, Farm Service Agency (FSA); USDA, Rural Development (RD) (2023). Geospatial Data Gateway [Dataset]. http://doi.org/10.15482/USDA.ADC/1241880
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    United States Department of Agriculturehttp://usda.gov/
    Natural Resources Conservation Servicehttp://www.nrcs.usda.gov/
    Authors
    USDA, Natural Resources Conservation Service (NRCS); USDA, Farm Service Agency (FSA); USDA, Rural Development (RD)
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Geospatial Data Gateway (GDG) provides access to a map library of over 100 high resolution vector and raster layers in the Geospatial Data Warehouse. It is the one stop source for environmental and natural resource data, available anytime, from anywhere. It allows a user to choose an area of interest, browse and select data, customize the format, then download or have it shipped on media. The map layers include data on: Public Land Survey System (PLSS), Census data, demographic statistics, precipitation, temperature, disaster events, conservation easements, elevation, geographic names, geology, government units, hydrography, hydrologic units, land use and land cover, map indexes, ortho imagery, soils, topographic images, and streets and roads. This service is made available through a close partnership between the three Service Center Agencies (SCA): Natural Resources Conservation Service (NRCS), Farm Service Agency (FSA), and Rural Development (RD). Resources in this dataset:Resource Title: Geospatial Data Gateway. File Name: Web Page, url: https://gdg.sc.egov.usda.gov This is the main page for the GDG that includes several links to view, download, or order various datasets. Find additional status maps that indicate the location of data available for each map layer in the Geospatial Data Gateway at https://gdg.sc.egov.usda.gov/GDGHome_StatusMaps.aspx

  9. Geospatial data for the Vegetation Mapping Inventory Project of American...

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • catalog.data.gov
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of American Memorial Park [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-american-memorial-park
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for American Memorial Park. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. To produce the spatial database and map layer, 0.6-meter, 4-band Quickbird satellite imagery from 2006 was provided by PACN. By comparing the signatures on the imagery to field and ground data 27 map classes (16 vegetated, three barren, and eight land-use / land-cover) were developed and directly crosswalked or matched to their corresponding NVC plant associations. The interpreted and remotely sensed data were converted to Geographic Information System (GIS) databases and maps were printed, field tested, reviewed, and revised. The final map layer was accessed for thematic accuracy by overlaying 48 independent accuracy assessment points.

  10. g

    USGS Hydrography (NHD) Overlay Map Service from The National Map - National...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USGS Hydrography (NHD) Overlay Map Service from The National Map - National Geospatial Data Asset (NGDA) National Hydrography Dataset (NHD) | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_1f407ec6b0e8f9e2268417dc6266ac8b8c1f7352
    Explore at:
    Description

    The USGS National Hydrography Dataset (NHD) service from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000-scale maps and referred to as high resolution NHD, and the other based on 1:100,000-scale maps and referred to as medium resolution NHD. Additional selected areas in the United States are available based on larger scales, such as 1:5,000-scale or greater, and referred to as local resolution NHD. The NHD from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on the NHD, go to https://nhd.usgs.gov/index.html. The Watershed Boundary Dataset (WBD) is a companion dataset to the NHD. It defines the perimeter of drainage areas formed by the terrain and other landscape characteristics. The drainage areas are nested within each other so that a large drainage area, such as the Upper Mississippi River, will be composed of multiple smaller drainage areas, such as the Wisconsin River. Each of these smaller areas can further be subdivided into smaller and smaller drainage areas. The WBD uses six different levels in this hierarchy, with the smallest averaging about 30,000 acres. The WBD is made up of polygons nested into six levels of data respectively defined by Regions, Subregions, Basins, Subbasins, Watersheds, and Subwatersheds. For additional information on the WBD, go to https://nhd.usgs.gov/wbd.html. The National Map hydrography data is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain NHD and WBD data in either Esri File or Personal Geodatabase, or Shapefile formats.

  11. M

    Status of Free and Open Public Geospatial Data from Minnesota Counties

    • gisdata.mn.gov
    • data.wu.ac.at
    fgdb, gpkg, html +3
    Updated Sep 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Information Office (2025). Status of Free and Open Public Geospatial Data from Minnesota Counties [Dataset]. https://gisdata.mn.gov/dataset/bdry-mn-county-open-data-status
    Explore at:
    printable_map, jpeg, fgdb, html, shp, gpkgAvailable download formats
    Dataset updated
    Sep 12, 2025
    Dataset provided by
    Geospatial Information Office
    Area covered
    Minnesota
    Description

    This map shows the free and open data status of county public geospatial (GIS) data across Minnesota. The accompanying data set can be used to make similar maps using GIS software.

    Counties shown in this dataset as having free and open public geospatial data (with or without a policy) are: Aitkin, Anoka, Becker, Beltrami, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Grant, Hennepin, Hubbard, Isanti, Itasca, Kittson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Meeker, Mille Lacs, Morrison, Mower, Norman, Olmsted, Otter Tail, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Scott, Sherburne, St. Louis, Stearns, Steele, Stevens, Traverse, Wabasha, Waseca, Washington, Wilkin, Winona, Wright, and Yellow Medicine.

    To see if a county's data is distributed via the Minnesota Geospatial Commons, check the Commons organizations page: https://gisdata.mn.gov/organization

    To see if a county distributes data via its website, check the link(s) on the Minnesota County GIS Contacts webpage: https://www.mngeo.state.mn.us/county_contacts.html

  12. D

    Digital Map Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Digital Map Market Report [Dataset]. https://www.datainsightsmarket.com/reports/digital-map-market-12805
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 12, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The digital map market, currently valued at $25.55 billion in 2025, is experiencing robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 13.39% from 2025 to 2033. This expansion is fueled by several key drivers. The increasing adoption of location-based services (LBS) across diverse sectors like automotive, logistics, and smart city initiatives is a primary catalyst. Furthermore, advancements in technologies such as AI, machine learning, and high-resolution satellite imagery are enabling the creation of more accurate, detailed, and feature-rich digital maps. The shift towards cloud-based deployment models offers scalability and cost-effectiveness, further accelerating market growth. While data privacy concerns and the high initial investment costs for sophisticated mapping technologies present some challenges, the overall market outlook remains overwhelmingly positive. The competitive landscape is dynamic, with established players like Google, TomTom, and ESRI vying for market share alongside innovative startups offering specialized solutions. The segmentation of the market by solution (software and services), deployment (on-premise and cloud), and industry reveals significant opportunities for growth in sectors like automotive navigation, autonomous vehicle development, and precision agriculture, where real-time, accurate mapping data is crucial. The Asia-Pacific region, driven by rapid urbanization and technological advancements in countries like China and India, is expected to witness particularly strong growth. The market's future hinges on continuous innovation. We anticipate a rise in the demand for 3D maps, real-time updates, and integration with other technologies like the Internet of Things (IoT) and augmented reality (AR). Companies are focusing on enhancing the accuracy and detail of their maps, incorporating real-time traffic data, and developing tailored solutions for specific industry needs. The increasing adoption of 5G technology promises to further boost the market by enabling faster data transmission and real-time updates crucial for applications like autonomous driving and drone delivery. The development of high-precision mapping solutions catering to specialized sectors like infrastructure management and disaster response will also fuel future growth. Ultimately, the digital map market is poised for continued expansion, driven by technological advancements and increased reliance on location-based services across a wide spectrum of industries. Recent developments include: December 2022 - The Linux Foundation has partnered with some of the biggest technology companies in the world to build interoperable and open map data in what is an apparent move t. The Overture Maps Foundation, as the new effort is called, is officially hosted by the Linux Foundation. The ultimate aim of the Overture Maps Foundation is to power new map products through openly available datasets that can be used and reused across applications and businesses, with each member throwing their data and resources into the mix., July 27, 2022 - Google declared the launch of its Street View experience in India in collaboration with Genesys International, an advanced mapping solutions company, and Tech Mahindra, a provider of digital transformation, consulting, and business re-engineering solutions and services. Google, Tech Mahindra, and Genesys International also plan to extend this to more than around 50 cities by the end of the year 2022.. Key drivers for this market are: Growth in Application for Advanced Navigation System in Automotive Industry, Surge in Demand for Geographic Information System (GIS); Increased Adoption of Connected Devices and Internet. Potential restraints include: Complexity in Integration of Traditional Maps with Modern GIS System. Notable trends are: Surge in Demand for GIS and GNSS to Influence the Adoption of Digital Map Technology.

  13. A

    USGS Structures Overlay Map Service from The National Map - National...

    • data.amerigeoss.org
    • data.wu.ac.at
    esri rest, pdf, wfs +1
    Updated Jul 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). USGS Structures Overlay Map Service from The National Map - National Geospatial Data Asset (NGDA) USGS National Structures Dataset [Dataset]. https://data.amerigeoss.org/it/dataset/usgs-structures-overlay-map-service-from-the-national-map-national-geospatial-data-asset-ngda-0
    Explore at:
    wfs, esri rest, wms, pdfAvailable download formats
    Dataset updated
    Jul 28, 2019
    Dataset provided by
    United States[old]
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    USGS Structures from The National Map (TNM) consists of data to include the name, function, location, and other core information and characteristics of selected manmade facilities. The types of structures collected are largely determined by the needs of disaster planning and emergency response, and homeland security organizations. Structures currently being collected are: School, Technical/Trade School, College/University, Fire Station/EMS Station, Law Enforcement, Prison/Correctional Facility, State Capitol, Hospital/Medical Center, Ambulance Service, Cemetery, and Post Office. Structures data are designed to be used in general mapping and in the analysis of structure related activities using geographic information system technology. The National Map structures data is commonly combined with other data themes, such as boundaries, elevation, hydrography, and transportation, to produce general reference base maps. The National Map download client allows free downloads of public domain structures data in either Esri File Geodatabase or Shapefile formats. For additional information on the structures data model, go to https://nationalmap.gov/structures.html.

  14. Geospatial data for the Vegetation Mapping Inventory Project of Saguaro...

    • s.cnmilf.com
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +1more
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Saguaro National Park [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-saguaro-national-park
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. The products are designed with the goal of facilitating ecologically-based natural resources management and research. The vector (polygon) map is in digital format within a geodatabase structure that allows for complex relationships to be established between spatial and tabular data, and allows much of the data to be accessed concurrently. Each map unit has multiple photo attachments viewable easily from within the geodatabase, linked to their actual _location on the ground. The Geographic Information System (GIS) format of the map allows user flexibility and will also enable updates to be made as new information becomes available (such as revised NVC codes or vegetation type names) or in the event of major disturbance events that could impact the vegetation. Unlike previous vegetation maps created by SODN, the map for Saguaro National Park was not created via in-situ mapping. Instead, we employed a remote sensing approach aided by our robust field dataset. The final version of the map was created in summer 2016. The map was created using the image-classification toolbox included in the spatial analyst extension for ArcMap (ESRI 2017). Using these tools, we performed a supervised classification with the maximum-likelihood classifier. This tool uses a set of user-defined training samples (polygons) to classify imagery by placing pixels with the maximum likelihood into each map class. We used a pixel size equivalent to the coarsest raster included in the classification, 30 meters.

  15. Geospatial data for the Vegetation Mapping Inventory Project of Craters of...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Sep 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Craters of the Moon National Monument and Preserve [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-craters-of-the-moon-nation
    Explore at:
    Dataset updated
    Sep 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. GIS Database: Project Size = 928,373 acres o Craters of the Moon National Monument and Preserve = 753,222 acres o NPS Land = 469,601 acres o Environs = 175,558 acres Base Imagery = 2007, 4-band, 12 bit, 1-meter, 1:12,000-scale ortho-image 50 Map Units = 34 Vegetated, 3 Geology, and 13 Land-use/Land-cover Minimum Mapping Unit = ½ hectare, modified to ¼ acre for kipukas, wetlands and riparian polygons. Total Size = 18,991 Polygons Average Polygon Size = 49 acres Overall Thematic Accuracy = 82%

  16. d

    Geospatial data for the Vegetation Mapping Inventory Project of Hagerman...

    • datasets.ai
    • catalog.data.gov
    • +1more
    57
    Updated Sep 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Geospatial data for the Vegetation Mapping Inventory Project of Hagerman Fossil Beds National Monument [Dataset]. https://datasets.ai/datasets/geospatial-data-for-the-vegetation-mapping-inventory-project-of-hagerman-fossil-beds-natio
    Explore at:
    57Available download formats
    Dataset updated
    Sep 14, 2024
    Dataset authored and provided by
    Department of the Interior
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles.

    To produce the digital map 38 map units (21 vegetated and 17 land use) were developed and directly cross-walked or matched to their corresponding plant associations and land use classes. All of the interpreted and remotely sensed data were converted to Geographic Information System (GIS) databases using ArcGIS© software. Draft maps were printed, field tested, reviewed, and revised.

  17. w

    Kentucky Geological Survey: Geospatial Data Library

    • data.wu.ac.at
    html
    Updated Mar 23, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Kentucky Geological Survey: Geospatial Data Library [Dataset]. https://data.wu.ac.at/odso/edx_netl_doe_gov/YjU5ODExODEtODljYi00YmY3LWE4NTUtOGQ5MzEwYzJiMzA2
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 23, 2015
    Area covered
    Kentucky, e6b005132ff975e458d3ea0a449441e7311b0d76
    Description

    Maps and GIS data provided by The Kentucky Geological Survey; includes maps, elevation, geology data, hydrology data, and transportation information.

  18. Geospatial data for the Vegetation Mapping Inventory Project of Fort Union...

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • catalog.data.gov
    • +1more
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Fort Union National Monument [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-fort-union-national-monume
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. The vegetation map was developed through on-screen digitizing of available black and white digital ortho-photographs from 1984 and 1999. The photos were compiled into a GIS with a standard set of ancillary layers provided by the park service (boundaries, roads, facilities, etc.). Using the vegetation classification as the foundation for the map legend, map units were defined with respect to interpretable patterns in the photography, and with an eye to those patterns that would be most important in natural and cultural resources management within the park. The map included 19 map classes and covered a total of 278.13 ha.

  19. Geospatial Analytics Market Size, Insights, Trends & Share Report, 2035

    • rootsanalysis.com
    Updated Sep 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roots Analysis (2025). Geospatial Analytics Market Size, Insights, Trends & Share Report, 2035 [Dataset]. https://www.rootsanalysis.com/geospatial-analytics-market
    Explore at:
    Dataset updated
    Sep 11, 2025
    Dataset provided by
    Authors
    Roots Analysis
    License

    https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

    Description

    The geospatial analytics market size is predicted to rise from $93.49 billion in 2024 to $362.45 billion by 2035, growing at a CAGR of 13.1% from 2024 to 2035.

  20. f

    Data from: Aligning geographic entities from historical maps for building...

    • figshare.com
    zip
    Updated Oct 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KAI SUN; Yingjie Hu; Jia Song; Yunqiang Zhu (2020). Aligning geographic entities from historical maps for building knowledge graphs [Dataset]. http://doi.org/10.6084/m9.figshare.13158098.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 29, 2020
    Dataset provided by
    figshare
    Authors
    KAI SUN; Yingjie Hu; Jia Song; Yunqiang Zhu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the data and codes that support the findings of the IJGIS paper "Aligning geographic entities from historical maps for building knowledge graphs".

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Pictured Rocks National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-pictured-rocks-national-la
Organization logo

Geospatial data for the Vegetation Mapping Inventory Project of Pictured Rocks National Lakeshore

Explore at:
Dataset updated
Sep 26, 2025
Dataset provided by
National Park Servicehttp://www.nps.gov/
Area covered
Pictured Rocks
Description

The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

Search
Clear search
Close search
Google apps
Main menu