100+ datasets found
  1. Geospatial data for the Vegetation Mapping Inventory Project of Crater Lake...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Crater Lake National Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-crater-lake-national-park
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Crater Lake
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Our final map product is a geographic information system (GIS) database of vegetation structure and composition across the Crater Lake National Park terrestrial landscape, including wetlands. The database includes photos we took at all relevé, validation, and accuracy assessment plots, as well as the plots that were done in the previous wetlands inventory. We conducted an accuracy assessment of the map by evaluating 698 stratified random accuracy assessment plots throughout the project area. We intersected these field data with the vegetation map, resulting in an overall thematic accuracy of 86.2 %. The accuracy of the Cliff, Scree & Rock Vegetation map unit was difficult to assess, as only 9% of this vegetation type was available for sampling due to lack of access. In addition, fires that occurred during the 2017 accuracy assessment field season affected our sample design and may have had a small influence on the accuracy. Our geodatabase contains the locations where particular associations are found at 600 relevé plots, 698 accuracy assessment plots, and 803 validation plots.

  2. Dataset for "Geospatial analysis of toponyms in geotagged social media...

    • zenodo.org
    zip
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Takayuki Hiraoka; Takayuki Hiraoka; Takashi Kirimura; Takashi Kirimura; Naoya Fujiwara; Naoya Fujiwara (2024). Dataset for "Geospatial analysis of toponyms in geotagged social media posts" [Dataset]. http://doi.org/10.5281/zenodo.13860969
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 1, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Takayuki Hiraoka; Takayuki Hiraoka; Takashi Kirimura; Takashi Kirimura; Naoya Fujiwara; Naoya Fujiwara
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Geotagged Twitter posts dataset

    Dataset used for the research presented in the following paper: Takayuki Hiraoka, Takashi Kirimura, Naoya Fujiwara (2024) "Geospatial analysis of toponyms in geo-tagged social media posts".

    We collected georeferenced Twitter posts tagged to coordinates inside the bounding box of Japan between 2012-2018. The present dataset represents the spatial distributions of all geotagged posts as well as posts containing in the text each of 24 domestic toponyms, 12 common nouns, and 6 foreign toponyms. The code used to analyze the data is available on GitHub.

    Data description

    • selected_geotagged_tweet_data/: Number of geotagged twitter posts in each grid cell. Each csv file under this directory associates each grid cell (spanning 30 seconds of latitude and 45 secoonds of longitude, which is approximately a 1km x 1km square, specified by an 8 digit code m3code) with the number of geotagged tweets tagged to the coordinates inside that cell (tweetcount). file_names.json relates each of the toponyms studied in this work to the corresponding datafile (all denotes the full data).
    • population/population_center_2020.xlsx: Center of population of each municipality based on the 2020 census. Derived from data published by the Statistics Bureau of Japan on their website (Japanese)
    • population/census2015mesh3_totalpop_setai.csv: Resident population in each grid cell based on the 2015 census. Derived from data published by the Statistics Bureau of Japan on e-stat (Japanese)
    • population/economiccensus2016mesh3_jigyosyo_jugyosya.csv: Employed population in each grid cell based on the 2016 Economic Census. Derived from data published by the Statistics Bureau of Japan on e-stat (Japanese)
    • japan_MetropolitanEmploymentArea2015map/: Shape file for the boundaries of Metropolitan Employment Areas (MEA) in Japan. See this website for details of MEA.
    • ward_shapefiles/: Shape files for the boundaries of wards in large cities, published by the Statistics Bureau of Japan on e-stat
  3. Pacific Women in Geospatial Magazine

    • png-data.sprep.org
    • pacificdata.org
    • +14more
    pdf
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). Pacific Women in Geospatial Magazine [Dataset]. https://png-data.sprep.org/dataset/pacific-women-geospatial-magazine
    Explore at:
    pdf(8824975)Available download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region
    Description

    The geospatial industry is a growing industry all over the world and here in the Pacific, there exists a hub (magazine) for women to collaborate, support, STEM and promote the profession to girls in school.

    FUGRO has sponsored the printing of this magazine to enable the distribution of “Pacific Women in Geospatial” to the girls and women in remote areas that have limited access to the internet.

  4. d

    Geospatial data for object-based high-resolution classification of conifers...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Geospatial data for object-based high-resolution classification of conifers within greater sage-grouse habitat across Nevada and a portion of northeastern California (ver. 2.0 July 2018) [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-object-based-high-resolution-classification-of-conifers-within-greater
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Nevada
    Description

    These products were developed to provide scientific and correspondingly spatially explicit information regarding the distribution and abundance of conifers (namely, singleleaf pinyon (Pinus monophylla), Utah juniper (Juniperus osteosperma), and western juniper (Juniperus occidentalis)) in Nevada and portions of northeastern California. Encroachment of these trees into sagebrush ecosystems of the Great Basin can present a threat to populations of greater sage-grouse (Centrocercus urophasianus). These data provide land managers and other interested parties with a high-resolution representation of conifers across the range of sage-grouse habitat in Nevada and northeastern California that can be used for a variety of management and research applications. We mapped conifer trees at 1 x 1 meter resolution across the extent of all Nevada Department of Wildlife Sage-grouse Population Management Units plus a 10 km buffer. Using 2010 and 2013 National Agriculture Imagery Program digital orthophoto quads (DOQQs) as our reference imagery, we applied object-based image analysis with Feature Analyst software (Overwatch, 2013) to classify conifer features across our study extent. This method relies on machine learning algorithms that extract features from imagery based on their spectral and spatial signatures. Conifers in 6230 DOQQs were classified and outputs were then tested for errors of omission and commission using stratified random sampling. Results of the random sampling were used to populate a confusion matrix and calculate the overall map accuracy of 84.3 percent. We provide 5 sets of products for this mapping process across the entire mapping extent: (1) a shapefile representing accuracy results linked to our mapping subunits; (2) binary rasters representing conifer presence or absence at a 1 x 1 meter resolution; (3) a 30 x 30 meter resolution raster representing percentage of conifer canopy cover within each cell from 0 to 100; (4) 1 x 1 meter resolution canopy cover classification rasters derived from a 50 meter radius moving window analysis; and (5) a raster prioritizing pinyon-juniper management for sage-grouse habitat restoration efforts. The latter three products can be reclassified into user-specified bins to meet different management or study objectives, which include approximations for phases of encroachment. These products complement, and in some cases improve upon, existing conifer maps in the western United States, and will help facilitate sage-grouse habitat management and sagebrush ecosystem restoration. These data support the following publication: Coates, P.S., Gustafson, K.B., Roth, C.L., Chenaille, M.P., Ricca, M.A., Mauch, Kimberly, Sanchez-Chopitea, Erika, Kroger, T.J., Perry, W.M., and Casazza, M.L., 2017, Using object-based image analysis to conduct high-resolution conifer extraction at regional spatial scales: U.S. Geological Survey Open-File Report 2017-1093, 40 p., https://doi.org/10.3133/ofr20171093. References: ESRI, 2013, ArcGIS Desktop: Release 10.2: Environmental Systems Research Institute. Overwatch, 2013, Feature Analyst Version 5.1.2.0 for ArcGIS: Overwatch Systems Ltd.

  5. H

    Virtual GDAL/OGR Geospatial Data Format

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated May 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Cera (2018). Virtual GDAL/OGR Geospatial Data Format [Dataset]. https://www.hydroshare.org/resource/228394bfdc084cb9a21d6c168ed4264e
    Explore at:
    zip(2.3 MB)Available download formats
    Dataset updated
    May 8, 2018
    Dataset provided by
    HydroShare
    Authors
    Tim Cera
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The GDAL/OGR libraries are open-source, geo-spatial libraries that work with a wide range of raster and vector data sources. One of many impressive features of the GDAL/OGR libraries is the ViRTual (VRT) format. It is an XML format description of how to transform raster or vector data sources on the fly into a new dataset. The transformations include: mosaicking, re-projection, look-up table (raster), change data type (raster), and SQL SELECT command (vector). VRTs can be used by GDAL/OGR functions and utilities as if they were an original source, even allowing for chaining of functionality, for example: have a VRT mosaic hundreds of VRTs that use look-up tables to transform original GeoTiff files. We used the VRT format for the presentation of hydrologic model results, allowing for thousands of small VRT files representing all components of the monthly water balance to be transformations of a single land cover GeoTiff file.

    Presentation at 2018 AWRA Spring Specialty Conference: Geographic Information Systems (GIS) and Water Resources X, Orlando, Florida, April 23-25, http://awra.org/meetings/Orlando2018/

  6. N

    EDAC Geospatial Data Clearinghouse - RGIS

    • catalog.newmexicowaterdata.org
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EDAC (2025). EDAC Geospatial Data Clearinghouse - RGIS [Dataset]. https://catalog.newmexicowaterdata.org/dataset/edac-geospatial-data-clearinghouse-rgis
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset provided by
    EDAC
    Description

    Earth Data Analysis Center (EDAC) at The University of New Mexico (UNM) develops, manages, and enhances the New Mexico Resource Geographic Information System (RGIS) Program and Clearinghouse. Nationally, NM RGIS is among the largest of state-based programs for digital geospatial data and information and continues to add to its data offerings, services, and technology.

    The RGIS Program mission is to develop and expand geographic information and use of GIS technology, creating a comprehensive GIS resource for state and local governments, educational institutions, nonprofit organizations, and private businesses; to promote geospatial information and GIS technology as primary analytical tools for decision makers and researchers; and to provide a central Clearinghouse to avoid duplication and improve information transfer efficiency.

    As a repository for digital geospatial data acquired from local and national public agencies and data created expressly for RGIS, the clearinghouse serves as a major hub in New Mexico’s network for inter-agency and intergovernmental coordination, data sharing, information transfer, and electronic communication. Data sets available for download include political and administrative boundaries, place names and locations, census data (current and historical), 30 years of digital orthophotography, 80 years of historic aerial photography, satellite imagery, elevation data, transportation data, wildfire boundaries and natural resource data.

  7. d

    SOFIA - Geospatial Interface.

    • datadiscoverystudio.org
    • cmr.earthdata.nasa.gov
    • +1more
    Updated May 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). SOFIA - Geospatial Interface. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/abbf64084c034037a043d37d248e4bdf/html
    Explore at:
    Dataset updated
    May 20, 2018
    Description

    description: A geospatial interface will be developed using ArcIMS software. The interface will provide a means of accessing information stored in the SOFIA database and the SOFIA data exchange web site through a geospatial query. The spatial data will be served using the ArcSDE software, which provides a mechanism for storing spatial data in a relational database. A spatial database will be developed from existing data sets, including national USGS data sets, the Florida Geographic Digital Library, and other available data sets. Additional data sets will be developed from the published data sets available from PBS and other projects.; abstract: A geospatial interface will be developed using ArcIMS software. The interface will provide a means of accessing information stored in the SOFIA database and the SOFIA data exchange web site through a geospatial query. The spatial data will be served using the ArcSDE software, which provides a mechanism for storing spatial data in a relational database. A spatial database will be developed from existing data sets, including national USGS data sets, the Florida Geographic Digital Library, and other available data sets. Additional data sets will be developed from the published data sets available from PBS and other projects.

  8. d

    Song - SUSTAINING A GEOSPATIAL SCIENCE GATEWAY TO SUPPORT FAIR SCIENCE...

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carol X. Song (2022). Song - SUSTAINING A GEOSPATIAL SCIENCE GATEWAY TO SUPPORT FAIR SCIENCE PRACTICES AND TRAINING [Dataset]. https://search.dataone.org/view/sha256%3Ab211ca9562d7eb6934684da7942ac723b18e212e7c67a9fb08e69eba2af7aad6
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Carol X. Song
    Description

    SONG, Carol X., Rosen Center for Advanced Computing, Purdue University, 155 South Grant Street, Young Hall, West Lafayette, IN 47907

    Science gateways are becoming an integral component of modern collaborative research. They find widespread adoption by research groups to share data, code and tools both within a project and with the broader community. Sustainability beyond initial funding is a significant challenge for a science gateway to continue to operate, update and support the communities it serves. MyGeoHub.org is a geospatial science gateway powered by HUBzero. MyGeoHub employs a business model of hosting multiple research projects on a single HUBzero instance to manage the gateway operations more efficiently and sustainably while lowering the cost to individual projects. This model allows projects to share the gateway’s common capabilities and the underlying hardware and other connected computing resources, and continued maintenance of their sites even after the original funding has run out allowing time for acquiring new funding. MyGeoHub has hosted a number of projects, ranging from hydrologic modeling and data sharing, plant phenotyping, global and local sustainable development, climate variability impact on crops, and most recently, modeling of industry processes to improve reuse and recycling of materials. The shared need to manage, visualize and process geospatial data across the projects has motivated the Geospatial Data Building Blocks (GABBs) development funded by NSF DIBBs. GABBs provides a “File Explorer” type user interface for managing geospatial data (no coding is needed), a builder for visualizing and exploring geo-referenced data without coding, a Python map library and other toolkits for building geospatial analysis and computational tools without requiring GIS programming expertise. GABBs can be added to an existing or new HUBzero site, as is the case on MyGeoHub. Teams use MyGeoHub to coordinate project activities, share files and information, publish tools and datasets (with DOI) to provide not only easy access but also improved reuse and reproducibility of data and code as the interactive online tools and workflows can be used without downloading or installing software. Tools on MyGeoHub have also been used in courses, training workshops and summer camps. MyGeoHub is supporting more than 8000 users annually.

  9. ArcGIS Map Packages and GIS Data for: A Geospatial Method for Estimating...

    • zenodo.org
    • data.niaid.nih.gov
    bin, zip
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Gillreath-Brown; Andrew Gillreath-Brown; Lisa Nagaoka; Lisa Nagaoka; Steve Wolverton; Steve Wolverton (2024). ArcGIS Map Packages and GIS Data for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al. (2019) [Dataset]. http://doi.org/10.5281/zenodo.2572018
    Explore at:
    bin, zipAvailable download formats
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrew Gillreath-Brown; Andrew Gillreath-Brown; Lisa Nagaoka; Lisa Nagaoka; Steve Wolverton; Steve Wolverton
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)

    **When using the GIS data included in these map packages, please cite all of the following:

    Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457

    Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018

    OVERVIEW OF CONTENTS

    This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:

    • Raw DEM and Soils data
      • Digital Elevation Model Data (Map services and data available from U.S. Geological Survey, National Geospatial Program, and can be downloaded from the National Elevation Dataset)
        • DEM_Individual_Tiles: Individual DEM tiles prior to being merged (1/3 arc second) from USGS National Elevation Dataset.
        • DEMs_Merged: DEMs were combined into one layer. Individual watersheds (i.e., Goodman, Coffey, and Crow Canyon) were clipped from this combined DEM.
      • Soils Data (Map services and data available from Natural Resources Conservation Service Web Soil Survey, U.S. Department of Agriculture)
        • Animas-Dolores_Area_Soils: Small portion of the soil mapunits cover the northeastern corner of the Coffey Watershed (CW).
        • Cortez_Area_Soils: Soils for Montezuma County, encompasses all of Goodman (GW) and Crow Canyon (CCW) watersheds, and a large portion of the Coffey watershed (CW).
    • ArcGIS Map Packages
      • Goodman_Watershed_Full_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the full Goodman Watershed (GW).
      • Goodman_Watershed_Mesa-Only_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the mesa-only Goodman Watershed.
      • Crow_Canyon_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Crow Canyon Watershed (CCW).
      • Coffey_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Coffey Watershed (CW).

    For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."

    LICENSES

    Code: MIT year: 2019
    Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton

    CONTACT

    Andrew Gillreath-Brown, PhD Candidate, RPA
    Department of Anthropology, Washington State University
    andrew.brown1234@gmail.com – Email
    andrewgillreathbrown.wordpress.com – Web

  10. d

    GIS Features of the Geospatial Fabric for National Hydrologic Modeling.

    • datadiscoverystudio.org
    • data.usgs.gov
    • +3more
    Updated May 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). GIS Features of the Geospatial Fabric for National Hydrologic Modeling. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/2382efaf2d0f45a0a905af670a6b5ccb/html
    Explore at:
    Dataset updated
    May 20, 2018
    Description

    description: The Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature class and its derivation is provided within the

  11. GIBS Geospatial Data Abstraction Library (GDAL)

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2025). GIBS Geospatial Data Abstraction Library (GDAL) [Dataset]. https://catalog.data.gov/dataset/gibs-geospatial-data-abstraction-library-gdal
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    GDAL is an open source translator library for raster geospatial data formats that presents a single abstract data model to the calling application for all supported formats. By providing integration into the GDAL command line utilities, GIBS imagery can be easily included in imagery processing workflows, including bulk access.

  12. Americorps State Profile Geospatial Data

    • datalumos.org
    delimited
    Updated Mar 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Americorps (2025). Americorps State Profile Geospatial Data [Dataset]. http://doi.org/10.3886/E221709V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Mar 5, 2025
    Dataset provided by
    AmeriCorpshttp://www.americorps.gov/
    Authors
    Americorps
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is used to produce the CNCS state profile map for use on our website.

  13. A

    Maryland Department of Natural Resources: GeoSpatial Data Center

    • data.amerigeoss.org
    • cloud.csiss.gmu.edu
    • +1more
    html
    Updated Aug 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Energy Data Exchange (2019). Maryland Department of Natural Resources: GeoSpatial Data Center [Dataset]. https://data.amerigeoss.org/pt_BR/dataset/maryland-department-of-natural-resources-geospatial-data-center
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 9, 2019
    Dataset provided by
    Energy Data Exchange
    Area covered
    Maryland
    Description

    Downloadable geospatial data for the state of Maryland. Data is categorized by county and data layer. Layers include infrastructure, floodplains, critical area, and protected lands.

  14. National Aggregates of Geospatial Data Collection: Population, Landscape,...

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • datasets.ai
    • +6more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates, Version 3 (PLACE III) [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/national-aggregates-of-geospatial-data-collection-population-landscape-and-climate-estimat
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates, Version 3 (PLACE III) data set contains estimates of national-level aggregations in urban, rural, and total designations of territorial extent and population size by biome, climate zone, coastal proximity zone, elevation zone, and population density zone, for 232 statistical areas (countries and other UN recognized territories). This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).

  15. Barrow Area Information Database (BAID) Geospatial Data Sets, Barrow, AK,...

    • data.ucar.edu
    • arcticdata.io
    • +2more
    image
    Updated Feb 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allison Graves Gaylord (2024). Barrow Area Information Database (BAID) Geospatial Data Sets, Barrow, AK, USA [Dataset]. https://data.ucar.edu/dataset/barrow-area-information-database-baid-geospatial-data-sets-barrow-ak-usa
    Explore at:
    imageAvailable download formats
    Dataset updated
    Feb 7, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Allison Graves Gaylord
    Time period covered
    Jan 1, 1948 - Jan 31, 2010
    Area covered
    Description

    The Barrow Area Information Database (BAID) data collection is comprised of geospatial data for the research hubs of Barrow, Atqasuk and Ivotuk on Alaska's North Slope. Over 9600 research plots and instrument locations are included in the BAID research sites database. Updates to the project tracking database are ongoing through field mapping of new research locations and extant sampling sites dating back to the 1940s. Many ancillary data layers are also compiled to facilitate research activities and science communication. These geospatial data sets have been compiled through BAID and related NSF efforts. Geospatial data unique to this project are currently browseable via the BAID archive and include shapefiles of research information (sampling sites and instrumentation, the NOAA-CMDL clean air sector), administrative units (Barrow Environmental Observatory Science Research District plus adjacent federal lands, village districts, zoning, tax parcels, and the Ukpeagvik Inupiat Corporation boundary), infrastructure (power poles, snow fences, roads), erosion data for Elson Lagoon and imagery (declassified military imagery, air photo mosaics, IKONOS, Landsat, Quickbird, SAR and flight line indexes). Related data sets can be browsed via BAID’s web mapping tools and downloaded via the “Related links” section below. In addition, the BAID Internet Map Server (BAID-IMS) provides browse access to a number of additional layers which are available for download through catalog pages at the National Snow and Ice Data Center (NSIDC), the Alaska Geospatial Data Clearinghouse at USGS and the Alaska State Geo-Spatial Data Clearinghouse. Some layers are proprietary and are only available for browse access in BAID-IMS through special agreement. BAID provides a suite of user interfaces (Internet Map Server, Google Earth and Adobe Flex) and Open Geospatial Consortium web services for accessing the research plots and instrument locations. For more information on...

  16. A

    Integrated: Geospatial Toolkit GIS data for Oaxaca from NREL

    • data.amerigeoss.org
    application/unknown
    Updated Jul 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Integrated: Geospatial Toolkit GIS data for Oaxaca from NREL [Dataset]. https://data.amerigeoss.org/it/dataset/integrated-geospatial-toolkit-gis-data-for-oaxaca-from-nrel
    Explore at:
    application/unknownAvailable download formats
    Dataset updated
    Jul 29, 2019
    Dataset provided by
    United States[old]
    Area covered
    Oaxaca
    Description

    The Geospatial Toolkit (GsT) is a map viewer developed by the National Renewable Energy Laboratory (NREL). The toolkit helps energy planners, project developers, researchers and others identify areas of a country that show good potential for renewable energy projects. The toolkit displays renewable energy data along with information about the geography, location of population centers, borders, and transportation and power infrastructure.

    The toolkit is integrated with HOMER, a power system simulation and optimization model, originally developed at NREL and currently owned by HOMER Energy LLC. HOMER integration with the toolkit makes it possible to automatically populate HOMER inputs using weather data from the toolkit to help you get started with your HOMER analysis. The toolkit also displays preliminary HOMER results that you can see without running the model.

    NREL works with different funding partners to develop toolkits for different countries. Institutions in each country provide data for the toolkit, which NREL analyzes and prepares to meet the toolkit specifications. Geographic data for each country comes from different sources, including NREL's renewable resource database, resource assessment programs in each country, and government ministries and research institutions responsible for maintaining geographic datasets for the country.

    For a list of available Geospatial toolkits and more information about NREL's partners in developing the toolkits, see NREL's Geospatial Toolkits website: http://www.nrel.gov/international/geospatial_toolkits.html

    Data:
    Oaxaca Geospatial Toolkit

  17. G

    Geospatial Analytics Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Jan 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Geospatial Analytics Market Report [Dataset]. https://www.marketresearchforecast.com/reports/geospatial-analytics-market-1650
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jan 10, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geospatial Analytics Market size was valued at USD 79.06 USD billion in 2023 and is projected to reach USD 202.74 USD billion by 2032, exhibiting a CAGR of 14.4 % during the forecast period. The growing adoption of location-based technologies and the increasing need for data-driven decision-making in various industries are key factors driving market growth. Geospatial analytics captures, produces and displays GIS (geographic information system)-maps and pictures that may be weather maps, GPS or satellite photos. The geospatial analysis as a tool works with state of art technology in every formats namely; the GPS, sensors that locates, social media, mobile devices, multi of the satellite imagery to produce data visualizations that are facilitating trend-finding in complex relations between people and places as well are the situations' understanding. Visualizations are depicted through the use of maps, graphs, figures, and cartograms that illustrate the entire historical picture as well as a current changing trend. This is why the forecast becomes more confident and the situation is anticipated better. Recent developments include: February 2024: Placer.ai and Esri, a Geographic Information System (GIS) technology provider, partnered to empower customers with enhanced analytics capabilities, integrating consumer behavior analysis. Additionally, the agreement will foster collaborations to unlock further features by synergizing our respective product offerings., December 2023: CKS and Esri India Technologies Pvt Ltd teamed up to introduce the 'MMGEIS' program, focusing on students from 8th grade to undergraduates, to position India as a global leader in geospatial technology through skill development and innovation., December 2023: In collaboration with Bayanat, the UAE Space Agency revealed the initiation of the operational phase of the Geospatial Analytics Platform during its participation in organizing the Space at COP28 initiatives., November 2023: USAID unveiled its inaugural Geospatial Strategy, designed to harness geospatial data and technology for more targeted international program delivery. The strategy foresees a future where geographic methods enhance the effectiveness of USAID's efforts by pinpointing development needs, monitoring program implementation, and evaluating outcomes based on location., May 2023: TomTom International BV, a geolocation technology specialist, expanded its partnership with Alteryx, Inc. Through this partnership, Alteryx will use TomTom’s Maps APIs and location data to integrate spatial data into Alteryx’s products and location insights packages, such as Alteryx Designer., May 2023: Oracle Corporation announced the launch of Oracle Spatial Studio 23.1, available in the Oracle Cloud Infrastructure (OCI) marketplace and for on-premises deployment. Users can browse, explore, and analyze geographic data stored in and managed by Oracle using a no-code mapping tool., May 2023: CAPE Analytics, a property intelligence company, announced an enhanced insurance offering by leveraging Google geospatial data. Google’s geospatial data can help CAPE create appropriate solutions for insurance carriers., February 2023: HERE Global B.V. announced a collaboration with Cognizant, an information technology, services, and consulting company, to offer digital customer experience using location data. In this partnership, Cognizant will utilize the HERE location platform’s real-time traffic data, weather, and road attribute data to develop spatial intelligent solutions for its customers., July 2022: Athenium Analytics, a climate risk analytics company, launched a comprehensive tornado data set on the Esri ArcGIS Marketplace. This offering, which included the last 25 years of tornado insights from Athenium Analytics, would extend its Bronze partner relationship with Esri. . Key drivers for this market are: Advancements in Technologies to Fuel Market Growth. Potential restraints include: Lack of Standardization Coupled with Shortage of Skilled Workforce to Limit Market Growth. Notable trends are: Rise of Web-based GIS Platforms Will Transform Market.

  18. Updated (2015) geospatial (GoogleEarth) data associated with this report:...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Updated (2015) geospatial (GoogleEarth) data associated with this report: Seney National Wildlife Refuge Fire History GIS Location Project (2013) [Dataset]. https://catalog.data.gov/dataset/updated-2015-geospatial-googleearth-data-associated-with-this-report-seney-national-wildli
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Description

    This project (funded by the Joint Fire Science Program through the Seney Natural History Association) contains prescribed and wildfire point and polygon data covering 1944-2012 that occurred within the boundaries of the Seney National Wildlife Refuge (SNWR) and point data from the dendrochronological work of Drobyshev et al. (2008, Canadian J. Forest Research). The intention of the project was to create a data set to provide a single source for users of GIS to access point and area fire information. Prior to this project a separate polygon data set created by the refuge covering fires from 2003-2009 was available as was the Drobyshev et al. (2008) data in a separate file. All other records of fire events on the refuge were in various forms ranging from table sets in the Fire Management Information System (FMIS) to references in refuge annual narratives. There was a clear need to establish a system showing basic location and historical information in one format. GIS using ESRI shapefiles was chosen since it shows the most promise and flexibility in future planning and modeling use. This data format should allow for less duplication of future efforts and increase the usability of fire data to not only to refuge staff but also partner agencies and researchers.

  19. e

    Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • portal.edirepository.org
    • search.dataone.org
    application/vnd.rar
    Updated May 4, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neal-Dunne; Morgan Grove (2012). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. http://doi.org/10.6073/pasta/377da686246f06554f7e517de596cd2b
    Explore at:
    application/vnd.rar(29574980 kilobyte)Available download formats
    Dataset updated
    May 4, 2012
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.

       BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
    
    
       Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
    
    
       For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
    
    
       Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. 
    
    
       This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
    
    
       See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
    
    
       See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
    
  20. d

    Compilation of Geospatial Data (GIS) for the Mineral Industries and Related...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Compilation of Geospatial Data (GIS) for the Mineral Industries and Related Infrastructure of Africa [Dataset]. https://catalog.data.gov/dataset/compilation-of-geospatial-data-gis-for-the-mineral-industries-and-related-infrastructure-o
    Explore at:
    Dataset updated
    Jul 20, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This geodatabase reflects the U.S. Geological Survey’s (USGS) ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports in Africa. The geodatabase and geospatial data layers serve to create a new geographic information product in the form of a geospatial portable document format (PDF) map. The geodatabase contains data layers from USGS, foreign governmental, and open-source sources as follows: (1) mineral production and processing facilities, (2) mineral exploration and development sites, (3) mineral occurrence sites and deposits, (4) undiscovered mineral resource tracts for Gabon and Mauritania, (5) undiscovered mineral resource tracts for potash, platinum-group elements, and copper, (6) coal occurrence areas, (7) electric power generating facilities, (8) electric power transmission lines, (9) liquefied natural gas terminals, (10) oil and gas pipelines, (11) undiscovered, technically recoverable conventional and continuous hydrocarbon resources (by USGS geologic/petroleum province), (12) cumulative production, and recoverable conventional resources (by oil- and gas-producing nation), (13) major mineral exporting maritime ports, (14) railroads, (15) major roads, (16) major cities, (17) major lakes, (18) major river systems, (19) first-level administrative division (ADM1) boundaries for all countries in Africa, and (20) international boundaries for all countries in Africa.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Crater Lake National Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-crater-lake-national-park
Organization logo

Geospatial data for the Vegetation Mapping Inventory Project of Crater Lake National Park

Explore at:
Dataset updated
Jun 4, 2024
Dataset provided by
National Park Servicehttp://www.nps.gov/
Area covered
Crater Lake
Description

The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Our final map product is a geographic information system (GIS) database of vegetation structure and composition across the Crater Lake National Park terrestrial landscape, including wetlands. The database includes photos we took at all relevé, validation, and accuracy assessment plots, as well as the plots that were done in the previous wetlands inventory. We conducted an accuracy assessment of the map by evaluating 698 stratified random accuracy assessment plots throughout the project area. We intersected these field data with the vegetation map, resulting in an overall thematic accuracy of 86.2 %. The accuracy of the Cliff, Scree & Rock Vegetation map unit was difficult to assess, as only 9% of this vegetation type was available for sampling due to lack of access. In addition, fires that occurred during the 2017 accuracy assessment field season affected our sample design and may have had a small influence on the accuracy. Our geodatabase contains the locations where particular associations are found at 600 relevé plots, 698 accuracy assessment plots, and 803 validation plots.

Search
Clear search
Close search
Google apps
Main menu