Health regions are defined by provincial governments as the areas of responsibility for regional healthboards (i.e., legislated) or as regions of interest to health care authorities. In 1998, Statistics Canada, together with the Canadian Institute for Health Information and the Advisory Council on Health Info-Structure (Health Canada),consulted stakeholders across Canada to identify current and future needs for health information. These consultations identified a need for comprehensive and comparable sub-provincial data. In response to this need, health regions were investigated as an alternative geographic unit for disseminating health information. This report provides an overview of health regions in Canada, along with sourcesand methodologies for developing and understanding the health region data linkage and digital boundary files, geographic attributes, and population estimates. The same health region boundaries contained in Health Regions - 2000 have been used in the sample design for the Canadian Community Health Survey. Future boundary changes may cause adjustments to the survey collection and dissemination process, or sample revisions for future survey cycles. For current Health Regions data, refer to Statistics Canada.
This lesson focuses on the identification of major boundaries, borders, and barriers around theworld. The activity uses a web-based map and is tied to the AP Human Geography benchmarks. Find more advanced human geography geoinquiries and explore all geoinquiries at http://www.esri.com/geoinquiries
Health Regions 2005 describes in detail the health region limits as of June 2005 and their correspondence with the 1996 and 2001 Census geography. Health regions are defined by the provinces and represent administrative areas or regions of interest to health authorities. This product contains correspondence files (linking health regions to 2001 Census geographic codes) and digital boundary files. User documentation provides an overview of health regions, sources, methods, limitations and product description (file format and layout).In addition to the geographic files, this product also includes 2001 Census data (basic profile) for health regions. A result of the co-operation of provincial health ministries, Alberta Treasury and BC Stats, Health Regions 2005 is part of the Health Information Roadmap initiative, a joint effort among the Canadian Institute for Health Information, Health Canada and Statistics Canada. Health Regions 2005 was produced by the Health Statistics Division in collaboration with the Geography and Dissemination divisionsHealth regions are definedby provincial governments as the areas of responsibility for regional healthboards (i.e., legislated) or as regions of interest to health care authorities. This product replaces Health Regions 2000. For current Health Regions data, refer to Statistics Canada.
The Gridded Population of the World, Version 3 (GPWv3): Land and Geographic Unit Area Grids measure land areas in square kilometers and the mean Unit size (population-weighted) in square kilometers. The land area grid permits the summation of areas (net of permanent ice and water) at the same resolution as the population density, count, and urban-rural grids. The mean Unit size grids provides a quantitative surface that indicates the size of the input Unit(s) from which population count and density grids are derived..GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).
Density map generated nightly from David Rumsey map bounding boxes
Density map generated nightly from ECAI clearinghouse bounding boxes
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code to reproduce the analyses from: Dallas,T, and C Ten Caten. 2025. Linking geographic distribution and niche through estimation of niche density. Journal of Animal Ecology. Code is written in R and the file is in R markdown (.Rmd). The Rdata file included (env.RData) contains the environmental data layers used, but code to recreate these layers is also included in the analysis.Rmd (keep in mind that it will take some time and processing power). redlist_simple_summary.csv is the information from the IUCN redlist used in Appendix S1 of the manuscript. sessionInfo() for the R workspace is below for transparency and hopefully reproducibility (we recognize that some code will require modification in the future, as some spatial packages used here are being replaced by others).{r}sessionInfo()
R version 4.4.2 (2024-10-31)Platform: x86_64-pc-linux-gnuRunning under: Ubuntu 22.04.5 LTSMatrix products: defaultBLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3 LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3; LAPACK version 3.10.0locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_Yorktzcode source: system (glibc)attached base packages:[1] stats graphics grDevices utils datasets methods base other attached packages: [1] RColorBrewer_1.1-3 ggplot2_3.5.1 ape_5.8 [4] alphahull_2.5 rnaturalearthdata_0.1.0 countrycode_1.5.0 [7] CoordinateCleaner_2.0-20 terra_1.7-39 raster_3.6-23 [10] sp_2.1-4 geosphere_1.5-20 geometry_0.4.7 [13] dbplyr_2.5.0 gbifdb_0.1.2 dplyr_1.1.4 [16] plyr_1.8.9 loaded via a namespace (and not attached): [1] tidyselect_1.2.1 farver_2.1.2 arrow_12.0.1 [4] R.utils_2.12.3 sgeostat_1.0-27 lazyeval_0.2.2 [7] spatstat.geom_3.2-9 digest_0.6.37 lifecycle_1.0.4 [10] sf_1.0-13 spatstat.data_3.0-4 magrittr_2.0.3 [13] compiler_4.4.2 rlang_1.1.4 tools_4.4.2 [16] utf8_1.2.4 data.table_1.16.2 labeling_0.4.3 [19] bit_4.5.0 interp_1.1-4 classInt_0.4-9 [22] xml2_1.3.6 abind_1.4-5 KernSmooth_2.23-24 [25] withr_3.0.2 purrr_1.0.2 R.oo_1.26.0 [28] grid_4.4.2 polyclip_1.10-6 fansi_1.0.6 [31] e1071_1.7-16 colorspace_2.1-1 scales_1.3.0 [34] spatstat.utils_3.0-4 cli_3.6.3 crayon_1.5.3 [37] generics_0.1.3 rgbif_3.7.7 httr_1.4.7 [40] magic_1.6-1 DBI_1.2.3 proxy_0.4-27 [43] stringr_1.5.1 parallel_4.4.2 rnaturalearth_0.3.3 [46] assertthat_0.2.1 vctrs_0.6.5 Matrix_1.7-1 [49] jsonlite_1.8.9 bit64_4.5.2 hexbin_1.28.4 [52] units_0.8-2 splancs_2.01-44 rgdal_1.6-7 [55] glue_1.8.0 spatstat.random_3.2-3 codetools_0.2-19 [58] stringi_1.8.4 gtable_0.3.6 deldir_1.0-9 [61] munsell_0.5.1 tibble_3.2.1 pillar_1.9.0 [64] R6_2.5.1 oai_0.4.0 lattice_0.22-5 [67] R.methodsS3_1.8.2 class_7.3-22 Rcpp_1.0.13-1 [70] nlme_3.1-165 whisker_0.4.1 rgeos_0.6-3 [73] pkgconfig_2.0.3
Graphic representation of seagrass density polygons in 1990 for Southwest Florida provided by the Southwest Florida Water Management District. Data include a land polygon.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.
Density map generated nightly from ECAI clearinghouse and David Rumsey map bounding boxes
This map uses dot density patterns to indicate which population is larger in each area: urban (green) or rural (blue). Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico.The U.S. Census designates each census block as part of an urban area or as rural. Larger geographies in this map such as block group, tract, county and state can therefore have a mix of urban and rural population. This map illustrates the 100% urban areas with all green dots, and 100% rural areas in dark blue dots. Areas with mixed urban/rural population have a proportional mix of green and blue dots to give a visual indication of where change may be happening. From the Census:"The Census Bureau’s urban-rural classification is a delineation of geographic areas, identifying both individual urban areas and the rural area of the nation. The Census Bureau’s urban areas represent densely developed territory, and encompass residential, commercial, and other non-residential urban land uses. The Census Bureau delineates urban areas after each decennial census by applying specified criteria to decennial census and other data. Rural encompasses all population, housing, and territory not included within an urban area.For the 2020 Census, an urban area will comprise a densely settled core of census blocks that meet minimum housing unit density and/or population density requirements. This includes adjacent territory containing non-residential urban land uses. To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing units or have a population of at least 5,000." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
This map shows the population density and total population in the United States in 2010. This is shown by state, county, tract, and block group. The color shows the population per square mile (population density), while the size of each feature shows the total population living there. This is a valuable way to represent population by understanding the quantity and density of the people living there. Areas with high population density are more tightly packed, while low population density means the population is more spread out.The map shows this pattern for states, counties, tracts, and block groups. There is increasing geographic detail as you zoom in, and only one geography is configured to show at any time. The data source is the US Census Bureau, and the vintage is 2010. The original service and data metadata can be found here.
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)
-Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
-Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel,
adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. Data and Resources TIFF Azerbaijan - Population density (2015) DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This webmap is a subset of Global Urban Density Footprint in 2020 Tile Image Layer. This layer represents an estimate of the footprint of urban settings in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis. This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers.Also see the Populated Footprint layer, which like this layer, is intended to provide a fast-drawing cartographic context for the footprint of total population.The following processing steps were used to produce this layer in ArcGIS Pro:1. Int tool (Spatial Analyst) to truncate double precision values; all values less than 0.99 become 0.2. Reclassify tool (Spatial Analyst) to set values 0 through 1499 to NoData (Null) and all other values become 1.3. Copy Raster tool with Output Coordinate System environment set to Web Mercator, bit depth to 1 bit, and NoData Value to 0.Source:WorldPop Population Density 2000-2020 100m, which is created from WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. The DOI for the original WorldPop.org total population population data is 10.5258/SOTON/WP00645.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: S Wicklund, educator, Minnesota Alliance for Geographic EducationGrade/Audience: high schoolResource type: lessonSubject topic(s): population, mapsRegion: worldStandards: Minnesota Social Studies Standards
Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.
Standard 3. Places have physical characteristics (such as climate, topography and vegetation) and human characteristics (such as culture, population, political and economic systems).
Standard 5. The characteristics, distribution and migration of human populations on the earth’s surface influence human systems (cultural, economic and political systems).Objectives: Students will be able to:
The 2022 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These files are supplementary information to illustrate the metadata reports and default visualizations provided as end-user products for WorldPop Random Forest-based population mapping. This collection contains those reports outlining all ancillary covariates and model fitting, as well as KML for each case-stady country outlined in Stevens, et al. (2015) which describes the methods to produce these data in detail.
Stevens FR, Gaughan AE, Linard C, Tatem AJ (2015) Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 10(2): e0107042. doi:10.1371/journal.pone.0107042
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)
-Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
-Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel,
adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data
Health regions are defined by provincial governments as the areas of responsibility for regional healthboards (i.e., legislated) or as regions of interest to health care authorities. In 1998, Statistics Canada, together with the Canadian Institute for Health Information and the Advisory Council on Health Info-Structure (Health Canada),consulted stakeholders across Canada to identify current and future needs for health information. These consultations identified a need for comprehensive and comparable sub-provincial data. In response to this need, health regions were investigated as an alternative geographic unit for disseminating health information. This report provides an overview of health regions in Canada, along with sourcesand methodologies for developing and understanding the health region data linkage and digital boundary files, geographic attributes, and population estimates. The same health region boundaries contained in Health Regions - 2000 have been used in the sample design for the Canadian Community Health Survey. Future boundary changes may cause adjustments to the survey collection and dissemination process, or sample revisions for future survey cycles. For current Health Regions data, refer to Statistics Canada.