Facebook
TwitterMaps have always been a powerful tool for visualizing data. Participants will learn how to link the static data of census tables to census geographies by using open-source GIS software. Participants will learn how to join data, calculate new attributes, symbolize geography and create maps. No prior GIS experience is necessary. QGIS will be required to be downloaded prior to the workshop, and laptops will be required. Download instructions https://qgis.org/en/site/forusers/download.html. Download data files https://drive.google.com/drive/folders/1xrAj_BrPtMDBgdi9MXWGcrcuVGfTsGgi?usp=sharing
Facebook
TwitterThe 2015 LU/LC data set is the sixth in a series of land use mapping efforts that was begun in 1986. Revisions and additions to the initial baseline layer were done in subsequent years from imagery captured in 1995/97, 2002, 2007, 2012 and 2015. This present 2015 update was created by comparing the 2012 LU/LC layer from NJDEP's Geographic Information Systems (GIS) database to 2015 color infrared (CIR) imagery and delineating and coding areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2015 land use directly to the base data layer. All 2012 LU/LC polygons and attribute fields remain in this data set, so change analysis for the period 2012-2015 can be undertaken from this one layer. The classification system used was a modified Anderson et al., classification system. An impervious surface (IS) code was also assigned to each LU/LC polygon based on the percentage of impervious surface within each polygon as of 2015. Minimum mapping unit (MMU) is 1 acre. ADVISORY: This metadata file contains information for the 2015 Land Use/Land Cover (LU/LC) data sets, which were mapped by USGS Subbasin (HU8). There are additional reference documents listed in this file under Supplemental Information which should also be examined by users of these data sets. As stated in this metadata record's Use Constraints section, NJDEP makes no representations of any kind, including, but not limited to, the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the digital data layers furnished hereunder. NJDEP assumes no responsibility to maintain them in any manner or form. By downloading this data, user agrees to the data use constraints listed within this metadata record.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
GIS data is available on the Forest’s FTP site in the form of “shape files” or layers and is available free for downloading. To utilize these data layers you will need a program that uses the Geographic Information System (GIS) such as ESRI’s ArcMap, ArcView or the free map reading program ArcGIS Explorer. ArcGIS Explorer has tools that let you zoom in/out, print the map, and query data. It also has map tips to identify features, and a help menu. ArcGIS Explorer is available as a free download from the ESRI website. Included is a list of GIS data files available for the Shawnee National Forest. These GIS data files are updated on a continuing basis. It should be noted that this data may have been developed from sources of differing accuracy, accurate only at certain scales, based on modeling or interpretation, or incomplete while being created or revised. Overall accuracy, completeness and timeliness may vary. The following geospatial information/data was prepared by the Shawnee National Forests (US Forest Service). The Forest Service reserves the right to correct, update, modify or replace GIS data without notification. Resources in this dataset:Resource Title: Geospatial Data. File Name: Web Page, url: https://www.fs.usda.gov/main/shawnee/landmanagement/gis Information about the geospatial data and a ftp link to download Forest GIS Data Shapefiles.
Facebook
Twitterhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1ehttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1e
GISCO (Geographic Information System of the COmmission) is responsible for meeting the European Commission's geographical information needs at three levels: the European Union, its member countries, and its regions.
In addition to creating statistical and other thematic maps, GISCO manages a database of geographical information, and provides related services to the Commission. Its database contains core geographical data covering the whole of Europe, such as administrative boundaries, and thematic geospatial information, such as population grid data. Some data are available for download by the general public and may be used for non-commercial purposes. For further details and information about any forthcoming new or updated datasets, see http://ec.europa.eu/eurostat/web/gisco/geodata.
This metadata refers to the whole content of GISCO reference database extracted in June 2020, which contains both public datasets (also available for the general public through http://ec.europa.eu/eurostat/web/gisco/geodata) and datasets to be used only internally by the EEA (typically, but not only, GISCO datasets at 1:100k). The document GISCO-ConditionsOfUse.pdf provided with the dataset gives information on the copyrighted data sources, the mandatory acknowledgement clauses and re-dissemination rights. The license conditions for EuroGeographic datasets in GISCO are provided in a standalone document "LicenseConditions_EuroGeographics.pdf".
The database is provided in GPKG files, with datasets at scales from 1:60M to 1:100K, with reference years spanning until 2021 (e.g. NUTS 2021). Attribute files are provided in CSV. The database manual, a file with the content of the database, a glossary, and a document with the naming conventions are also provided with the database.
The main updates with respect to the previous version of the full database in the SDI (from Jul. 2018) are the addition of the following datasets: - Administrative boundaries at country level, 2020 (CNTR_2020) - Administrative boundaries at commune level, 2016 (COMM_2016) - Coastline boundaries, 2016 (COAS_2016) - Exclusive Economic Zones, 2016 (EEZ_2016)
Local Administrative Units, 2018 (LAU_2018)
NOTE: This metadata file is only for internal EEA purposes and in no case replaces the official metadata provided by Eurostat. For specific GISCO datasets included in this version there are individual EEA metadata files in the SDI: NUTS_2021 and CNTR_2020. For other GISCO datasets in the SDI, it is recommended to use the version included in this dataset. The original metadata files from Eurostat for the different GISCO datasets are available via ECAS login through the Eurostat metadata portal on https://webgate.ec.europa.eu/inspire-sdi/srv/eng/catalog.search#/home. For the public products metadata can also be downloaded from https://ec.europa.eu/eurostat/web/gisco/geodata. For more information about the full database or any of its datasets, please contact the SDI Team (sdi@eea.europa.eu).
Facebook
TwitterPlease note that this file is large, ~450 MB, and may take a substantial amount of time to download especially on slower internet connections.Shapefile (NJ State Plane NAD 1983) download: Click "Open" or Click hereFile Geodatabase (NJ State Plane NAD 1983) download: Click hereThis data represents a "generalized" version of the 2007 LULC. To improve the performance of the web applications displaying the 2002 land use data, it was necessary to create a new simplified layer that included only the minimum number of polygons and attributes needed to represent the 2002 land use conditions. The 2007 LU/LC data set is the fourth in a series of land use mapping efforts that was begun in 1986. Revisions and additions to the initial baseline layer were done in subsequent years from imagery captured in 1995/97, 2002 and 2007. This present 2007 update was created by comparing the 2002 LU/LC layer from NJ DEP's Geographical Information Systems (GIS) database to 2007 color infrared (CIR) imagery and delineating and coding areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2007 land use directly to the base data layer. All 2002 LU/LC polygons and attribute fields remain in this data set, so change analysis for the period 2002-2007 can be undertaken from this one layer. The classification system used was a modified Anderson et al., classification system. An impervious surface (IS) code was also assigned to each LU/LC polygon based on the percentage of impervious surface within each polygon as of 2007. Minimum mapping unit (MMU) is 1 acre. ADVISORY: This metadata file contains information for the 2007Land Use/Land Cover (LU/LC) data sets, which were mapped by Watershed Management Area (WMA). There are additional reference documents listed in this file under Supplemental Information which should also be examined by users of these data sets. As stated in this metadata record's Use Constraints section, NJDEP makes no representations of any kind, including, but not limited to, the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the digital data layers furnished hereunder. NJDEP assumes no responsibility to maintain them in any manner or form. By downloading this data, user agrees to the data use constraints listed within this metadata record.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Forest Health - Insect and Disease GIS data that encompass the Southwestern Region (Arizona, New Mexico) are available for download from this page. A link to the FGDC compliant metadata is provided for each dataset. All data are in zipped shapefile format, in the following projection: Lambert Conformal Conic 1st standard parallel: 32° 0' 0" 2nd standard parallel: 36° 0' 0" Central meridian: -108° 0' 0" Units: Meters Datum: NAD 1983 Resources in this dataset:Resource Title: Forest Health – Insect Disease GIS Data. File Name: Web Page, url: https://www.fs.usda.gov/detail/r3/landmanagement/gis/?cid=stelprd3805189
Facebook
TwitterSome of the finest mountain scenery in the Southwest is found in the 1.6-million-acre Santa Fe National Forest. Here, you can find the headwaters of Pecos, Jemez, and Gallinas Rivers; mountain streams; lakes; and trout fishing. Travel into Pecos, San Pedro Parks, Chama, and Dome Wildernesses via wilderness pack trips, saddle, or on 1,000 miles of hiking trails. Try whitewater rafting on the Rio Chama or Rio Grande from May to September. Consider turkey, elk, deer, and bear hunting, or visit one of many nearby Indian pueblos, Spanish missions, and Indian ruins. Golden aspen grace the high country from September to October and snow blankets Santa Fe Ski Basin in winter. The Santa Fe National Forest GIS data available for download includes Santa Fe National Forest Geospatial (GIS) Datasets, Motor Vehicle Use Map (MVUM) Travel Aids - digital maps and data of the SFNF to upload to GPS units or Smart Phones, 7.5 Minute Topographic Maps (PDF and GeoTIFF) - US Forest Service topo maps only, USFS Geospatial Clearinghouse - includes GIS data of vegetation treatments, administrative boundaries, inventoried roadless areas, FSTopo datasets, USGS Map Locator and Downloader - download current and historic topo maps, Hardcopy Maps with information on how to purchase hard copy visitor, wilderness, or topographic maps. Resources in this dataset:Resource Title: Santa Fe National Forest Geospatial Data. File Name: Web Page, url: https://www.fs.usda.gov/main/santafe/landmanagement/gis
Facebook
TwitterDirect Link to Download Page: https://data2.nhgis.org/mainDOWNLOAD U.S. CENSUS DATA TABLES & MAPPING FILESThe National Historical Geographic Information System (NHGIS) provides easy access to summary tables and time series of population, housing, agriculture, and economic data, along with GIS-compatible boundary files, for years from 1790 through the present and for all levels of U.S. census geography, including states, counties, tracts, and blocks. Read more.WHAT IS IPUMS?IPUMS provides census and survey data from around the world integrated across time and space. IPUMS integration and documentation makes it easy to study change, conduct comparative research, merge information across data types, and analyze individuals within family and community context. Data and services are available free of charge. Learn more about IPUMS.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
The GIS market share in EMEA is expected to increase to USD 2.01 billion from 2021 to 2026, and the market’s growth momentum will accelerate at a CAGR of 8.23%.
This EMEA GIS market research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers GIS market in EMEA segmentation by:
Component - Software, data, and services
End-user - Government, utilities, military, telecommunication, and others
What will the GIS Market Size in EMEA be During the Forecast Period?
Download the Free Report Sample to Unlock the GIS Market Size in EMEA for the Forecast Period and Other Important Statistics
The EMEA GIS market report also offers information on several market vendors, including arxiT SA, Autodesk Inc., Bentley Systems Inc., Cimtex International, CNIM SA, Computer Aided Development Corp. Ltd., Environmental Systems Research Institute Inc., Fugro NV, General Electric Co., HERE Global BV, Hexagon AB, Hi-Target, Mapbox Inc., Maxar Technologies Inc., Pitney Bowes Inc., PSI Services LLC, Rolta India Ltd., SNC Lavalin Group Inc., SuperMap Software Co. Ltd., Takor Group Ltd., and Trimble Inc. among others.
GIS Market in EMEA: Key Drivers, Trends, and Challenges
The integration of BIM and GIS is notably driving the GIS market growth in EMEA, although factors such as data viability and risk of intrusion may impede market growth. Our research analysts have studied the historical data and deduced the key market drivers and the COVID-19 pandemic impact on the GIS industry in EMEA. The holistic analysis of the drivers will help in deducing end goals and refining marketing strategies to gain a competitive edge.
Key GIS Market Driver in EMEA
One of the key factors driving the geographic information system (GIS) market growth in EMEA is the integration of BIM and GIS. A GIS adds value to BIM by visualizing and analyzing the data with regard to the buildings and surrounding features, such as environmental and demographic information. BIM data and workflows include information regarding sensors and the placement of devices in IoT-connected networks. For instance, Dubai's Civil Defense Department has integrated GIS data with its automatic fire surveillance system. This information is provided in a matter of seconds on the building monitoring systems of the Civil Defense Department. Furthermore, location-based services offered by GIS providers help generate huge volumes of data from stationary and moving devices and enable users to perform real-time spatial analytics and derive useful geographic insights from it. Owing to the advantages associated with the integration of BIM with GIS solutions, the demand for GIS solutions is expected to increase during the forecast period.
Key GIS Market Challenge in EMEA
One of the key challenges to the is the GIS market growth in EMEA is the data viability and risk of intrusion. Hackers can hack into these systems with malicious intentions and manipulate the data, which could have destructive or negative repercussions. Such hacking of data could cause nationwide chaos. For instance, if a hacker manipulated the traffic management database, massive traffic jams and accidents could result. If a hacker obtained access to the database of a national disaster management organization and manipulated the data to create a false disaster situation, it could lead to a panic situation. Therefore, the security infrastructure accompanying the implementation of GIS software solutions must be robust. Such security threats may impede market growth in the coming years.
Key GIS Market Trend in EMEA
Integration of augmented reality (AR) and GIS is one of the key geographic information system market trends in EMEA that is expected to impact the industry positively in the forecast period. AR apps could provide GIS content to professional end-users and aid them in making decisions on-site, using advanced and reliable information available on their mobile devices and smartphones. For instance, when the user simply points the camera of the phone at the ground, the application will be able to show the user the location and orientation of water pipes and electric cables that are concealed underground. Organizations such as the Open Geospatial Consortium (OGC) and the World Wide Web Consortium (W3C) are seeking investments and are open to sponsors for an upcoming AR pilot project, which seeks to advance the standards of AR technology at both respective organizations. Such factors will further support the market growth in the coming years.
This GIS market in EMEA analysis report also provides detailed information on other upcoming trends and challenges that will have a far-reaching effect on the market growth. The actionable insights on the trends and challenges will help companies evaluate and develop growth strategies for 2022-202
Facebook
Twitterhttps://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).
Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.
Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.
Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------
Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.
Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.
References:
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Selected GIS data that encompass Carson National Forest are available for download from this page. A link to the FGDC compliant metadata is provided for each dataset. All data are in zipped shapefile format, in the following projection: Universal Transverse Mercator Zone: 13 Units: Meters Datum: NAD 1983 Spheroid: GRS 1980 Resources in this dataset:Resource Title: Carson National Forest GIS Data. File Name: Web Page, url: https://www.fs.usda.gov/detail/r3/landmanagement/gis/?cid=stelprdb5202766
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can view maps, spatial, and statistical information drawn from different databases around the world. In addition, users can download data sets pertaining to prevalence and location of health facilities. Background The World Health Organization GeoNetwork is a geographic information management system that contains geo-referenced data sets and maps to facilitate the planning and monitoring of health related activities and health conditions. Information is available regarding the prevalence and location of health facilities. User Functionality Users must download the Geographic Information Systems (GIS) and Remote-Sensing (RSS) software applications to interact with the data tools, including digital maps, satellite images, and other geographic information. To obtain maps and other geographic information, users can search by term or geographic location or conduct an advanced search by time frame, year, and geographic location. There is a useful manual located under the “Help” tab, which enables users to learn more about GIS and how to use the GeoNetwork. Data Notes Data sources include: Food and Agriculture Organization of the United Nations (FAO), World Food Programme (WFP), and the United Nations Environment Programme (UNEP). The website announces datasets that have most recently been added to the GeoNetwork, but does not indicate the date it was updated.
Facebook
TwitterUSGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to http://nationalmap.gov/gnis.html.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Selected GIS data that encompass Kaibab National Forest are available for download from this page. A link to the FGDC compliant metadata is provided for each dataset. All data are in zipped shapefile format, in the following projection: Universal Transverse Mercator Zone: 12 Units: Meters Datum: NAD 1983 Spheroid: GRS 1980 Resources in this dataset:Resource Title: Kaibab National Forest GIS Data. File Name: Web Page, url: https://www.fs.usda.gov/detail/r3/landmanagement/gis/?cid=stelprdb5209305
Facebook
TwitterUSGS developed The National Map (TNM) Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map viewer allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to https://nationalmap.gov/gnis.html.
Facebook
TwitterNOTE: This file includes data for all 5 boroughs and has a size of 4.60 GB. Individual borough files are available for download from the metadata attachments section. Citywide Geographic Information System (GIS) land cover layer that displays land cover classification, plus pervious and impervious area and percentage at the parcel level, separated into 5 geodatabases, one per borough. DEP hosted a webinar on this study on June 23, 2020. A recording of the webinar, plus a PDF of the webinar presentation, accompany this dataset and are available for download. Please direct questions and comments to DEP at imperviousmap@dep.nyc.gov. This citywide parcel-level impervious area GIS layer was developed by the City of New York to support stormwater-related planning, and is provided solely for informational purposes. The accuracy of the data should be independently verified for any other purpose. The City disclaims any liability for errors and makes no warranties express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose as to the quality, content, accuracy or completeness of the information, text graphics, links and other items contained in this GIS layer.
Facebook
TwitterClick to downloadClick for metadataService URL: https://gis.dnr.wa.gov/site2/rest/services/Public_Forest_Practices/WADNR_PUBLIC_FP_Water_Type/MapServer/4For large areas, like Washington State, download as a file geodatabase. Large data sets like this one, for the State of Washington, may exceed the limits for downloading as shape files, excel files, or KML files. For areas less than a county, you may use the map to zoom to your area and download as shape file, excel or KML, if that format is desired.The DNR Forest Practices Wetlands Geographic Information System (GIS) Layer is based on the National Wetlands Inventory (NWI). In cooperation with the Washington State Department of Ecology, DNR Forest Practices developed a systematic reclassification of the original USFWS wetlands codes into WAC 222-16-035 types. The reclassification was done in 1995 according to the Forest Practice Rules in place at the time. The WAC's for defining wetlands are 222-16-035 and 222-16-050.The DNR Forest Practices Wetlands Geographic Information System (GIS) Layer is based on the National Wetlands Inventory (NWI). In cooperation with the Washington State Department of Ecology, DNR Forest Practices developed a systematic reclassification of the original USFWS wetlands codes into WAC 222-16-035 types. The reclassification was done in 1995 according to the Forest Practice Rules in place at the time. The WAC's for defining wetlands are 222-16-035 and 222-16-050.It is intended that these data be only a first step in determining whether or not wetland issues have been or need to be addressed in an area. The DNR Forest Practices Division and the Department of Ecology strongly supports the additional use of hydric soils (from the GIS soils layer) to add weight to the call of 'wetland'. Reports from the Department of Ecology indicate that these data may substantially underestimate the extent of forested wetlands. Various studies show the NWI data is 25-80% accurate in forested areas. Most of these data were collected from stereopaired aerial photos at a scale of 1:58,000. The stated accuracy is that of a 1:24,000 map, or plus or minus 40 feet. In addition, some parts of the state have data that are 30 years old and only a small percentage have been field checked. Thus, for regulatory purposes, the user should not rely solely on these data. On-the-ground checking must accompany any regulatory call based on these data.The reclassification is based on the USFWS FWS_CODE. The FWS_CODE is a concatenation of three subcomponents: Wetland system, class, and water regime. Forest Practices further divided the components into system, subsystem, class, subclass, water regime, special modifiers, xclass, subxclass, and xsystem. The last three items (xsomething) are for wetland areas which do not easily lend themselves to one class alone. The resulting classification system uses two fields: WLND_CLASS and WLND_TYPE. WLND_CLASS indicates whether the polygon is a forested wetland (F), open water (O), or a vegetated wetland (W). WLND_TYPE, indicates whether the wetland is a type A (1), type B (2), or a generic wetland (3) that doesn't fit the categories for A or B type wetlands. WLND_TYPE = 0 (zero) is used where WLND_CLASS = O (letter "O").
The wetland polygon is classified as F, forested wetland; O, open water; or W, vegetated wetland depending on the following FWS_CODE categories: F O W
--------------------------------------------------- Forested Open Vegetated
Wetland Water Wetland
--------------------------------------------PFO* POW PUB5
E2FO PRB* PML2
PUB1-4 PEM*
PAB* L2US5
PUS1-4 L2EM2
PFL* PSS*
L1RB* PML1
L1UB*
L1AB*
L1OW
L2RB*
L2UB*
L2AB*
L2RS*
L2US1-4
L2OW
DNR FOREST PRACTICES WETLANDS DATASET ON FPARS Internet Mapping Website: The FPARS Resource Map and Water Type Map display Forested, Type A, Type B, and "other" wetlands. Open water polygons are not displayed on the FPARS Resource Map and Water Type Map in an attempt to minimize clutter. The following code combinations are found in the DNR Forest Practices wetlands dataset:
WLND_CLASS WLND_TYPE wetland polygon classification F 3 Forested wetland as defined in WAC 222-16-035 O 0 *NWI open water (not displayed on FPARS Resource or Water Type Maps) W 1 Type A Wetland as defined in WAC 222-16-035 W 2 Type B Wetland as defined in WAC 222-16-035 W 3 other wetland
Facebook
TwitterEarth Data Analysis Center (EDAC) at The University of New Mexico (UNM) develops, manages, and enhances the New Mexico Resource Geographic Information System (RGIS) Program and Clearinghouse. Nationally, NM RGIS is among the largest of state-based programs for digital geospatial data and information and continues to add to its data offerings, services, and technology.
The RGIS Program mission is to develop and expand geographic information and use of GIS technology, creating a comprehensive GIS resource for state and local governments, educational institutions, nonprofit organizations, and private businesses; to promote geospatial information and GIS technology as primary analytical tools for decision makers and researchers; and to provide a central Clearinghouse to avoid duplication and improve information transfer efficiency.
As a repository for digital geospatial data acquired from local and national public agencies and data created expressly for RGIS, the clearinghouse serves as a major hub in New Mexico’s network for inter-agency and intergovernmental coordination, data sharing, information transfer, and electronic communication. Data sets available for download include political and administrative boundaries, place names and locations, census data (current and historical), 30 years of digital orthophotography, 80 years of historic aerial photography, satellite imagery, elevation data, transportation data, wildfire boundaries and natural resource data.
Facebook
Twitter(See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Cretaceous Travis Peak and Hosston Formations was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration of the top of the Travis Peak or Hosston Formations in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the Kelly bushing elevation or the ground surface elevation) and the reported depth of the Travis Peak or Hosston. This map service also shows the thickness of the interval from the top of the Travis Peak or Hosston Formations to the top of the Cotton Valley Group.
Facebook
TwitterMaps have always been a powerful tool for visualizing data. Participants will learn how to link the static data of census tables to census geographies by using open-source GIS software. Participants will learn how to join data, calculate new attributes, symbolize geography and create maps. No prior GIS experience is necessary. QGIS will be required to be downloaded prior to the workshop, and laptops will be required. Download instructions https://qgis.org/en/site/forusers/download.html. Download data files https://drive.google.com/drive/folders/1xrAj_BrPtMDBgdi9MXWGcrcuVGfTsGgi?usp=sharing