100+ datasets found
  1. a

    Geographic Names (USGS The National Map)

    • nifc.hub.arcgis.com
    Updated Oct 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Interagency Fire Center (2024). Geographic Names (USGS The National Map) [Dataset]. https://nifc.hub.arcgis.com/maps/cf9b2d5b3c804bbab1b30f22ececd859
    Explore at:
    Dataset updated
    Oct 30, 2024
    Dataset authored and provided by
    National Interagency Fire Center
    Area covered
    Description

    USGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to https://www.usgs.gov/tools/geographic-names-information-system-gnis. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.

  2. Maps generator

    • zenodo.org
    text/x-python, zip
    Updated Mar 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcos Terol; Marcos Terol; Pedro Gomez-Gasquet; Pedro Gomez-Gasquet; Francisco Fraile; Francisco Fraile; Andrés Boza; Andrés Boza (2024). Maps generator [Dataset]. http://doi.org/10.5281/zenodo.10796431
    Explore at:
    text/x-python, zipAvailable download formats
    Dataset updated
    Mar 8, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Marcos Terol; Marcos Terol; Pedro Gomez-Gasquet; Pedro Gomez-Gasquet; Francisco Fraile; Francisco Fraile; Andrés Boza; Andrés Boza
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Python code provided generates polygonal maps resembling geographical landscapes, where certain areas may represent features like lakes or inaccessible regions. These maps are generated with specified characteristics such as regularity, gap density, and gap scale.

    Features:

    1. Polygon Generation:

      • The code utilizes the Shapely library to generate polygonal shapes within specified bounding boxes. These polygons serve as the primary representation of the map.
    2. Gap Generation:

      • Within the generated polygons, the code introduces gaps to simulate features like lakes or inaccessible areas. These gaps are represented as holes within the central polygon.
    3. Forest Generation
      • Within the generated polygons, the code introduces different forest areas. These forest are added like a new Feature inside the GEOJSON.
    4. Parameterized Generation:

      • The generation process is parameterized, allowing control over features such as regularity (shape uniformity), gap density (homogeneity of gaps), and gap scale (size of gaps relative to the polygon).

    Components:

    1. PolygonGenerator Class:

      • Responsible for generating the outer polygon shape and introducing gaps to simulate features.
      • Offers methods to generate individual polygons with specified characteristics.
    2. Parameter Ranges and Experimentation:

      • The code includes predefined ranges for regularity, gap density, vertex number, bounding box, forest density and forest scale range in 3 different CSV.
      • It conducts experiments by generating maps with different parameter combinations, offering insights into how these parameters affect the map's appearance.

    Usage:

    1. Map Generation:

      • Users can instantiate the PolygonGenerator class to generate individual polygons representing maps with specific features.
      • Parameters such as regularity, gap density, and gap scale can be adjusted to customize the map generation process.
    2. Experimentation:

      • Users can experiment with different parameter combinations to observe the effects on map generation.
      • This allows for exploration and understanding of how different parameters influence the characteristics of generated maps.

    Potential Applications:

    • The code can be used in various applications requiring the generation of simulated landscapes, such as in gaming, geographical analysis, or educational tools.
    • It provides a flexible and customizable framework for creating maps with specific features, allowing users to tailor the generated maps to their requirements.
    • Can be applied to generate maps for drone scanning operations, facilitating optimized area division and efficient data collection.
  3. f

    Data from: Fluid regionalisation of semantic regions: possibilities for...

    • tandf.figshare.com
    pdf
    Updated Jun 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Bartůněk; Jan D. Bláha (2025). Fluid regionalisation of semantic regions: possibilities for visualisation [Dataset]. http://doi.org/10.6084/m9.figshare.29329577.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 16, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Martin Bartůněk; Jan D. Bláha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper explores diverse visualisation methods of regionalisation based on a semantic analysis of institutionalised region names (choronyms) and adopts a fluid (fuzzy) approach to regional boundaries. Grounded in the theory of the institutionalisation of regions, the study examines how region shapes delineate their identities, resulting in an overlapping space of regions. Thus, the nature of this approach in regional geography requires multiple visualisations of areal features. The outcome is map representations of regions in the Czech-German-Polish borderland, illustrating regionalisation beyond traditional regional geography. European regionalism requires regionalisation using innovative cartographic visualisation methods to represent a cultural landscape without the use of borders.Boundaries, names of the regions and institutions form the basis of the region’s identities. European regionalism requires regionalisation using innovative cartographic visualisation methods to represent a cultural landscape without the use of borders. Boundaries, names of the regions and institutions form the basis of the region’s identities.

  4. f

    Tiled vector data model for the geographical features of symbolized maps

    • plos.figshare.com
    txt
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lin Li; Wei Hu; Haihong Zhu; You Li; Hang Zhang (2023). Tiled vector data model for the geographical features of symbolized maps [Dataset]. http://doi.org/10.1371/journal.pone.0176387
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Lin Li; Wei Hu; Haihong Zhu; You Li; Hang Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Electronic maps (E-maps) provide people with convenience in real-world space. Although web map services can display maps on screens, a more important function is their ability to access geographical features. An E-map that is based on raster tiles is inferior to vector tiles in terms of interactive ability because vector maps provide a convenient and effective method to access and manipulate web map features. However, the critical issue regarding rendering tiled vector maps is that geographical features that are rendered in the form of map symbols via vector tiles may cause visual discontinuities, such as graphic conflicts and losses of data around the borders of tiles, which likely represent the main obstacles to exploring vector map tiles on the web. This paper proposes a tiled vector data model for geographical features in symbolized maps that considers the relationships among geographical features, symbol representations and map renderings. This model presents a method to tailor geographical features in terms of map symbols and ‘addition’ (join) operations on the following two levels: geographical features and map features. Thus, these maps can resolve the visual discontinuity problem based on the proposed model without weakening the interactivity of vector maps. The proposed model is validated by two map data sets, and the results demonstrate that the rendered (symbolized) web maps present smooth visual continuity.

  5. f

    Data from: Automatic extraction of road intersection points from USGS...

    • figshare.com
    zip
    Updated Nov 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mahmoud Saeedimoghaddam; Tomasz Stepinski (2019). Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks [Dataset]. http://doi.org/10.6084/m9.figshare.10282085.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 11, 2019
    Dataset provided by
    figshare
    Authors
    Mahmoud Saeedimoghaddam; Tomasz Stepinski
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Tagged image tiles as well as the Faster-RCNN framework for automatic extraction of road intersection points from USGS historical maps of the United States of America. The data and code have been prepared for the paper entitled "Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks" submitted to "International Journal of Geographic Information Science". The image tiles have been tagged manually. The Faster RCNN framework (see https://arxiv.org/abs/1611.10012) was captured from:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

  6. Data for "Complexity-based matching between image resolution and map scale...

    • figshare.com
    zip
    Updated Jan 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Qian Peng; Zhilin Li; Jun Chen; Wanzeng Liu (2021). Data for "Complexity-based matching between image resolution and map scale for multi-scale image-map generation" [Dataset]. http://doi.org/10.6084/m9.figshare.12570248.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 22, 2021
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Qian Peng; Zhilin Li; Jun Chen; Wanzeng Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    An image-map is a compromise of an image and a map. The quality of such maps is affected by a number of factors, such as (a) the matching between the features on images and the graphic symbols from maps, (b) the complexity of background images, and (c) the representation of graphic and text symbols on the images. This project deals with the first issue. The current solution is that the accuracy of images should satisfy the accuracy standard of maps. However, images with different resolutions can satisfy the standard for a specific map scale. This may lead to such a situation that the levels of detail (LoD) in images may not match the complexity of map features although the planimetric accuracy is matched. To solve this problem, we developed a complexity-based matching between the image resolution and map scale. More precisely, the matching is based on the complexity of line features. Experimental evaluations were conducted in fifteen representative areas in Hong Kong, by using maps at seven scales and eight image resolutions. Results show that this complexity-based method is capable of obtaining good matching between image resolution and map scale, in terms of both accuracy and users' preference.

  7. a

    USGS Geographic Names (GNIS) Overlay Map Service from The National Map

    • catalogue.arctic-sdi.org
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). USGS Geographic Names (GNIS) Overlay Map Service from The National Map [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?keyword=name
    Explore at:
    Dataset updated
    Aug 21, 2023
    Description

    USGS developed The National Map (TNM) Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map viewer allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to http://nationalmap.gov/gnis.html.

  8. e

    Data from: 1830 Map of Land Cover and Cultural Features in Massachusetts

    • portal.edirepository.org
    • search.dataone.org
    pdf, zip
    Updated Dec 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Foster; Glenn Motzkin (2023). 1830 Map of Land Cover and Cultural Features in Massachusetts [Dataset]. http://doi.org/10.6073/pasta/453da18612741eb24e3bc900ceee908c
    Explore at:
    pdf(4102353 byte), zip(20027764 byte)Available download formats
    Dataset updated
    Dec 5, 2023
    Dataset provided by
    EDI
    Authors
    David Foster; Glenn Motzkin
    License

    https://spdx.org/licenses/CC0-1.0https://spdx.org/licenses/CC0-1.0

    Time period covered
    1830 - 1831
    Area covered
    Description

    Background and Data Limitations The Massachusetts 1830 map series represents a unique data source that depicts land cover and cultural features during the historical period of widespread land clearing for agricultural. To our knowledge, Massachusetts is the only state in the US where detailed land cover information was comprehensively mapped at such an early date. As a result, these maps provide unusual insight into land cover and cultural patterns in 19th century New England. However, as with any historical data, the limitations and appropriate uses of these data must be recognized: (1) These maps were originally developed by many different surveyors across the state, with varying levels of effort and accuracy. (2) It is apparent that original mapping did not follow consistent surveying or drafting protocols; for instance, no consistent minimum mapping unit was identified or used by different surveyors; as a result, whereas some maps depict only large forest blocks, others also depict small wooded areas, suggesting that numerous smaller woodlands may have gone unmapped in many towns. Surveyors also were apparently not consistent in what they mapped as ‘woodlands’: comparison with independently collected tax valuation data from the same time period indicates substantial lack of consistency among towns in the relative amounts of ‘woodlands’, ‘unimproved’ lands, and ‘unimproveable’ lands that were mapped as ‘woodlands’ on the 1830 maps. In some instances, the lack of consistent mapping protocols resulted in substantially different patterns of forest cover being depicted on maps from adjoining towns that may in fact have had relatively similar forest patterns or in woodlands that ‘end’ at a town boundary. (3) The degree to which these maps represent approximations of ‘primary’ woodlands (i.e., areas that were never cleared for agriculture during the historical period, but were generally logged for wood products) varies considerably from town to town, depending on whether agricultural land clearing peaked prior to, during, or substantially after 1830. (4) Despite our efforts to accurately geo-reference and digitize these maps, a variety of additional sources of error were introduced in converting the mapped information to electronic data files (see detailed methods below). Thus, we urge considerable caution in interpreting these maps. Despite these limitations, the 1830 maps present an incredible wealth of information about land cover patterns and cultural features during the early 19th century, a period that continues to exert strong influence on the natural and cultural landscapes of the region.

        Acknowledgements
        Financial support for this project was provided by the BioMap Project of the Massachusetts Natural Heritage and Endangered Species Program, the National Science Foundation, and the Andrew Mellon Foundation. This project is a contribution of the Harvard Forest Long Term Ecological Research Program.
    
  9. w

    Geography - Topographic Maps

    • data.wu.ac.at
    • ecat.ga.gov.au
    html
    Updated Jun 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Geography - Topographic Maps [Dataset]. https://data.wu.ac.at/schema/data_gov_au/NjUxMDFmZTEtM2M2NC00M2E3LTk5ZDktNjBlMDEwMzA1YmU4
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 27, 2018
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    32d3d8be553877bf9aef6142830a365333831dc0
    Description

    Topographic map data at varying scales used for aeronautical charting, public safety and emergency management, state and federal government, research and industry development. Georeferenced, attributed, GIS vector and scanned image or PDF format data of topographic map information at scales ranging from 1:100 000 to 1:10 000 000. The data include the following themes: Hydrography - drainage networks including watercourses, lakes, wetlands and offshore features; Infrastructure - systems for the transportation of goods and services, ie. roads, railways and associated structures, along with localities, built-up areas and aeronautical features so that these services may be located; and Relief - a series of spot elevations, chosen so as to give a representative picture of the terrain. The topographic map and data index gives coverage information.

  10. Links to all datasets and downloads for 80 A0/A3 digital image of map...

    • data.csiro.au
    Updated Jan 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober (2016). Links to all datasets and downloads for 80 A0/A3 digital image of map posters accompanying AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach [Dataset]. http://doi.org/10.4225/08/569C1F6F9DCC3
    Explore at:
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober
    License

    https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/

    Time period covered
    Jan 1, 2015 - Jan 10, 2015
    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.

    These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.

    The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.

    Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.

    Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.

    Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.

    An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.

    Example citations:

    Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.

    Maps were generated using layout and drawing tools in ArcGIS 10.2.2

    A check list of map posters and datasets is provided with the collection.

    Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x

    8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)

    9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)

    9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)

    10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)

    10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)

    11.1 Refugial potential for vascular plants and mammals (1990-2050)

    11.1 Refugial potential for reptiles and amphibians (1990-2050)

    12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)

    12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)

  11. Lake Winnipeg Watershed Map Analysis

    • library.ncge.org
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). Lake Winnipeg Watershed Map Analysis [Dataset]. https://library.ncge.org/documents/662c3bef17c649148ef9302538651b50
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Lake Winnipeg
    Description

    Author: J Trygestad, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 4, grade 5, grade 6, grade 7, grade 8Resource type: lessonSubject topic(s): physical geography, mapsRegion: north americaStandards: Minnesota Social Studies Standards

    Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context. Objectives: Students will be able to:

    1. Read a map identifying its details.
    2. Make inferences about a map. Summary: This lesson will help students analyze the map and become acquainted with its details. This lesson may also be applied to other lessons involving map reading and analysis, selecting one of the strategies depending on the age of the students and amount of time allowed.
  12. d

    POI-based land use map for Africa

    • datadryad.org
    • search.dataone.org
    • +2more
    zip
    Updated Mar 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Junchuan Fan; Gautam Thakur (2023). POI-based land use map for Africa [Dataset]. http://doi.org/10.5061/dryad.hhmgqnkk6
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 20, 2023
    Dataset provided by
    Dryad
    Authors
    Junchuan Fan; Gautam Thakur
    Time period covered
    2023
    Area covered
    Africa
    Description

    The combination of spatial distribution, semantic characteristics, and sometimes temporal dynamics of POIs inside a geographic region can capture its unique land use characteristics. We developed a scalable POI-based land use modeling framework. By combining POIs with a neural network language model, we developed a spatially explicit approach to learn the embedding representation of POIs and AOIs. We trained supervised classifiers using AOI embeddings as input features to predict AOI land use at different semantic granularities.

  13. a

    Boundaries

    • hub.arcgis.com
    • cacgeoportal.com
    Updated Dec 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Living Atlas – Landscape Content (2021). Boundaries [Dataset]. https://hub.arcgis.com/maps/LandscapeTeam::boundaries-2
    Explore at:
    Dataset updated
    Dec 7, 2021
    Dataset authored and provided by
    Living Atlas – Landscape Content
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Named Landforms of the World (NLW) contains four sub-layers representing geomorphological landforms, provinces, divisions, and their respective cartographic boundaries. The latter is to support map making, while the first three represent basic units such landforms comprise provinces, and provinces comprise divisions. NLW is a substantial update to World Named Landforms in both compilation method and the attributes that describe each landform.For more details, please refer to our paper, Named Landforms of the World: A Geomorphological and Physiographic Compilation, in Annals of the American Assocation of Geographers.Landforms are commonly defined as natural features on the surface of the Earth. The National Geographic Society specifies terrain as the basis for landforms and lists four major types: mountains, hills, plateaus, and plains. Here, however, we define landforms in a richer way that includes properties relating to underlying geologic structure, erosional and depositional character, and tectonic setting and processes. These characteristics were asserted by Dr. Richard E. Murphy in 1968 in his map, titled Landforms of the World. We blended Murphy's definition for landforms with the work E.M. Bridges, who in his 1990 book, World Geomorphology, provided a globally consistent description of geomorphological divisions, provinces, and sections to give names to the landform regions of the world. AttributeDescription Bridges Full NameFull name from E.M. Bridges' 1990 "World Geomorphology" Division and if present province and section - intended for labeling print maps of small extents. Bridges DivisionGeomorphological Division as described in E.M. Bridges' 1990 "World Geomorphology" - All Landforms have a division assigned, i.e., no nulls. Bridges ProvinceGeomorphological Province as described in E.M. Bridges' 1990 "World Geomorphology" - Not all divisions are subdivided into provinces. Bridges SectionGeomorphological Section as described in E.M. Bridges' 1990 "World Geomorphology" - Not all provinces are subdivided into sections. StructureLandform Structure as described in Richard E. Murphy's 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Alpine Systems: Area of mountains formed by orogenic (collisions of tectonic plates) processes in the past 350 to 500 million years. - Caledonian/Hercynian Shield Remnants: Area of mountains formed by orogenic (collisions of tectonic plates) processes 350 to 500 million years ago. - Gondwana or Laurasian Shields: Area underlaid by mostly crystalline rock formations fromed one billion or more years ago and unbroken by tectonic processes. - Rifted Shield Areas: fractures or spreading along or adjacent to tectonic plate edges. - Isolated Volcanic Areas: volcanic activity occurring outside of Alpine Systems and Rifted Shields. - Sedimentary: Areas of deposition occurring within the past 2.5 million years Moist or DryLandform Erosional/Depositional variable as described in Richard E. Murphy's 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Moist: where annual aridity index is 1.0 or higher, which implies precipitation is absorbed or lost via runoff. - Dry: where annual aridity index is less than 1.0, which implies more precipitation evaporates before it can be absorbed or lost via runoff. TopographicLandform Topographic type variable as described in Richard E. Murphy's 1968 "Landforms of the World" map. Karagulle et. al. 2017 - based on rich morphometric characteristics. Coded Value Domain. Values include: - Plains: Areas with less than 90-meters of relief and slopes under 20%. - Hills: Areas with 90- to 300-meters of local relief. - Mountains: Areas with over 300-meters of relief - High Tablelands: Areas with over 300-meters of relief and 50% of highest elevation areas are of gentle slope. - Depressions or Basins: Areas of land surrounded land of higher elevation. Glaciation TypeLandform Erosional/Depositional variable as described in Richard E. Murphy's 1968 "Landforms of the World" map. Values include: - Wisconsin/Wurm Glacial Extent: Areas of most recent glaciation which formed 115,000 years ago and ended 11,000 years ago. - Pre-Wisconsin/Wurm Glacial Extent: Areas subjected only to glaciation prior to 140,000 years ago. ContinentAssigned by Author during data compilation. Bridges Short NameThe name of the smallest of Division, Province, or Section containing this landform feature. Murphy Landform CodeCombination of Richard E. Murphy's 1968 "Landforms of the World" variables expressed as a 3- or 4- letter notation. Used to label medium scale maps. Area_GeoGeodesic area in km2. Primary PlateName of tectonic plate that either completely underlays this landform feature or underlays the largest portion of the landform's area. Secondary PlateWhen a landform is underlaid by two or more tectonic plates, this is the plate that underlays the second largest area. 3rd PlateWhen a landform is underlaid by three or more tectonic plates, this is the plate that underlays the third largest area. 4th PlateWhen a landform is underlaid by four or more tectonic plates, this is the plate that underlays the fourth largest area. 5th PlateWhen a landform is underlaid by five tectonic plates, this is the plate that underlays the fifth largest area. NotesContains standard text to convey additional tectonic process characteristics. Tectonic ProcessAssigns values of orogenic, rift zone, or above subducting plate.

    These data are also available as an ArcGIS Pro Map Package: Named_Landforms_of_the_World_v2.0.mpkx.These data supersede the earlier v1.0: World Named Landforms.Change Log:

    DateDescription of Change July 20, 2022Corrected spelling of Guiana from incorrect representation, "Guyana", used by Bridges. July 27, 2022Corrected Structure coded value domain value, changing "Caledonian/Hercynian Shield" to "Caledonian , Hercynian, or Appalachian Remnants".

    Cite as:Frye, C., Sayre R., Pippi, M., Karagulle, Murphy, A., D. Soller, D.R., Gilbert, M., and Richards, J., 2022. Named Landforms of the World. DOI: 10.13140/RG.2.2.33178.93129. Accessed on:

  14. d

    Geofabric Surface Cartography - V2.1.1

    • data.gov.au
    • devweb.dga.links.com.au
    • +2more
    zip
    Updated Apr 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Geofabric Surface Cartography - V2.1.1 [Dataset]. https://data.gov.au/data/dataset/ce5b77bf-5a02-4cf8-9cf2-be4a2cee2677
    Explore at:
    zip(417274222)Available download formats
    Dataset updated
    Apr 13, 2022
    Dataset authored and provided by
    Bioregional Assessment Program
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    Abstract

    This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

    The Geofabric Surface Cartography product provides a set of related feature classes to be used as the basis for the production of consistent hydrological cartographic maps. This product contains a geometric representation of the (major) surface water features of Australia (excluding external territories). Primarily, these are natural surface hydrology features but the product also contains some man-made features (notably reservoirs, canals and other hydrographic features).

    The product is fully topologically correct which means that all the stream segments flow in the correct direction.

    This product contains fifteen feature types including: Waterbody, Mapped Stream, Mapped Node, Mapped Connectivity (Upstream), Mapped Connectivity (Downstream), Sea, Estuary, Dam, Structure, Canal Line, Water Pipeline, Terrain Break Line, Hydro Point, Hydro Line and Hydro Area.

    Purpose

    This product contains a geometric representation of the (major) surface water features of 'geographic Australia' excluding external territories. It is intended to be used as the basis for the production of consistent hydrological cartographic map products, as well as the visualisation of surface hydrology within a GIS to support the selection of features for inclusion in cartographic map production.

    This product can also be used for stream tracing operations both upstream and downstream however, as this is a mapped representation, streams may be represented as interrupted or intermittent features. In contrast, the Geofabric Surface Network product represents the same stream as a continuous connected feature, that is, the path that stream would take (according to the terrain model) if sufficient water were available for flow. Therefore, for stream tracing operations where full stream connectivity is required, the Geofabric Surface Network product should be used.

    Dataset History

    This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

    Geofabric Surface Cartography is part of a suite of Geofabric products produced by the Australian Bureau of Meteorology. The source data input for the Geofabric Surface Cartography product is the AusHydro v1.7.2 (AusHydro) surface hydrology data set. The AusHydro database provides a seamless surface hydrology layer for Australia at a nominal scale of 1:250,000. It consists of lines, points and polygons representing natural and man-made features such as watercourses, lakes, dams and other water bodies. The natural watercourse layer consists of a linear network with a consistent topology of links and nodes that provide directional flow paths through the network for hydrological analysis.

    This network was used to produce the GEODATA 9 Second Digital Elevation Model (DEM-9S) Version 3 of Australia (https://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&catno=66006).

    Geofabric Surface Cartography is an amalgamation of two primary datasets. The first is the hydrographic component of the GEODATA TOPO 250K Series 3 (GEODATA 3) product released by Geoscience Australia (GA) in 2006. The GEODATA 3 dataset contains the following hydrographic features: canal lines, locks, rapid lines, spillways, waterfall points, bores, canal areas, flats, lakes, pondage areas, rapid areas, reservoirs, springs, watercourse areas, waterholes, water points, marine hazard areas, marine hazard points and foreshore flats.

    It also provides information on naming, hierarchy and perenniality. The dataset also contains cultural and transport features that may intersect with hydrographic features. These include: railway tunnels, rail crossings, railway bridges, road tunnels, road bridges, road crossings, water pipelines.

    Refer to the GEODATA 3 User Guide http://www.ga.gov.au/meta/ANZCW0703008969.html for additional information.

    The second primary dataset is based on the GEODATA TOPO-250K Series 1 (GEODATA 1) watercourse lines completed by GA in 1994, which was supplemented by additional line work captured by the Australian National University (ANU) during the production of the DEM-9S to improve the representation of surface water flow. This natural watercourse dataset consists of directional flow paths and provides a direct link to the flow paths derived from the DEM. There are approximately 700,000 more line segments in this version of the data.

    AusHydro uses the natural watercourse geometry from the ANU enhanced GEODATA 1 data, and the attributes (names, perenniality and hierarchy) associated with GEODATA 3 to produce a fully attributed data set with topologically correct flow paths. The attributes from GEODATA 3 were attached using spatial queries to identify common features between the two datasets. Additional semi-automated and manual editing was undertaken to ensure consistent attribution along the entire network.

    AusHydro dataset includes a unique identifier for each line, point and polygon. AusHydro-ID will be used to maintain the dataset and to incorporate higher resolution datasets in the future. The AusHydro-ID will be linked to the ANUDEM streams through a common segment identifier and ultimately to a set of National Catchments Boundaries (NCBs).

    Changes at v2.1

    ! New Water Storages in the WaterBody FC.
    

    Changes at v2.1.1

    ! 16 New BoM Water Storages attributed in the AHGFWaterBody feature class
    
    and 1 completely new water storage feature added.
    
    
    
    - Correction to spelling of Numeralla river in AHGFMappedStream (formerly
    
    Numaralla).
    
    
    
    - Flow direction of Geometric Network set.
    

    Processing steps:

    1. AusHydro Surface Hydrology dataset is received and loaded into the Geofabric development GIS environment

    2. feature classes from AusHydro are recomposed into composited Geofabric hydrography dataset feature classes in the Geofabric Maintenance Geodatabase.

    3. re-composited feature classes in the Geofabric Maintenance Geodatabase Hydrography Dataset are assigned unique Hydro-IDs using ESRI ArcHydro for Surface Water (ArcHydro: 1.4.0.180 and ApFramework: 3.1.0.84)

    4. feature classes from the Geofabric Maintenance Geodatabase hydrography dataset are extracted and reassigned to the Geofabric Surface Cartography Feature Dataset within the Geofabric Surface Cartography Geodatabase.

    A complete set of data mappings, from input source data to Geofabric Products, is included in the Geofabric Product Guide, Appendices.

    Dataset Citation

    Bureau of Meteorology (2014) Geofabric Surface Cartography - V2.1.1. Bioregional Assessment Source Dataset. Viewed 12 December 2018, http://data.bioregionalassessments.gov.au/dataset/ce5b77bf-5a02-4cf8-9cf2-be4a2cee2677.

  15. n

    Using Google Maps To Apply Urban Models

    • library.ncge.org
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). Using Google Maps To Apply Urban Models [Dataset]. https://library.ncge.org/documents/c492f066f3dc45d1a5e231b72036a5d2
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset authored and provided by
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: J Benolkin, educator, Minnesota Alliance for Geographic EducationGrade/Audience: high schoolResource type: lessonSubject topic(s): urban geography, gisRegion: united statesStandards: Minnesota Social Studies Standards

    Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.

    Standard 6. Geographic factors influence the distribution, functions, growth and patterns of cities and human settlements.Objectives: Students will be able to:

    1. Create a custom map using Google Maps.
    2. Apply one of three urban models to a U.S. city or urban area.Summary: This lesson follows an introduction to Urban Models. It asks students to apply the urban models of Concentric Zone, Sector, and Multi-Nuclei to U.S. cities.
  16. Geospatial data for the Vegetation Mapping Inventory Project of Great Smoky...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Great Smoky Mountains National Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-great-smoky-mountains-nati-caabd
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Great Smoky Mountains
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. To map the vegetation and land cover of GRSM, 52 map classes were developed. Of these 52 map classes, 46 represent natural (including ruderal) vegetation types, most of which types are recognized in the USNVC. For the remaining 6 of the 52 map classes, 4 represent USNVC cultural types for agricultural and developed areas, and 2 represent non-USNVC types for nonvegetated open water and nonvegetated rock. Features were interpreted from viewing four-band digital aerial imagery using digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems; digital aerial imagery was collected during September 23–October 30, 2015. The interpreted data were digitally and spatially referenced, thus making the spatial-database layers usable in a geographic information system. Polygon units were mapped to either a 0.5- or 0.25- hectare (ha) minimum mapping unit, depending on vegetation type. A geodatabase containing several feature-class layers and tables provides the locations and data of USNVC vegetation types (vegetation map layer), vegetation plots, verification sites, AA sites, project boundary extent, and aerial image centers and flight lines. Covering 210,875 ha, the feature-class layer and related tables for the vegetation map layer provide 34,084 polygons of detailed attribute data when special modifiers are not considered (average polygon size of 6.2 ha) and 36,589 polygons of detailed attribute data when special modifiers are considered (average polygon size of 5.8 ha). Each map polygon is assigned a map-class code and name and, when applicable, are linked to USNVC classification tables within the geodatabase. The vegetation map extent includes the administrative boundary for GRSM and the Foothills Parkway.

  17. ArcGIS map package to recreate the maps in the paper (based on CREST data...

    • figshare.com
    7z
    Updated Jun 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Nelson; Serkan Girgin; andrea cattaneo; rolf de By; Theresa McMenomy; Sara vaz (2022). ArcGIS map package to recreate the maps in the paper (based on CREST data layers) [Dataset]. http://doi.org/10.6084/m9.figshare.20061128.v1
    Explore at:
    7zAvailable download formats
    Dataset updated
    Jun 13, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Andy Nelson; Serkan Girgin; andrea cattaneo; rolf de By; Theresa McMenomy; Sara vaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This ArcGIS map package includes multiple spatial datasets that are subsets of the CREST layers and which were used to make the maps in the accompanying article on A Global Representation Of CIty-Region Systems .

  18. d

    Digital Line Graph - 1:100,000 scale

    • search.dataone.org
    • catalog.data.gov
    Updated Mar 30, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (2017). Digital Line Graph - 1:100,000 scale [Dataset]. https://search.dataone.org/view/4ba6b26f-beb1-467e-9d7a-58be91639522
    Explore at:
    Dataset updated
    Mar 30, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center
    Area covered
    Description

    Digital line graph (DLG) data are digital representations of cartographic information. DLGs of map features are converted to digital form from maps and related sources. Intermediate-scale DLG data are derived from USGS 1:100,000-scale 30- by 60-minute quadrangle maps. If these maps are not available, Bureau of Land Management planimetric maps at a scale of 1:100,000 are used. Intermediate-scale DLGs are sold in five categories: (1) Public Land Survey System; (2) boundaries; (3) transportation; (4) hydrography; and (5) hypsography. All DLG data distributed by the USGS are DLG-Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, and have passed certain quality-control checks.

  19. C

    Regional Topographic Map - 1:25.000 Light - DBTR (WMS)

    • ckan.mobidatalab.eu
    wms
    Updated Apr 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoDatiGovIt RNDT (2023). Regional Topographic Map - 1:25.000 Light - DBTR (WMS) [Dataset]. https://ckan.mobidatalab.eu/dataset/regional-topographic-map-1-25-000-light-dbtr-wms
    Explore at:
    wmsAvailable download formats
    Dataset updated
    Apr 27, 2023
    Dataset provided by
    GeoDatiGovIt RNDT
    Description

    WMS of the Regional Topographic Map 1:25.000 taken from the DBTR (Light Version) - Expedited representation obtained from the current release Topographic Database - Monochromatic version in which the backgrounds of the buildings are not represented. Emilia-Romagna Region. This version of the WMS is to be considered the most up-to-date within the CTR 25K.

  20. Map Drawing Services Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Map Drawing Services Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/map-drawing-services-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Oct 4, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Map Drawing Services Market Outlook




    The global map drawing services market size was valued at approximately $1.2 billion in 2023 and is projected to reach $2.3 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.1% during the forecast period. This growth can be attributed to the increasing demand for precise and customized mapping solutions across various industries such as urban planning, environmental management, and tourism.




    One of the primary growth factors of the map drawing services market is the rapid advancement in Geographic Information Systems (GIS) technology. The integration of advanced GIS tools allows for the creation of highly accurate and detailed maps, which are essential for urban planning and environmental management. Additionally, the growing emphasis on smart city initiatives worldwide has led to an increased need for customized mapping solutions to manage urban development and infrastructure efficiently. These technological advancements are not only improving the quality of map drawing services but are also making them more accessible to a broader range of end-users.




    Another significant growth factor is the rising awareness and adoption of map drawing services in the tourism sector. Customized maps are increasingly being used to enhance the tourist experience by providing detailed information about destinations, routes, and points of interest. This trend is particularly prominent in regions with rich cultural and historical heritage, where detailed thematic maps can offer tourists a more immersive and informative experience. Furthermore, the digitalization of the tourism industry has made it easier to integrate these maps into various applications, further driving the demand for map drawing services.




    Environmental management is another key area driving the growth of the map drawing services market. With the increasing focus on sustainable development and environmental conservation, there is a growing need for accurate maps to monitor natural resources, track changes in land use, and plan conservation efforts. Map drawing services provide essential tools for environmental scientists and policymakers to analyze and visualize data, aiding in better decision-making and management of natural resources. The rising environmental concerns globally are expected to continue driving the demand for these services.




    From a regional perspective, North America is anticipated to hold a significant share of the map drawing services market due to the high adoption rate of advanced mapping technologies and the presence of major market players in the region. Furthermore, the region's focus on smart city projects and environmental conservation initiatives is expected to fuel the demand for map drawing services. Meanwhile, the Asia Pacific region is projected to witness the highest growth rate, driven by rapid urbanization, industrialization, and the growing need for efficient infrastructure planning and management.



    Service Type Analysis




    The map drawing services market is segmented into several service types, including custom map drawing, thematic map drawing, topographic map drawing, and others. Custom map drawing services cater to specific client needs, offering tailored mapping solutions for various applications. This segment is expected to witness significant growth due to the increasing demand for personalized maps in sectors such as urban planning, tourism, and corporate services. Businesses and government agencies are increasingly relying on custom maps to support their operations, leading to the expansion of this segment.




    Thematic map drawing services focus on creating maps that highlight specific themes or topics, such as population density, climate patterns, or economic activities. These maps are particularly useful for educational purposes, research, and community planning. The growing emphasis on data-driven decision-making and the need for visual representation of complex datasets are driving the demand for thematic maps. Additionally, thematic maps play a crucial role in public health, disaster management, and policy formulation, contributing to the segment's growth.




    Topographic map drawing services offer detailed representations of physical features of a landscape, including elevation, terrain, and landforms. These maps are essential for various applications, such as environmental management, military ope

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Interagency Fire Center (2024). Geographic Names (USGS The National Map) [Dataset]. https://nifc.hub.arcgis.com/maps/cf9b2d5b3c804bbab1b30f22ececd859

Geographic Names (USGS The National Map)

Explore at:
Dataset updated
Oct 30, 2024
Dataset authored and provided by
National Interagency Fire Center
Area covered
Description

USGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to https://www.usgs.gov/tools/geographic-names-information-system-gnis. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.

Search
Clear search
Close search
Google apps
Main menu