31 datasets found
  1. GIS Market in EMEA by Component, End-user, and Geography - Forecast and...

    • technavio.com
    Updated Apr 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2022). GIS Market in EMEA by Component, End-user, and Geography - Forecast and Analysis 2022-2026 [Dataset]. https://www.technavio.com/report/gis-market-industry-in-emea-analysis
    Explore at:
    Dataset updated
    Apr 6, 2022
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Europe, the Middle East and Africa, UK, Africa, Middle East, Europe
    Description

    Snapshot img

    The GIS market share in EMEA is expected to increase to USD 2.01 billion from 2021 to 2026, and the market’s growth momentum will accelerate at a CAGR of 8.23%.

    This EMEA GIS market research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers GIS market in EMEA segmentation by:

    Component - Software, data, and services
    End-user - Government, utilities, military, telecommunication, and others
    

    What will the GIS Market Size in EMEA be During the Forecast Period?

    Download the Free Report Sample to Unlock the GIS Market Size in EMEA for the Forecast Period and Other Important Statistics

    The EMEA GIS market report also offers information on several market vendors, including arxiT SA, Autodesk Inc., Bentley Systems Inc., Cimtex International, CNIM SA, Computer Aided Development Corp. Ltd., Environmental Systems Research Institute Inc., Fugro NV, General Electric Co., HERE Global BV, Hexagon AB, Hi-Target, Mapbox Inc., Maxar Technologies Inc., Pitney Bowes Inc., PSI Services LLC, Rolta India Ltd., SNC Lavalin Group Inc., SuperMap Software Co. Ltd., Takor Group Ltd., and Trimble Inc. among others.

    GIS Market in EMEA: Key Drivers, Trends, and Challenges

    The integration of BIM and GIS is notably driving the GIS market growth in EMEA, although factors such as data viability and risk of intrusion may impede market growth. Our research analysts have studied the historical data and deduced the key market drivers and the COVID-19 pandemic impact on the GIS industry in EMEA. The holistic analysis of the drivers will help in deducing end goals and refining marketing strategies to gain a competitive edge.

    Key GIS Market Driver in EMEA

    One of the key factors driving the geographic information system (GIS) market growth in EMEA is the integration of BIM and GIS. A GIS adds value to BIM by visualizing and analyzing the data with regard to the buildings and surrounding features, such as environmental and demographic information. BIM data and workflows include information regarding sensors and the placement of devices in IoT-connected networks. For instance, Dubai's Civil Defense Department has integrated GIS data with its automatic fire surveillance system. This information is provided in a matter of seconds on the building monitoring systems of the Civil Defense Department. Furthermore, location-based services offered by GIS providers help generate huge volumes of data from stationary and moving devices and enable users to perform real-time spatial analytics and derive useful geographic insights from it. Owing to the advantages associated with the integration of BIM with GIS solutions, the demand for GIS solutions is expected to increase during the forecast period.

    Key GIS Market Challenge in EMEA

    One of the key challenges to the is the GIS market growth in EMEA is the data viability and risk of intrusion. Hackers can hack into these systems with malicious intentions and manipulate the data, which could have destructive or negative repercussions. Such hacking of data could cause nationwide chaos. For instance, if a hacker manipulated the traffic management database, massive traffic jams and accidents could result. If a hacker obtained access to the database of a national disaster management organization and manipulated the data to create a false disaster situation, it could lead to a panic situation. Therefore, the security infrastructure accompanying the implementation of GIS software solutions must be robust. Such security threats may impede market growth in the coming years.

    Key GIS Market Trend in EMEA

    Integration of augmented reality (AR) and GIS is one of the key geographic information system market trends in EMEA that is expected to impact the industry positively in the forecast period. AR apps could provide GIS content to professional end-users and aid them in making decisions on-site, using advanced and reliable information available on their mobile devices and smartphones. For instance, when the user simply points the camera of the phone at the ground, the application will be able to show the user the location and orientation of water pipes and electric cables that are concealed underground. Organizations such as the Open Geospatial Consortium (OGC) and the World Wide Web Consortium (W3C) are seeking investments and are open to sponsors for an upcoming AR pilot project, which seeks to advance the standards of AR technology at both respective organizations. Such factors will further support the market growth in the coming years.

    This GIS market in EMEA analysis report also provides detailed information on other upcoming trends and challenges that will have a far-reaching effect on the market growth. The actionable insights on the trends and challenges will help companies evaluate and develop growth st

  2. GIS In Utility Industry Market Analysis North America, Europe, APAC, Middle...

    • technavio.com
    Updated Dec 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). GIS In Utility Industry Market Analysis North America, Europe, APAC, Middle East and Africa, South America - US, China, Canada, Japan, Germany, Russia, India, Brazil, France, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-in-the-utility-industry-analysis
    Explore at:
    Dataset updated
    Dec 31, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Canada, United States, Global
    Description

    Snapshot img

    GIS In Utility Industry Market Size 2025-2029

    The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.

    The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.

    What will be the Size of the GIS In Utility Industry Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure. Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.

    How is this GIS In Utility Industry Industry segmented?

    The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage ma

  3. M

    Status of Free and Open Public Geospatial Data from Minnesota Counties

    • gisdata.mn.gov
    • data.wu.ac.at
    fgdb, gpkg, html +3
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Information Office (2025). Status of Free and Open Public Geospatial Data from Minnesota Counties [Dataset]. https://gisdata.mn.gov/dataset/bdry-mn-county-open-data-status
    Explore at:
    printable_map, jpeg, fgdb, html, shp, gpkgAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Geospatial Information Office
    Area covered
    Minnesota
    Description

    This map shows the free and open data status of county public geospatial (GIS) data across Minnesota. The accompanying data set can be used to make similar maps using GIS software.

    Counties shown in this dataset as having free and open public geospatial data (with or without a policy) are: Aitkin, Anoka, Becker, Beltrami, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Grant, Hennepin, Hubbard, Isanti, Itasca, Kittson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Meeker, Mille Lacs, Morrison, Mower, Norman, Olmsted, Otter Tail, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Scott, Sherburne, Stearns, Steele, Stevens, St. Louis, Traverse, Waseca, Washington, Wilkin, Winona, Wright and Yellow Medicine.

    To see if a county's data is distributed via the Minnesota Geospatial Commons, check the Commons organizations page: https://gisdata.mn.gov/organization

    To see if a county distributes data via its website, check the link(s) on the Minnesota County GIS Contacts webpage: https://www.mngeo.state.mn.us/county_contacts.html

  4. n

    MedOBIS (EUROBIS)

    • cmr.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). MedOBIS (EUROBIS) [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214586056-SCIOPS.html
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1937 - Dec 31, 2000
    Area covered
    Description

    An attempt to collect, format, analyse and disseminate surveyed marine biological data deriving from the Eastern Mediterranean and Black Sea region is currently under development at the Hellenic Center for Marine Research (HCMR, Greece). The effort has been supported by the MedOBIS project (Mediterranean Ocean Biogeographic Information System) and has been carried out in cooperation with the Aristotelian University of Thessaloniki (Greece), the National Institute of Oceanography (Israel) and the Institute of Biology of the Southern Seas (Ukraine).

        The aim is to develop a taxon-based biogeography database and online data server with a link to survey and provide satellite environmental data. Currently, the primary features of the MedOBIS application are its offline GIS data formatting capabilities and its online Java and JavaScript enabling data server with taxon-based search, mapping and data downloading capabilities. In its completion, the MedOBIS online marine biological data system (http://www.iobis.org/OBISWEB/ObisDynPage1.jsp?content=meta/42.html) will be a single source of biological and environmental data (raw and analysed) as well as an online GIS tool for access of historical and current data by marine researchers. It will function as the Eastern Mediterranean and Black Sea node of EurOBIS (the European node of the International OBIS initiative, part of the Census of Marine Life).
    
        INTRODUCTION
    
        The international and interdisciplinary nature of the biological degradation issue as well as the technological advances of the Internet capabilities allowed the development of a considerable number of interrelated online databases. The free dissemination of valuable historical and current biological, environmental and genetic information has contributed to the establishment of an interdisciplinary platform targeted towards information integration at regional and also at global scales and to the development of information-based management schemes about our common interest.
    
        The spatial component of these data has led to the integration of the information by means of the Geographic Information System (GIS) technology. The latter is widely used as the natural framework for spatial data handling (Wright & Bartlett 1999, Valavanis 2002). GIS serves as the basic technological infrastructure for several online marine biodiversity databases available on the Internet today. Developments like OBIS (Ocean Biogeographic Information System, "http://www.iobis.org/"), OBIS-SEAMAP (Spatial Ecological Analysis of Megavertebrate Populations, "http://seamap.env.duke.edu/") and FIGIS (FAO Fisheries Global Information System, http://www.fao.org/fishery/figis) facilitate the study of anthropogenic impacts on threatened species, enhance our ability to test biogeographic and biodiversity models, support modelling efforts to predict distribution changes in response to environmental change and develop a strong potential for the public outreach component. In addition, such online database systems provide a broader view of marine biodiversity problems and allow the development of management practices that are based on synthetic analysis of interdisciplinary data (Schalk 1998, Decker & O'Dor 2002, Tsontos & Kiefer 2002).
    
        Towards this end, a development of a new online marine biological information system is presented here in its initial phase. MedOBIS (Mediterranean Ocean Biogeographic Information System) intends to assemble, formulate and disseminate marine biological data for the Eastern Mediterranean and Black Sea regions focusing on the assurance and longevity of historical surveyed data, the assembly of current and new information and the dissemination of raw and integrated biological and environmental data and future products through the Internet.
    
        MedOBIS DESCRIPTION
    
        MedOBIS current development consists of four main phases (Fig. 1). The data assembly phase is based on the free contribution of biological data from various national and international scientific surveys in the region. The data formatting phase is based on a GIS (ESRI, 1994), under which the geographic location of data stations is used to convert station data and their attributes to GIS shapefiles. The data analysis phase is based on data integration through GIS and spatial analyses (e.g. species distribution maps, species-environment relations, etc). Finally, the dissemination phase is based on ALOV Map, a free portable Java application for publication of vector and raster maps to the Internet and interactive viewing on web browsers. It supports navigation and search capabilities and allows working with multiple layers, thematic maps, hyperlinked features and attributed data.
    
        During the on-going data assembly phase, a total number of 776 stations with surveyed benthic biological data was employed. These data include mainly benthic species abundance (for nearly 3000 benthic organisms), benthic substrate types and several environmental parameters. Currently, 100 stations have been assembled for the Ionian Sea, 570 stations for the Aegean Sea and 106 stations for the Black Sea. The temporal resolution of these data extends for the period 1937-2000 while most data cover the period 1986-1996. Additionally, monthly satellite images of sea surface temperature (SST) and chlorophyll (Chl-a) were assembled for the period 1998-2003. Satellite data were obtained from the Advanced Very High Resolution Radiometer (AVHRR SST) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS Chl-a). 
    
        During the data formatting phase, all assembled surveyed stations were converted to a GIS shapefile (Fig. 2). This GIS information layer includes the geographic coordinates of the stations as well as stations' identification number. Station data attributes were organised in an MS Access Database while satellite data were embedded in a GIS database as GIS regular grids. The MedOBIS data analysis phase is still at the initial stage. Several off line analytical published efforts (e.g. Arvanitidis et al. 2002, Valavanis et al. 2004a,b,c) will be included in the MedOBIS development, which mainly focus on species distribution maps, mapping of productive oceanic processes and species-environment interactions. 
    
        The MedOBIS dissemination phase ("http://www.medobis.org/") is based on ALOV Map ("http://www.alov.org/"), a joint project of ALOV Software and the Archaeological Computing Laboratory, University of Sydney, Australia. ALOV Map is a Java-based application for publication of GIS data on the Internet and interactive viewing on web browsers. ALOV Map is designed to display geographical information stored in shapefiles or in any SQL database or even in an XML (Extensible Markup Language) document serving as a database. MedOBIS uses ALOV Map's full capabilities and runs in a client-server mode (Fig. 3). ALOV Map is connected to an MS Access database via a servlet container. This architecture was needed to connect the biological data with the spatial data and facilitate search options, such as, which species are found at which stations. Additionally, a JavaScript code is invoked, which searches the data, pops up a window with the results and then shows the relevant stations on the map.
    
        To provide a taxon-based search capability to the MedOBIS development, the sampling data as well as the relevant spatial data are stored in the database, so taxonomic data can be linked with the geographical data by SQL (Structured Query Language) queries. To reference each species to its location on the map, the database queries are stored and added to the applet as individual layers. A search function written in JavaScript searches the attribute data of that layer, displays the results in a separate window and marks the matching stations on the map (Fig. 4). Finally, selecting several stations by drawing a zooming rectangle on the map provides a list with predefined themes from which the user may select more information (Fig. 5). 
    
        CURRENT LIMITATIONS AND FUTURE PLANS
    
        A disadvantage of embedding information from the database as a layer is the relatively long download time due to the current MedOBIS-ALOV Map client-server architecture. An appropriate solution would be a direct search on the server side, which will allow partial data downloading to the client side. This work will be embedded in the MedOBIS application in the future (client-side architecture), when the size of assembled data becomes relatively 'heavy' for the current client-server architecture. This is an on-going process, since the MedOBIS initiative has been endorsed by the "Excellence of the Institute of Marine Biology of Crete (IMBC) in Marine Biodiversity", a Hellenic National Project that has been evaluated and approved by European experts. As more data will be assembled in time-series databases, an additional future work will include the development of MedOBIS data analysis phase, which is planned to include GIS modelling/mapping of species-environment interactions.
    
        Size reference: 2953 species; 776 stations
    
        [Source: The information provided in the summary was extracted from the MarBEF Data System at "http://www.marbef.org/data/eurobisproviders.php"]
    
  5. M

    DNRGPS

    • gisdata.mn.gov
    • data.wu.ac.at
    windows_app
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2022). DNRGPS [Dataset]. https://gisdata.mn.gov/dataset/dnrgps
    Explore at:
    windows_appAvailable download formats
    Dataset updated
    Sep 7, 2022
    Dataset provided by
    Natural Resources Department
    Description

    DNRGPS is an update to the popular DNRGarmin application. DNRGPS and its predecessor were built to transfer data between Garmin handheld GPS receivers and GIS software.

    DNRGPS was released as Open Source software with the intention that the GPS user community will become stewards of the application, initiating future modifications and enhancements.

    DNRGPS does not require installation. Simply run the application .exe

    See the DNRGPS application documentation for more details.

    Compatible with: Windows (XP, 7, 8, 10, and 11), ArcGIS shapefiles and file geodatabases, Google Earth, most hand-held Garmin GPSs, and other NMEA output GPSs

    Limited Compatibility: Interactions with ArcMap layer files and ArcMap graphics are no longer supported. Instead use shapefile or geodatabase.

    Prerequisite: .NET 4 Framework

    DNR Data and Software License Agreement

    Subscribe to the DNRGPS announcement list to be notified of upgrades or updates.

  6. a

    Address Ranges

    • azgeo-data-hub-agic.hub.arcgis.com
    • share-open-data-njtpa.hub.arcgis.com
    • +2more
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2024). Address Ranges [Dataset]. https://azgeo-data-hub-agic.hub.arcgis.com/datasets/geoplatform::address-ranges
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    GeoPlatform ArcGIS Online
    Description

    Address ranges describe a label given to a unique collection of addresses that fall along a road or path. Address ranges provide a way of locating homes and businesses based on their street addresses when no other location information is available.Using a house number, street name, street side and ZIP code, address ranges can locate the address to the geographic area associated to that side of the street. Once geocoded, the U.S. Census Bureau can assign the address to a field assignment area or tabulate the data for that address. In addition, academics, researchers, professionals and government agencies outside of the Census Bureau use MAF/TIGER address ranges to transform tabular addresses into geographical datasets for decision-making and analytical purposes.Address ranges must be unique to geocode addresses to the correct location and avoid geocoding conflicts. Multiple elements in MAF/TIGER are required to make an address range unique including street names, address house numbers and street feature geometries, such as street centerlines. The address range data model is designed to maximize geocoding matches with their correct geographic areas in MAF/TIGER by allowing an unlimited number of address range-to-street feature relationships.The Census Bureau’s Geography Division devises numerous operations and processes to build and maintain high quality address ranges so that:Address ranges accurately describe the location of addresses on the ground.Address All possible city-style addresses are geocoded.Address ranges can handle all known address and street name variations.Address ranges conform with current U.S. Postal Service ZIP codes.Address ranges are reliable and free from conflicts.Automated software continually updates existing address ranges, builds new address ranges and corrects errors. An automated operation links address location points and tabular address information to street feature edges with matching street names in the same block to build and modify address ranges.Many business rules and legal value checks ensure quality address range data in MAF/TIGER. For example, business rules prevent adding or modifying address ranges that overlap another house number range with the same street name and ZIP code. Legal value checks verify that address ranges include mandatory attribute information, valid data types and valid character values.Some of the TIGER/Line products for the public include address ranges and give the public the ability to geocode addresses to MAF/TIGER address ranges for the user’s own purpose. The address range files are available for the nation, Puerto Rico and the U.S. Island Areas at the county level. TIGER/Line files require geographic information system (GIS) software to use.The Census Bureau Geocoder Service is a web service provided to the public. The service accepts up to 1,000 input addresses and, based on Census address ranges, returns the interpolated geocoded location and census geographies. Users can access the service a web interface or a representational state transfer (REST) application program interface (API) web service.Download: https://www2.census.gov/geo/tiger/TGRGDB24/tlgdb_2024_a_us_addr.gdb.zip

  7. a

    LandsatLook Viewer

    • amerigeo.org
    • data.amerigeoss.org
    • +6more
    Updated Nov 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2018). LandsatLook Viewer [Dataset]. https://www.amerigeo.org/items/61a7eb3f37344191914ecdde6db8a038
    Explore at:
    Dataset updated
    Nov 9, 2018
    Dataset authored and provided by
    AmeriGEOSS
    Description

    Welcome to the LandsatLook Viewer!The LandsatLook Viewer is a prototype tool that was developed to allow rapid online viewing and access to the USGS Landsat image archives. This viewer allows you to:Interactively explore the Landsat archive at up to full resolution directly from a common web browserSearch for specific Landsat images based on area of interest, acquisition date, or cloud coverCompare image features and view changes through timeDisplay configurable map information layers in combination with the Landsat imageryCreate a customized image display and export as a simple graphic fileView metadata and download the full-band source imagerySearch by address or place, or zoom to a point, bounding box, or Sentinel-2 Tile or Landsat WRS-1 or WRS-2 Path/RowGenerate and download a video animation of the oldest to newest images displayed in the viewerWe welcome feedback and input for future versions of this Viewer! Please provide your comments or suggestions .About the ImageryThis viewer provides visual and download access to the USGS LandsatLook "Natural Color" imageproduct archive.BackgroundThe Landsat satellites have been collecting multispectral images of Earth from space since 1972. Each image contains multiple bands of spectral information which may require significant user time, system resources, and technical expertise to obtain a visual result. As a result, the use and access to Landsat data has been historically limited to the scientific and technical user communities.The LandsatLook “Natural Color” image product option was created to provide Landsat imagery in a simple user-friendly and viewer-ready format, based on specific bands that have been selected and arranged to simulate natural color. This type of product allows easy visualization of the archived Landsat image without any need for specialized software or technical expertise.LandsatLook ViewerThe LandsatLook Viewer displays the LandsatLook Natural Color image product for all Landsat 1-8 images in the USGS archive and was designed primarily for visualization purposes.The imagery within this Viewer will be of value to anyone who wants to quickly see the full Landsat record for an area, along with major image features or obvious changes to Earth’s surface through time. An area of interest may be extracted and downloaded as a simple graphic file directly through the viewer, and the original full image tile is also available if needed. Any downloaded LandsatLook image product is a georeferenced file and will be compatible within most GIS and Web mapping applications.If the user needs to perform detailed technical analysis, the full bands of Landsat source data may also be accessed through direct links provided on the LandsatLook Viewer.Image ServicesThe imagery that is visible on this LandsatLook Viewer is based on Web-based ArcGIS image services. The underlying REST service endpoints for the LandsatLook imagery are available at https://landsatlook.usgs.gov/arcgis/rest/services/LandsatLook/ImageServer .Useful linksLandsat- Landsat Mission (USGS)- Landsat Science (NASA)LandsatLook- Product Description- USGS Fact Sheet- LandsatLook image services (REST)Landsat Products- Landsat 8 OLI/TIRS- Landsat 7 ETM+- Landsat 4-5 TM- Landsat 1-5 MSS- Landsat Band DesignationsLandsatLook images are full-resolution files derived from Landsat Level-1 data products. The images are compressed and stretched to create an image optimized for image selection and visual interpretation. It is recommended that these images not be used in image analysis.LandsatLook image files are included as options when downloading Landsat scenes from EarthExplorer, GloVis, or the LandsatLook Viewer (See Figure 1).Figure 1. LandsatLook and Level-1 product download optionsLandsatLook Natural Color ImageThe LandsatLook Natural Color image is a .jpg composite of three bands to show a “natural” looking (false color) image. Reflectance values were calculated from the calibrated scaled digital number (DN) image data. The reflectance values were scaled to a 1-255 range using a gamma stretch with a gamma=2.0. This stretch was designed to emphasize vegetation without clipping the extreme values.Landsat 8 OLI = Bands 6,5,4Landsat 7 ETM+ and Landsat 4-5 TM = Bands 5,4,3Landsat 4-5 MSS = Bands 2,4,1Landsat 1-3 MSS = Bands 7,5,4LandsatLook Thermal ImageThe LandsatLook Thermal image is a one-band gray scale .jpg image that displays thermal properties of a Landsat scene. Image brightness temperature values were calculated from the calibrated scaled digital number (DN) image data. An image specific 2 percent clip and a linear stretch to 1-255 were applied to the brightness temperature values.Landsat 8 TIRS = Band 10Landsat 7 ETM+ = Band 61-high gainLandsat 4-5 TM = Band 6Landsat 1-5 MSS = not availableLandsatLook Quality ImageLandsatLook Quality images are 8-bit files generated from the Landsat Level-1 Quality band to provide a quick view of the quality of the pixels within the scene to determine if a particular scene would work best for the user's application. This file includes values representing bit-packed combinations of surface, atmosphere, and sensor conditions that can affect the overall usefulness of a given pixel. Color mapping assignments can be seen in the tables below. For each Landsat scene, LandsatLook Quality images can be downloaded individually in .jpg format, or as a GeoTIFF format file (_QB.TIF) within the LandsatLook Images with Geographic Reference file.Landsat Collection 1 LandsatLook 8-bit Quality Images DesignationsLandsat 8 OLI/TIRSLandsat 7 ETM+, Landsat 4-5 TMLandsat 1-5 MSSColorBitDescriptionBitDescriptionBitDescription 0Designated Fill0Designated Fill0Designated Fill 1Terrain Occlusion1Dropped Pixel1Dropped Pixel 2Radiometric Saturation 2Radiometric Saturation ​2Radiometric Saturation 3Cloud3Cloud3Cloud 4Cloud Shadow4Cloud Shadow 4Unused 5Snow/Ice 5Snow/Ice 5Unused 6Cirrus 6Unused6Unused 7Unused7Unused7UnusedUnusedTable 1. Landsat Collection 1 LandsatLook 8-bit Quality Images Designations LandsatLook Images with Geographic ReferenceThe LandsatLook Image with Geographic Reference is a .zip file bundle that contains the Natural Color, Thermal, and the 8-bit Quality images in georeferenced GeoTiff (.TIF) file format.Figure 2. LandsatLook Natural Color Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013Figure 3. LandsatLook Thermal Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013Figure 4. LandsatLook Quality Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013 with background color set to dark grey. Additional Information About LandsatLook ImagesMany geographic information systems and image processing software packages easily support .jpg images. To create these files, Landsat data is mapped to a 1-255 range, with the fill area set to zero (if a no-data value is set to zero, the compression algorithm may introduce zero-value artifacts into the data area causing very dark data values to be displayed as no-data).

  8. Large Scale International Boundaries

    • catalog.data.gov
    • geodata.state.gov
    • +1more
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (Point of Contact) (2025). Large Scale International Boundaries [Dataset]. https://catalog.data.gov/dataset/large-scale-international-boundaries
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Description

    Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the

  9. Summer Food Service Program (SFSP)

    • agdatacommons.nal.usda.gov
    bin
    Updated Nov 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Food and Nutrition Service (2023). Summer Food Service Program (SFSP) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Summer_Food_Service_Program_SFSP_/24661719
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    United States Department of Agriculturehttp://usda.gov/
    Food and Nutrition Servicehttps://www.fns.usda.gov/
    Authors
    USDA Food and Nutrition Service
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    For researchers and application developers who want to utilize Summer meal site data, FNS provides an option to download a CSV (Comma Separated Values) file and also connect directly to an API (Application Program Interface) of the site. Resources in this dataset:Resource Title: Summer Food Service Program (SFSP) Developer Tools. File Name: Web Page, url: https://www.fns.usda.gov/sfsp/developer-tools

  10. i

    NHD High Res

    • indianamap.org
    • indianamapold-inmap.hub.arcgis.com
    • +1more
    Updated May 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2022). NHD High Res [Dataset]. https://www.indianamap.org/maps/e5e06cf59f38456286cdfca78d4b953f
    Explore at:
    Dataset updated
    May 16, 2022
    Dataset authored and provided by
    IndianaMap
    Area covered
    Description

    National Hydrologic Dataset downloaded from USGS on 2/4/2022. This data is also available from the USGS as a service at https://hydro.nationalmap.gov/arcgis/rest/services/nhd/MapServerAbstract: The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. Use the metadata link, http://nhdgeo.usgs.gov/metadata/nhd_high.htm, for additional information. Purpose: The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.

  11. SEPAL

    • data.amerigeoss.org
    png, wms
    Updated Oct 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). SEPAL [Dataset]. https://data.amerigeoss.org/dataset/sepal
    Explore at:
    png(884051), png(409262), wmsAvailable download formats
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    What is SEPAL?

    SEPAL (https://sepal.io/) is a free and open source cloud computing platform for geo-spatial data access and processing. It empowers users to quickly process large amounts of data on their computer or mobile device. Users can create custom analysis ready data using freely available satellite imagery, generate and improve land use maps, analyze time series, run change detection and perform accuracy assessment and area estimation, among many other functionalities in the platform. Data can be created and analyzed for any place on Earth using SEPAL.

    https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/63a3efa0-08ab-4ad6-9d4a-96af7b6a99ec/download/cambodia_mosaic_2020.png" alt="alt text" title="Figure 1: Best pixel mosaic of Landsat 8 data for 2020 over Cambodia">

    Figure 1: Best pixel mosaic of Landsat 8 data for 2020 over Cambodia

    SEPAL reaches over 5000 users in 180 countries for the creation of custom data products from freely available satellite data. SEPAL was developed as a part of the Open Foris suite, a set of free and open source software platforms and tools that facilitate flexible and efficient data collection, analysis and reporting. SEPAL combines and integrates modern geospatial data infrastructures and supercomputing power available through Google Earth Engine and Amazon Web Services with powerful open-source data processing software, such as R, ORFEO, GDAL, Python and Jupiter Notebooks. Users can easily access the archive of satellite imagery from NASA, the European Space Agency (ESA) as well as high spatial and temporal resolution data from Planet Labs and turn such images into data that can be used for reporting and better decision making.

    National Forest Monitoring Systems in many countries have been strengthened by SEPAL, which provides technical government staff with computing resources and cutting edge technology to accurately map and monitor their forests. The platform was originally developed for monitoring forest carbon stock and stock changes for reducing emissions from deforestation and forest degradation (REDD+). The application of the tools on the platform now reach far beyond forest monitoring by providing different stakeholders access to cloud based image processing tools, remote sensing and machine learning for any application. Presently, users work on SEPAL for various applications related to land monitoring, land cover/use, land productivity, ecological zoning, ecosystem restoration monitoring, forest monitoring, near real time alerts for forest disturbances and fire, flood mapping, mapping impact of disasters, peatland rewetting status, and many others.

    The Hand-in-Hand initiative enables countries that generate data through SEPAL to disseminate their data widely through the platform and to combine their data with the numerous other datasets available through Hand-in-Hand.

    https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/868e59da-47b9-4736-93a9-f8d83f5731aa/download/probability_classification_over_zambia.png" alt="alt text" title="Figure 2: Image classification module for land monitoring and mapping. Probability classification over Zambia">

    Figure 2: Image classification module for land monitoring and mapping. Probability classification over Zambia
  12. Land cover of United Republic of Tanzania - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, http, png, wms +1
    Updated Mar 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of United Republic of Tanzania - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/dataset/adb0b581-b530-4a06-8a86-ed562ddc63b6
    Explore at:
    png, html, wms, zip, httpAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Tanzania
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of United Republic of Tanzania - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  13. Land cover of Mozambique - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, http, png, wms +1
    Updated Mar 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of Mozambique - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/dataset/e58eada2-046a-4277-a812-5c11762ed902
    Explore at:
    png, wms, http, html, zipAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Mozambique
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of Mozambique - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  14. o

    AVIRIS-Classic: L2 Calibrated Reflectance, Facility Instrument Collection,...

    • daac.ornl.gov
    • s.cnmilf.com
    • +3more
    Updated Jun 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). AVIRIS-Classic: L2 Calibrated Reflectance, Facility Instrument Collection, V1 [Dataset]. http://doi.org/10.3334/ORNLDAAC/2154
    Explore at:
    Dataset updated
    Jun 15, 2023
    Description

    This dataset contains Level 2 (L2) orthocorrected reflectance from the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS-Classic) instrument. This is the NASA Earth Observing System Data and Information System (EOSDIS) facility instrument archive of these data. The NASA AVIRIS-Classic is a pushbroom spectral mapping system with high signal-to-noise ratio (SNR), designed and toleranced for high performance spectroscopy. AVIRIS-Classic measures reflected radiance in 224 contiguous bands at approximately 10-nm intervals in the Visible to Shortwave Infrared (VSWIR) spectral range from 400-2500 nm. The AVIRIS-Classic sensor has a 1 milliradian instantaneous field of view, providing altitude dependent ground sampling distances from 20 m to sub meter range. AVIRIS-Classic is flown on a variety of aircraft platforms including the Twin Otter, NASA's WB-57, and NASA's high altitude ER-2. For each flight line, two types of L2 data files may be included: (a) calibrated surface reflectance and (b) water vapor and optical absorption paths for liquid water and ice. The L2 data are provided in ENVI format, which includes a flat binary file accompanied by a header (.hdr) file holding metadata in text format. This archive currently includes data from 2008 - 2024. Additional AVIRIS-Classic facility instrument L2 data will be added as they become available. AVIRIS-Classic supports NASA Science and applications in many areas including plant composition and function, geology and soils, greenhouse gas mapping, and calibration of orbital platforms.

  15. Economic Region Digital Boundary Files - 2011 Census

    • open.canada.ca
    gml, html, shp
    Updated Feb 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2022). Economic Region Digital Boundary Files - 2011 Census [Dataset]. https://open.canada.ca/data/en/dataset/4b91dadf-f774-46e8-8a33-35a4f4f887a1
    Explore at:
    html, gml, shpAvailable download formats
    Dataset updated
    Feb 24, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2011
    Description

    The boundary files portray the geographic limits used for census dissemination. They are available for download in two types: cartographic and digital. Cartographic boundary files depict the geographic areas using only the shorelines of the major land mass of Canada and its coastal islands. Digital boundary files depict the full extent of the geographic areas, including the coastal water area. The files provide a framework for mapping and spatial analysis using commercially available geographic information systems (GIS) or other mapping software.

  16. Storage Management Software Market by Deployment and Geography - Forecast...

    • technavio.com
    Updated Oct 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2021). Storage Management Software Market by Deployment and Geography - Forecast and Analysis 2021-2025 [Dataset]. https://www.technavio.com/report/storage-management-software-market-industry-analysis
    Explore at:
    Dataset updated
    Oct 15, 2021
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    The storage management software market share should rise by USD 10.64 billion from 2021 to 2025 at a CAGR of 10.09%.

    This storage management software market research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers market segmentation by deployment (on-premise and cloud-based) and geography (North America, APAC, Europe, MEA, and South America). The storage management software market report also offers information on several market vendors, including Broadcom Inc., Cisco Systems Inc., Data Dynamics Inc., Dell Technologies Inc., Hitachi Ltd., HP Inc., Huawei Investment and Holding Co. Ltd., International Business Machines Corp., NetApp Inc., and Oracle Corp. among others.

    What will the Storage Management Software Market Size be in 2021?

    To Unlock the Storage Management Software Market Size for 2021 and Other Important Statistics, Download the Free Report Sample!

    Storage Management Software Market: Key Drivers and Trends

    The increase in the volume of data is notably driving the storage management software market growth, although factors such as cyber-attacks may impede market growth. Our research analysts have studied the historical data and deduced the key market drivers and the COVID-19 pandemic impact on the storage management software industry. The holistic analysis of the drivers will help in predicting end goals and refining marketing strategies to gain a competitive edge.

    This storage management software market analysis report also provides detailed information on other upcoming trends and challenges that will have a far-reaching effect on the market growth. The actionable insights on the trends and challenges will help companies evaluate and develop growth strategies for 2021-2025.

    Who are the Major Storage Management Software Market Vendors?

    The report analyzes the market’s competitive landscape and offers information on several market vendors, including:

    Broadcom Inc.
    Cisco Systems Inc.
    Data Dynamics Inc.
    Dell Technologies Inc.
    Hitachi Ltd.
    HP Inc.
    Huawei Investment and Holding Co. Ltd.
    International Business Machines Corp.
    NetApp Inc.
    Oracle Corp.
    

    The vendor landscape of the storage management software market entails successful business strategies deployed by the vendors. The storage management software market is fragmented and the vendors are deploying various organic and inorganic growth strategies to compete in the market.

    To make the most of the opportunities and recover from post COVID-19 impact, market vendors should focus more on the growth prospects in the fast-growing segments, while maintaining their positions in the slow-growing segments.

    Download a free sample of the storage management software market forecast report for insights on complete key vendor profiles. The profiles include information on the production, sustainability, and prospects of the leading companies.

    Which are the Key Regions for Storage Management Software Market?

    For more insights on the market share of various regions Request for a FREE sample now!

    40% of the market’s growth will originate from APAC during the forecast period. China and Japan are the key markets for storage management software in APAC.

    The report offers an up-to-date analysis of the geographical composition of the market. APAC has been recording a significant growth rate and is expected to offer several growth opportunities to market vendors during the forecast period. The growing demand for storage virtualization will facilitate the storage management software market growth in APAC over the forecast period. The report offers an up-to-date analysis of the geographical composition of the market, competitive intelligence, and regional opportunities in store for vendors.

    What are the Revenue-generating Deployment Segments in the Storage Management Software Market?

    To gain further insights on the market contribution of various segments Request for a FREE sample

    The storage management software market share growth by the on-premise segment has been significant. This report provides insights on the impact of the unprecedented outbreak of COVID-19 on market segments. Through these insights, you can safely deduce transformation patterns in consumer behavior, which is crucial to gauge segment-wise revenue growth during 2021-2025 and embrace technologies to improve business efficiency.

    This report provides an accurate prediction of the contribution of all the segments to the growth of the storage management software market size. Furthermore, our analysts have indicated actionable market insights on post COVID-19 impact on each segment, which is crucial to predict change in consumer demand.

        Storage Management Software Market Scope
    
    
    
    
        Report Coverage
    
    
        Details
    
  17. Catalog Management Software Market by Deployment, End-user, and Geography -...

    • technavio.com
    Updated Aug 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2021). Catalog Management Software Market by Deployment, End-user, and Geography - Forecast and Analysis 2021-2025 [Dataset]. https://www.technavio.com/report/catalog-management-software-market-industry-analysis
    Explore at:
    Dataset updated
    Aug 15, 2021
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    The catalog management software market has the potential to grow by USD 963.55 million during 2021-2025, and the market’s growth momentum will decelerate at a CAGR of 12.48%.

    This catalog management software market research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers market segmentation by end-user (retail, e-commerce, marketing and media, manufacturing, and others), deployment (cloud-based and on-premise), and geography (North America, APAC, Europe, South America, and MEA). The catalog management software market report also offers information on several market vendors, including Claritum, Coupa Software Inc., eCom Sol Inc., Fujitsu Ltd., International Business Machines Corp., New Oxatis, Oracle Corp., Proactis Holdings Plc, Salsify Inc., and SAP SE among others.

    What will the Catalog Management Software Market Size be in 2021?

    Browse TOC and LoE with selected illustrations and example pages of Catalog Management Software Market

    Get Your FREE Sample Now!

    Catalog Management Software Market: Key Drivers and Trends

    Based on our research output, there has been a positive impact on the market growth during and post COVID-19 era. The growing affordability of catalog management software is notably driving the catalog management software market growth, although factors such as increasing threats from open-source software may impede market growth. To unlock information on the key market drivers and the COVID-19 pandemic impact on the catalog management software industry get your FREE report sample now.

          The rising affordability of catalog management software is one of the primary factors driving catalog management software market growth.
          The affordable pricing and planning offered by providers are boosting the demand for catalog management software.
          The moderately priced catalog management software allows end-users to manage the huge database of suppliers, contact information, and other details of products and services, enabling automation of the entire process. These end-users include software and services, healthcare, food and retail, and financial services industries.
          The fees associated with the catalog management marketplace model are upfront and fully transparent. This is a simple monthly per-user subscription fee for buy-side users and no cost for suppliers.
    
    
    
    
          Catalog management represents a solution for organizations to consolidate data into a single digital marketplace. It is the best way to consolidate data into a single source of truth for all customers, suppliers, processes, and policies.
          The increasing demand for improved catalog management is one of the key catalog management software market trends as it is beneficial in matching data, removing duplicates, and ensuring consistency. The real benefit to catalog management is in the utilization of master data.
          Catalog management software allows end-users to manage all their product data in a single system and update catalogs in multiple formats.
          The software helps to simplify the workflow and manage all catalog changes regardless of the channel, platform, or location. It also enables the enrichment of product data and necessitates the change of information.
    

    This catalog management software market analysis report also provides detailed information on other upcoming trends and challenges that will have a far-reaching effect on the market growth. Get detailed insights on the trends and challenges, which will help companies evaluate and develop growth strategies.

    Who are the Major Catalog Management Software Market Vendors?

    The report analyzes the market’s competitive landscape and offers information on several market vendors, including:

    Claritum
    Coupa Software Inc.
    eCom Sol Inc.
    Fujitsu Ltd.
    International Business Machines Corp.
    New Oxatis
    Oracle Corp.
    Proactis Holdings Plc
    Salsify Inc.
    SAP SE
    

    The catalog management software market is fragmented and the vendors are deploying growth strategies such as acquiring smaller and regional players to compete in the market. Click here to uncover other successful business strategies deployed by the vendors.

    To make the most of the opportunities and recover from post COVID-19 impact, market vendors should focus more on the growth prospects in the fast-growing segments, while maintaining their positions in the slow-growing segments.

    Download a free sample of the catalog management software market forecast report for insights on complete key vendor profiles. The profiles include information on the production, sustainability, and prospects of the leading companies.

    Which are the Key Regions for Catalog Management Software Market?

    For more insights on the market share of various regions Request for a FREE sample

  18. H

    The Model My Watershed Rapid Watershed Delineation Tool

    • hydroshare.org
    • beta.hydroshare.org
    • +2more
    zip
    Updated Apr 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Tarboton; Nazmus Sazib; Anthony Keith Aufdenkampe (2018). The Model My Watershed Rapid Watershed Delineation Tool [Dataset]. https://www.hydroshare.org/resource/d752efeae812478898fb78327f25c87c
    Explore at:
    zip(9.4 MB)Available download formats
    Dataset updated
    Apr 27, 2018
    Dataset provided by
    HydroShare
    Authors
    David Tarboton; Nazmus Sazib; Anthony Keith Aufdenkampe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Model My Watershed (MMW) is a free web application for modeling the influences of land use and best management practices on stormwater runoff and water quality. The public can access this tool at https://app.wikiwatershed.org/. One component of this tool is a function to define the model domain, or area of interest for analysis and modeling by interactively setting the outlet location and delineating the watershed draining to that location. This functionality has been developed using enhancements to the TauDEM hydrologic terrain analysis software ((http://hydrology.usu.edu/taudem) and includes a tool on the user interface and RESTFul Application Program Interface that accesses backend data generated from NHDPlus Version 2.1 gridded flow directions. The continental US was preprocessed into subwatersheds that include gridded flow directions and the polygon shapefile for the entire watershed draining to the subwatershed outlet. Thus when a point within the domain is input (clicked or entered to RESTFul API), the subwatershed that it falls in is first identified. It is then snapped to the stream by moving down to the first stream (NHDPlus medium resolution stream) encountered along the flow directions. Then the local watershed within the subwatershed is delineated based on subwatershed flow direction grid using an adaptation of the TauDEM gauge watershed function. This local subwatershed is then merged with shapefiles for any upstream watersheds to which it attaches. Small watersheds are delineated within a few seconds, with larger watersheds taking up to 40 s (entire Mississippi). The most time consuming step is the merging and generalization of shape information for display. The polygon that result from this process may be downloaded, and subject to size limitations also entered into the MMW analyze area function to summarize land use, hydrologic soils and other information of interest to hydrologic and water quality modeling within the delineated area. The resulting watershed polygon may also be entered into one of the stormwater or water quality models supported by MMW.

    Presentation at 2018 AWRA Spring Specialty Conference: Geographic Information Systems (GIS) and Water Resources X, Orlando, Florida, April 23-25, http://awra.org/meetings/Orlando2018/.

  19. Land cover of Cameroon - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, http, png, wms +1
    Updated Mar 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of Cameroon - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/dataset/235d6f0d-b6c7-41d3-a09b-a741dee3f555
    Explore at:
    html, http, wms, png, zipAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Cameroon
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of Cameroon - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  20. Mobile Security Software Market by End-user and Geography - Forecast and...

    • technavio.com
    Updated Dec 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2021). Mobile Security Software Market by End-user and Geography - Forecast and Analysis 2021-2025 [Dataset]. https://www.technavio.com/report/mobile-security-software-market-industry-analysis
    Explore at:
    Dataset updated
    Dec 15, 2021
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    The mobile security software market share is expected to increase by USD 2.75 billion from 2020 to 2025, and the market’s growth momentum will accelerate at a CAGR of 9.68%.

    This mobile security software market research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers mobile security software market segmentation by end-user (enterprises and individual users) and geography (North America, APAC, Europe, MEA, and South America). The mobile security software market report also offers information on several market vendors, including AO Kaspersky Lab, Avast Plc, Broadcom Inc., F-Secure Corp., International Business Machines Corp., Ivanti Inc., McAfee Corp., Panda Security SL, Samsung Electronics Co. Ltd., and Trend Micro Inc. among others.

    What will the Mobile Security Software Market Size be During the Forecast Period?

    Download the Free Report Sample to Unlock the Mobile Security Software Market Size for the Forecast Period and Other Important Statistics

    'North America, as countries in this region, such as the US and Canada, are among the most technologically advanced countries and are pioneers in the adoption of technologies'

    Mobile Security Software Market: Key Drivers, Trends, and Challenges

    The increasing incidence of cyberattacks is notably driving the mobile security software market growth, although factors such as availability of free mobile security software may impede the market growth. Our research analysts have studied the historical data and deduced the key market drivers and the COVID-19 pandemic impact on the mobile security software industry. The holistic analysis of the drivers will help in deducing end goals and refining marketing strategies to gain a competitive edge.

    Key Mobile Security Software Market Driver

    One of the major factors contributing to the mobile security market growth is the increasing cases of business information thefts and insider fraud. Cyberattacks are becoming advanced and sophisticated, which are targeting people, networks, and devices. In the rapidly changing IT infrastructure, attackers are finding new ways of stealing valuable information and disrupting businesses and individuals by infiltrating into mobile devices and acquiring sensitive information. The increasing dependency on mobile applications for critical purposes such as transactions, purchases, and other related activities is leading to a rise in the number of data theft cases. Furthermore, with the emergence of social networking websites, it has become easy for attackers to extract information from vulnerable users. Such increasing cases of advanced and sophisticated thefts are forcing mobile users to adopt mobile security software.

    Key Mobile Security Software Market Trend

    Growing penetration of smartphones across the globe is the key trend driving the mobile security market growth. In 2020, the sales of smartphones witnessed strong growth, owing to the rising disposable incomes of consumers and increasing household spending power in emerging economies. In the same year, major smartphone manufacturers, such as Samsung Group, Apple Inc., and Huawei Technologies Co., Ltd., witnessed strong growth in the sales of smartphones. Therefore, an increase in the sales of smartphones around the world has provided high growth opportunities for vendors in the global mobile security software market.

    Key Mobile Security Software Market Challenge

    The availability of free mobile security software is posing a severe threat to the mobile security software market growth. Such software can be downloaded and run on all platforms and is becoming popular in developing economies such as India and China. Most major vendors, such as Avast Software SRO, Quick Heal Technologies Ltd., Bitdefender, and AO Kaspersky Lab, among others, provide free mobile security software. Vendors use this as a strategy to attract customers and encourage them to upgrade it to premium mobile security software that offers additional features. However, most individual smartphone users prefer using free mobile security software. Hence, the increasing adoption of free mobile security software is reducing the overall revenue generated in the mobile security software market.

    This mobile security software market analysis report also provides detailed information on other upcoming trends and challenges that will have a far-reaching effect on the market growth. The actionable insights on the trends and challenges will help companies evaluate and develop growth strategies for 2021-2025.

    Market Overview

    The global systems software market within the global IT software market. The super parent global IT software market covers companies engaged in developing and producing application and systems software. It also includes companies offering database managem

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Technavio (2022). GIS Market in EMEA by Component, End-user, and Geography - Forecast and Analysis 2022-2026 [Dataset]. https://www.technavio.com/report/gis-market-industry-in-emea-analysis
Organization logo

GIS Market in EMEA by Component, End-user, and Geography - Forecast and Analysis 2022-2026

Explore at:
Dataset updated
Apr 6, 2022
Dataset provided by
TechNavio
Authors
Technavio
Time period covered
2021 - 2025
Area covered
Europe, the Middle East and Africa, UK, Africa, Middle East, Europe
Description

Snapshot img

The GIS market share in EMEA is expected to increase to USD 2.01 billion from 2021 to 2026, and the market’s growth momentum will accelerate at a CAGR of 8.23%.

This EMEA GIS market research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers GIS market in EMEA segmentation by:

Component - Software, data, and services
End-user - Government, utilities, military, telecommunication, and others

What will the GIS Market Size in EMEA be During the Forecast Period?

Download the Free Report Sample to Unlock the GIS Market Size in EMEA for the Forecast Period and Other Important Statistics

The EMEA GIS market report also offers information on several market vendors, including arxiT SA, Autodesk Inc., Bentley Systems Inc., Cimtex International, CNIM SA, Computer Aided Development Corp. Ltd., Environmental Systems Research Institute Inc., Fugro NV, General Electric Co., HERE Global BV, Hexagon AB, Hi-Target, Mapbox Inc., Maxar Technologies Inc., Pitney Bowes Inc., PSI Services LLC, Rolta India Ltd., SNC Lavalin Group Inc., SuperMap Software Co. Ltd., Takor Group Ltd., and Trimble Inc. among others.

GIS Market in EMEA: Key Drivers, Trends, and Challenges

The integration of BIM and GIS is notably driving the GIS market growth in EMEA, although factors such as data viability and risk of intrusion may impede market growth. Our research analysts have studied the historical data and deduced the key market drivers and the COVID-19 pandemic impact on the GIS industry in EMEA. The holistic analysis of the drivers will help in deducing end goals and refining marketing strategies to gain a competitive edge.

Key GIS Market Driver in EMEA

One of the key factors driving the geographic information system (GIS) market growth in EMEA is the integration of BIM and GIS. A GIS adds value to BIM by visualizing and analyzing the data with regard to the buildings and surrounding features, such as environmental and demographic information. BIM data and workflows include information regarding sensors and the placement of devices in IoT-connected networks. For instance, Dubai's Civil Defense Department has integrated GIS data with its automatic fire surveillance system. This information is provided in a matter of seconds on the building monitoring systems of the Civil Defense Department. Furthermore, location-based services offered by GIS providers help generate huge volumes of data from stationary and moving devices and enable users to perform real-time spatial analytics and derive useful geographic insights from it. Owing to the advantages associated with the integration of BIM with GIS solutions, the demand for GIS solutions is expected to increase during the forecast period.

Key GIS Market Challenge in EMEA

One of the key challenges to the is the GIS market growth in EMEA is the data viability and risk of intrusion. Hackers can hack into these systems with malicious intentions and manipulate the data, which could have destructive or negative repercussions. Such hacking of data could cause nationwide chaos. For instance, if a hacker manipulated the traffic management database, massive traffic jams and accidents could result. If a hacker obtained access to the database of a national disaster management organization and manipulated the data to create a false disaster situation, it could lead to a panic situation. Therefore, the security infrastructure accompanying the implementation of GIS software solutions must be robust. Such security threats may impede market growth in the coming years.

Key GIS Market Trend in EMEA

Integration of augmented reality (AR) and GIS is one of the key geographic information system market trends in EMEA that is expected to impact the industry positively in the forecast period. AR apps could provide GIS content to professional end-users and aid them in making decisions on-site, using advanced and reliable information available on their mobile devices and smartphones. For instance, when the user simply points the camera of the phone at the ground, the application will be able to show the user the location and orientation of water pipes and electric cables that are concealed underground. Organizations such as the Open Geospatial Consortium (OGC) and the World Wide Web Consortium (W3C) are seeking investments and are open to sponsors for an upcoming AR pilot project, which seeks to advance the standards of AR technology at both respective organizations. Such factors will further support the market growth in the coming years.

This GIS market in EMEA analysis report also provides detailed information on other upcoming trends and challenges that will have a far-reaching effect on the market growth. The actionable insights on the trends and challenges will help companies evaluate and develop growth st

Search
Clear search
Close search
Google apps
Main menu