Facebook
TwitterThe Protected Areas Database of the United States (PAD-US) is a geodatabase, managed by USGS GAP, that illustrates and describes public land ownership, management and other conservation lands, including voluntarily provided privately protected areas. The State, Regional and LCC geodatabases contain two feature classes. The PADUS1_3_FeeEasement feature class and the national MPA feature class. Legitimate and other protected area overlaps exist in the full inventory, with Easements loaded on top of Fee. Parcel data within a protected area are dissolved in this file that powers the PAD-US Viewer. As overlaps exist, GAP creates separate analytical layers to summarize area statistics for "GAP Status Code" and "Owner Name". Contact the PAD-US Coordinator for more information. The lands included in PAD-US are assigned conservation measures that qualify their intent to manage lands for the preservation of biological diversity and to other natural, recreational and cultural uses; managed for these purposes through legal or other effective means. The geodatabase includes: 1) Geographic boundaries of public land ownership and voluntarily provided private conservation lands (e.g., Nature Conservancy Preserves); 2) The combination land owner, land manager, management designation or type, parcel name, GIS Acres and source of geographic information of each mapped land unit 3) GAP Status Code conservation measure of each parcel based on USGS National Gap Analysis Program (GAP) protection level categories which provide a measurement of management intent for long-term biodiversity conservation 4) IUCN category for a protected area's inclusion into UNEP-World Conservation Monitoring Centre's World Database for Protected Areas. IUCN protected areas are defined as, "A clearly defined geographical space, recognized, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and cultural values" and are categorized following a classification scheme available through USGS GAP; 5) World Database of Protected Areas (WDPA) Site Codes linking the multiple parcels of a single protected area in PAD-US and connecting them to the Global Community. As legitimate and other overlaps exist in the combined inventory GAP creates separate analytical layers to obtain area statistics for "GAP Status Code" and "Owner Name". PAD-US version 1.3 Combined updates include: 1) State, local government and private protected area updates delivered September 2011 from PAD-US State Data Stewards: CO (Colorado State University), FL (Florida Natural Areas Inventory), ID (Idaho Fish and Game), MA (The Commonwealth's Office of Geographic Information Systems, MassGIS), MO (University of Missouri, MoRAP), MT (Montana Natural Heritage Program), NM (Natural Heritage New Mexico), OR (Oregon Natural Heritage Program), VA (Department of Conservation and Recreation, Virginia Natural Heritage Program). 2) Select local government (i.e. county, city) protected areas (3,632) across the country (to complement the current PAD-US inventory) aggregated by the Trust for Public Land (TPL) for their Conservation Almanac that tracks the conservation finance movement across the country. 3) A new Date of Establishment field that identifies the year an area was designated or otherwise protected, attributed for 86% of GAP Status Code 1 and 2 protected areas. Additional dates will be provided in future updates. 4) A national wilderness area update from wilderness.net 5) The Access field that describes public access to protected areas as defined by data stewards or categorical assignment by Primary Designation Type. . The new Access Source field documents local vs. categorical assignments. See the PAD-US Standard Manual for more information: gapanalysis.usgs.gov/padus 6) The transfer of conservation measures (i.e. GAP Status Codes, IUCN Categories) and documentation (i.e. GAP Code Source, GAP Code Date) from PAD-US version 1.2 or categorical assignments (see PAD-US Standard) when not provided by data stewards 7) Integration of non-sensitive National Conservation Easement Database (NCED) easements from August 2011, July 2012 with PAD-US version 1.2 easements. Duplicates were removed, unless 'Stacked' = Y and multiple easements exist. 8) Unique ID's transferred from NCED or requested for new easements. NCED and PAD-US are linked via Source UID in the PAD-US version 1.3 Easement feature class. 9) Official (member and eligible) MPAs from the NOAA MPA Inventory (March 2011, www.mpa.gov) translated into the PAD-US schema with conservation measures transferred from PAD-US version 1.2 or categorically assigned to new protected areas. Contact the PAD-US Coordinator for documentation of categorical GAP Status Code assignments for MPAs. 10) Identified MPA records that overlap existing protected areas in the PAD-US Fee feature class (i.e. PADUS Overlap field in MPA feature class). For example, many National Wildlife Refuges and National Parks are also MPAs and are represented in the PAD-US MPA and Fee feature classes.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
North America Geographic Information System Market Size 2025-2029
The geographic information system market size in North America is forecast to increase by USD 11.4 billion at a CAGR of 23.7% between 2024 and 2029.
The market is experiencing significant growth due to the increasing adoption of advanced technologies such as artificial intelligence, satellite imagery, and sensors in various industries. In fleet management, GIS software is being used to optimize routes and improve operational efficiency. In the context of smart cities, GIS solutions are being utilized for content delivery, public safety, and building information modeling. The demand for miniaturization of technologies is also driving the market, allowing for the integration of GIS into smaller devices and applications. However, data security concerns remain a challenge, as the collection and storage of sensitive information requires robust security measures. The insurance industry is also leveraging GIS for telematics and risk assessment, while the construction sector uses GIS for server-based project management and planning. Overall, the GIS market is poised for continued growth as these trends and applications continue to evolve.
What will be the Size of the market During the Forecast Period?
Request Free Sample
The Geographic Information System (GIS) market encompasses a range of technologies and applications that enable the collection, management, analysis, and visualization of spatial data. Key industries driving market growth include transportation, infrastructure planning, urban planning, and environmental monitoring. Remote sensing technologies, such as satellite imaging and aerial photography, play a significant role in data collection. Artificial intelligence and the Internet of Things (IoT) are increasingly integrated into GIS solutions for real-time location data processing and operational efficiency.
Applications span various sectors, including agriculture, natural resources, construction, and smart cities. GIS is essential for infrastructure analysis, disaster management, and land management. Geospatial technology enables spatial data integration, providing valuable insights for decision-making and optimization. Market size is substantial and growing, fueled by increasing demand for efficient urban planning, improved infrastructure, and environmental sustainability. Geospatial startups continue to emerge, innovating in areas such as telematics, natural disasters, and smart city development.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Component
Software
Data
Services
Deployment
On-premise
Cloud
Geography
North America
Canada
Mexico
US
By Component Insights
The software segment is estimated to witness significant growth during the forecast period.
The Geographic Information System (GIS) market encompasses desktop, mobile, cloud, and server software for managing and analyzing spatial data. In North America, industry-specific GIS software dominates, with some commercial entities providing open-source alternatives for limited functions like routing and geocoding. Despite this, counterfeit products pose a threat, making open-source software a viable option for smaller applications. Market trends indicate a shift towards cloud-based GIS solutions for enhanced operational efficiency and real-time location data. Spatial data applications span various sectors, including transportation infrastructure planning, urban planning, natural resources management, environmental monitoring, agriculture, and disaster management. Technological innovations, such as artificial intelligence, the Internet of Things (IoT), and satellite imagery, are revolutionizing GIS solutions.
Cloud-based GIS solutions, IoT integration, and augmented reality are emerging trends. Geospatial technology is essential for smart city projects, climate monitoring, intelligent transportation systems, and land management. Industry statistics indicate steady growth, with key players focusing on product innovation, infrastructure optimization, and geospatial utility solutions.
Get a glance at the market report of share of various segments Request Free Sample
Market Dynamics
Our North America Geographic Information System Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.
What are the key market drivers leading to the rise in the adoption of the North America Geographic Information System Market?
Rising applications of geographic
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents part of the propagation of a controlled forest fire on March 1, 2019, near Torre do Pinhão, Portugal. The data was generated from a 15-minute video captured using a UAV. The video's description, frame selection and segmentation process are available at https://doi.org/10.5281/zenodo.7944963.The data represents the evolution of the burned region divided into 170 slices. Each slice is represented by a source polygon (S), a target polygon (T) and a one-to-one mapping of the vertices of S in T. Each polygon represents the burned region at a given time instant and each slice represents the evolution of the burned region during a time interval. These data are the inputs of interpolation methods to create a continuous representation of the fire spread, even when the original video frames are not good, for instance, due to occlusion of the area of interest by smoke. Figure goodCorrespondences.png shows an example of the correspondences between two polygons and the video presents the evolution of the burned region obtained using a simple linear interpolation method. The dataset was created using a supervised method. The source code and method description are available on gitHub.
source: the url of the original video (raw data) in zenodo.
eventData: the date and time of the prescribed forest fire.
location: the name of the place of the prescribed fire.
coordinates and coordinatesDMS: the coordinates of the prescribed fire in WSG84. The later represents the coordinates in degrees, minutes and seconds.
numberOfFrames: the number of frames extracted from the video.
correspondences: this is a data structure to represent the correspondences between the polygons delimiting the extent of the burned area in frames (1, 2), (2, 3), … , (169, 170). The key is the number of the slice in [1, 170] and the value is a dictionary with the following keys:
frameNbInVideo_source: the number of the frame corresponding to the source polygon for the slice.
elapsedTimeInVideo_source: the elapsed time in milliseconds since the beginning of the video.
frameNbInVideo_target: the number of the frame corresponding to the source polygon for the slice.
numberOfVertices: the number of vertices of the source and target polygons.
vertexMappings versus sourceCoords and targetCoords: The correspondences between the source and target vertices in each slice are represented in two distinct but equivalent formats. In data_fmtA, the list sourceCoords holds the coordinates (x,y) of the source vertices and the list targetCoords holds the coordinates of the target vertices. The two lists have the same length and the correspondence is given by the position in the list. In data_fmtB, the correspondences are represented in the list vertexMapings where each entry holds the coordinates of the source and corresponding target vertices.
Note that the target polygon in slice i and the source polygon in slice i+1 are geometrically identical but they are topologically distinct because the number of vertices differs. This is to ensure that there is a one-to-one correspondence between the vertices of the source and target polygons in each slice. It is up to the vertex correspondence algorithm to add vertices to the source and target polygons to obtain a one-to-one correspondence between those polygons, as described on github. Click here to display a figure with an example of correspondences between the vertices of a source and a target polygons representing the extent of the burned area at two times.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
What will be the Size of the GIS Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.
The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.
How is this GIS Industry segmented?
The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.
The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.
Request Free Sample
The Software segment was valued at USD 5.06 billion in 2019 and sho
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:Metadata is missing or incomplete for some layers at this time and will be continuously improved.We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, the coastline is used to separate coastal buffers from the land-based portions of jurisdictions. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal Buffers (this dataset)Without Coastal BuffersPlace AbbreviationsUnincorporated Areas (Coming Soon)Census Designated Places (Coming Soon)Cartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCOPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering systemPlace Name: CDTFA incorporated (city) or county nameCounty: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information SystemPlace Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area namesCNTY Abbr: CalTrans Division of Local Assistance abbreviations of county namesArea_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.AccuracyCDTFA"s source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the California State Board of Equalization"s 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts, please reach out using the contact information above.Offline UseThis service is fully enabled for sync and export using Esri Field Maps or other similar tools. Importantly, the GlobalID field exists only to support that use case and should not be used for any other purpose (see note in field descriptions).Updates and Date of ProcessingConcurrent with CDTFA updates, approximately every two weeks, Last Processed: 12/17/2024 by Nick Santos using code path at https://github.com/CDT-ODS-DevSecOps/cdt-ods-gis-city-county/ at commit 0bf269d24464c14c9cf4f7dea876aa562984db63. It incorporates updates from CDTFA as of 12/12/2024. Future updates will include improvements to metadata and update frequency.
Facebook
TwitterA parcel-based land use summary of the Denver region All files are uploaded in a zip archive file format- they will need to be extracted before opening in ArcGIS, QGIS, or similar programs. In general we recommend using the gdb source rather than shp sources for data due to some data loss and field truncation in the shape file archives. Projected Coordinate System NAD 1983 HARN StatePlane Colorado Central FIPS 0502 (US Feet) WKID: 2877 Sources Colorado Public Parcels – link Aggregated by the Governor's Office of Information Technology Geospatial Information Systems; contains all public parcels in the state, including land use codes supplied by counties and other jurisdictions. Sourced on 7/9/2025. Zoning 2023 – link Zoning shapefile sourced from DRCOG, used to supply possible ‘land use’ where land use codes were not provided in the Colorado Public Parcels file. Land Use Categorizations Below are the land use codes I categorized parcels by Residential: Any residence land use (single family, multi-unit, senior) Zoning Follow Up: Should not be in the final dataset – used to indicate there's no land use data and needs to be backfilled with zoning classifications Vacant: Parcel indicated as vacant Commercial: Any commercial use, including office, retail Exempt/Government: Exempt land use or government land use (eg: city hall, fire station) Agricultural: Agricultural, or ranch use Other/Unknown: Some other use / cannot be determined Industrial: Industrial, including meat packing School: Schools (K‑12, college, public and private) Mixed Use: A parcel specifically marked as mixed use Open Space/Parks/Recreation: Open space, park, outdoor recreation (eg: cabins, camping, etc) Medical: Hospitals, medical offices, etc Caveats Many parcels did not contain land use codes or contained land use codes that could not be discerned. In that case, zoning designations were appended to estimate the land use. Even with the above process, many parcels were missing a land use classification. Files & Feature Layers Land Use Parcel Standardization.xlsx: A spreadsheet where I standardized land use codes into the categories above. The tab Land Use Codes is where categorizations were based on the parcels’ land use codes and descriptions, while Zoning Code Follow Up used the zoning classification that had greatest geographic overlap with the parcel. public_parcel_drcog.shp: The original Colorado Public Parcels file, with the majority‑overlapping zoning code from Zoning 2023 added, and the land use categorizations from Land Use Parcel Standardization appended. parcel_land_use.shp: A final feature class, derived from public_parcel_drcog and dissolved by the zoning categorization appended from Land Use Parcel Standardization. Land Use Data.gdb: Contains all the above feature classes.
Facebook
TwitterCollection of Feature Layers for early Broadband Initiative Work. 9-1-1 systems and telecommunications infrastructure also including mobile broadband deployment by technology type and by carrier.Non-DCRA data - collected by MatSu Borough from other Sources for very early Broadband Initiative research July 2021. Original Source as NotedPublic Safety Answering Points: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Public_Safety_Answering_Points/FeatureServer (Phone and email survey July 2020)Call Routing: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/FINAL_Call_Routing/FeatureServer (ATA Call Routing Survey 2020)Telecommunication Towers from FCC: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Cell_Towers_from_FCC/FeatureServer (8/3/2020 FCC Antenna Structure Registration (ASR) download Circa Jan 2024 see https://www.fcc.gov/wireless/systems-utilities/antenna-structure-registration. This may be already distributed in GIS form by the Homeland Infrastructure Foundation-Level Data (HIFLD) Portal (broken into various layers) see https://hifld-geoplatform.opendata.arcgis.com/Wireless Coverage 4G LTE: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Alaska_4GLTE_Wireless_Coverage/FeatureServer (FCC Form 477 data for Alaska using combined carriers delivering technology code 83)Wireless Coverage 3G 4G: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Alaska_3G_4G_Wireless_Coverage/FeatureServer (FCC Form 477 data for Alaska using combined carriers delivering technology code 81, HSPA+)Wireless Coverage 3G: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Alaska_3G_Wireless_Coverage/FeatureServer (Geographic extent of 3G wireless technology in Alaska compiled from all providers. Data from FCC Form 477 current as of June 2019)Wireless Coverage Analog: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Alaska_Analog_Wireless_Coverage/FeatureServer (Geographic extent of analog wireless technology in Alaska compiled from all providers. Data from FCC Form 477 current as of June 2019)Wireless Coverage 2G: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Alaska_2G_Wireless_Coverage/FeatureServer (Geographic extent of 2G wireless technology in Alaska compiled from all providers. Data from FCC Form 477 current as of June 2019)State Trooper Detachments (other than North Slope): https://services3.arcgis.com/3NvWZvRqANiCzqqd/ArcGIS/rest/services/AST_Detachments/FeatureServer (Alaska State Trooper Jurisdictions and Operational Area by Detachment. Revised 9/2020)This data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section and was last posted on July 1, 2021. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Mat-Su Open Data
Facebook
TwitterThe Protected Areas Database of the United States (PAD-US) is a geodatabase, managed by USGS GAP, that illustrates and describes public land ownership, management and other conservation lands, including voluntarily provided privately protected areas. The State, Regional and LCC geodatabases contain two feature classes. The PADUS1_3_FeeEasement feature class and the national MPA feature class. Legitimate and other protected area overlaps exist in the full inventory, with Easements loaded on top of Fee. Parcel data within a protected area are dissolved in this file that powers the PAD-US Viewer. As overlaps exist, GAP creates separate analytical layers to summarize area statistics for "GAP Status Code" and "Owner Name". Contact the PAD-US Coordinator for more information. The lands included in PAD-US are assigned conservation measures that qualify their intent to manage lands for the preservation of biological diversity and to other natural, recreational and cultural uses; managed for these purposes through legal or other effective means. The geodatabase includes: 1) Geographic boundaries of public land ownership and voluntarily provided private conservation lands (e.g., Nature Conservancy Preserves); 2) The combination land owner, land manager, management designation or type, parcel name, GIS Acres and source of geographic information of each mapped land unit 3) GAP Status Code conservation measure of each parcel based on USGS National Gap Analysis Program (GAP) protection level categories which provide a measurement of management intent for long-term biodiversity conservation 4) IUCN category for a protected area's inclusion into UNEP-World Conservation Monitoring Centre's World Database for Protected Areas. IUCN protected areas are defined as, "A clearly defined geographical space, recognized, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and cultural values" and are categorized following a classification scheme available through USGS GAP; 5) World Database of Protected Areas (WDPA) Site Codes linking the multiple parcels of a single protected area in PAD-US and connecting them to the Global Community. As legitimate and other overlaps exist in the combined inventory GAP creates separate analytical layers to obtain area statistics for "GAP Status Code" and "Owner Name". PAD-US version 1.3 Combined updates include: 1) State, local government and private protected area updates delivered September 2011 from PAD-US State Data Stewards: CO (Colorado State University), FL (Florida Natural Areas Inventory), ID (Idaho Fish and Game), MA (The Commonwealth's Office of Geographic Information Systems, MassGIS), MO (University of Missouri, MoRAP), MT (Montana Natural Heritage Program), NM (Natural Heritage New Mexico), OR (Oregon Natural Heritage Program), VA (Department of Conservation and Recreation, Virginia Natural Heritage Program). 2) Select local government (i.e. county, city) protected areas (3,632) across the country (to complement the current PAD-US inventory) aggregated by the Trust for Public Land (TPL) for their Conservation Almanac that tracks the conservation finance movement across the country. 3) A new Date of Establishment field that identifies the year an area was designated or otherwise protected, attributed for 86% of GAP Status Code 1 and 2 protected areas. Additional dates will be provided in future updates. 4) A national wilderness area update from wilderness.net 5) The Access field that describes public access to protected areas as defined by data stewards or categorical assignment by Primary Designation Type. . The new Access Source field documents local vs. categorical assignments. See the PAD-US Standard Manual for more information: gapanalysis.usgs.gov/padus 6) The transfer of conservation measures (i.e. GAP Status Codes, IUCN Categories) and documentation (i.e. GAP Code Source, GAP Code Date) from PAD-US version 1.2 or categorical assignments (see PAD-US Standard) when not provided by data stewards 7) Integration of non-sensitive National Conservation Easement Database (NCED) easements from August 2011, July 2012 with PAD-US version 1.2 easements. Duplicates were removed, unless 'Stacked' = Y and multiple easements exist. 8) Unique ID's transferred from NCED or requested for new easements. NCED and PAD-US are linked via Source UID in the PAD-US version 1.3 Easement feature class. 9) Official (member and eligible) MPAs from the NOAA MPA Inventory (March 2011, www.mpa.gov) translated into the PAD-US schema with conservation measures transferred from PAD-US version 1.2 or categorically assigned to new protected areas. Contact the PAD-US Coordinator for documentation of categorical GAP Status Code assignments for MPAs. 10) Identified MPA records that overlap existing protected areas in the PAD-US Fee feature class (i.e. PADUS Overlap field in MPA feature class). For example, many National Wildlife Refuges and National Parks are also MPAs and are represented in the PAD-US MPA and Fee feature classes.
Facebook
TwitterCollection of Feature Layers for early Broadband Initiative Work. 9-1-1 systems and telecommunications infrastructure also including mobile broadband deployment by technology type and by carrier.Non-DCRA data - collected by MatSu Borough from other Sources for very early Broadband Initiative research July 2021. Original Source as NotedPublic Safety Answering Points: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Public_Safety_Answering_Points/FeatureServer (Phone and email survey July 2020)Call Routing: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/FINAL_Call_Routing/FeatureServer (ATA Call Routing Survey 2020)Telecommunication Towers from FCC: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Cell_Towers_from_FCC/FeatureServer (8/3/2020 FCC Antenna Structure Registration (ASR) download Circa Jan 2024 see https://www.fcc.gov/wireless/systems-utilities/antenna-structure-registration. This may be already distributed in GIS form by the Homeland Infrastructure Foundation-Level Data (HIFLD) Portal (broken into various layers) see https://hifld-geoplatform.opendata.arcgis.com/Wireless Coverage 4G LTE: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Alaska_4GLTE_Wireless_Coverage/FeatureServer (FCC Form 477 data for Alaska using combined carriers delivering technology code 83)Wireless Coverage 3G 4G: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Alaska_3G_4G_Wireless_Coverage/FeatureServer (FCC Form 477 data for Alaska using combined carriers delivering technology code 81, HSPA+)Wireless Coverage 3G: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Alaska_3G_Wireless_Coverage/FeatureServer (Geographic extent of 3G wireless technology in Alaska compiled from all providers. Data from FCC Form 477 current as of June 2019)Wireless Coverage Analog: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Alaska_Analog_Wireless_Coverage/FeatureServer (Geographic extent of analog wireless technology in Alaska compiled from all providers. Data from FCC Form 477 current as of June 2019)Wireless Coverage 2G: https://services.arcgis.com/fX5IGselyy1TirdY/ArcGIS/rest/services/Alaska_2G_Wireless_Coverage/FeatureServer (Geographic extent of 2G wireless technology in Alaska compiled from all providers. Data from FCC Form 477 current as of June 2019)State Trooper Detachments (other than North Slope): https://services3.arcgis.com/3NvWZvRqANiCzqqd/ArcGIS/rest/services/AST_Detachments/FeatureServer (Alaska State Trooper Jurisdictions and Operational Area by Detachment. Revised 9/2020)This data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section and was last posted on July 1, 2021. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Mat-Su Open Data
Facebook
TwitterThe Protected Areas Database of the United States (PAD-US) is a geodatabase, managed by U. S. Geological Survey Gap Analysis Program, that illustrates and describes public land ownership, management and other conservation lands, including voluntarily provided privately protected areas. Please note that PAD-US version 1.4 is now the most current version available. Please access PAD-US 1.4 here: http://gapanalysis.usgs.gov/padus/data/. The geodatabase contains four feature classes such as, Marine Protected Areas (MPA) and Easements that each contains uniquely associated attributes. These two feature classes are combined with the PAD-US Fee feature class to provide a full inventory of protected areas in a common schema (i.e. Combined file). Legitimate and other protected area overlaps exist in the full inventory, with Easements loaded on top of Fee and MPAs under both. Parcel data within a protected area are dissolved in this file that powers the PAD-US Viewer. As overlaps exist, GAP creates separate analytical layers to summarize area statistics for "GAP Status Code" and "Owner Name". Contact the PAD-US Coordinator for more information. The lands included in PAD-US are assigned conservation measures that qualify their intent to manage lands for the preservation of biological diversity and to other natural, recreational and cultural uses; managed for these purposes through legal or other effective means. The geodatabase includes: 1) Geographic boundaries of public land ownership and voluntarily provided private conservation lands (e.g., Nature Conservancy Preserves); 2) The combination land owner, land manager, management designation or type, parcel name, GIS Acres and source of geographic information of each mapped land unit 3) GAP Status Code conservation measure of each parcel based on USGS National Gap Analysis Program (GAP) protection level categories which provide a measurement of management intent for long-term biodiversity conservation 4) IUCN category for a protected area's inclusion into UNEP-World Conservation Monitoring Centre's World Database for Protected Areas. IUCN protected areas are defined as, "A clearly defined geographical space, recognized, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and cultural values" and are categorized following a classification scheme available through USGS GAP; 5) World Database of Protected Areas (WDPA) Site Codes linking the multiple parcels of a single protected area in PAD-US and connecting them to the Global Community. The geodatabase contains a Marine Protected Area (MPA) feature class and Easements feature class, each with uniquely associated attribute. These two feature classes are combined with the PAD-US fee feature class with standard PAD-US attributes to provide a full inventory of protected areas in a common schema. As legitimate and other overlaps exist in the combined inventory GAP creates separate analytical layers to obtain area statistics for "GAP Status Code" and "Owner Name". PAD-US version 1.3 Combined updates include: 1) State, local government and private protected area updates delivered September 2011 from PAD-US State Data Stewards: CO (Colorado State University), FL (Florida Natural Areas Inventory), ID (Idaho Fish and Game), MA (The Commonwealth's Office of Geographic Information Systems, MassGIS), MO (University of Missouri, MoRAP), MT (Montana Natural Heritage Program), NM (Natural Heritage New Mexico), OR (Oregon Natural Heritage Program), VA (Department of Conservation and Recreation, Virginia Natural Heritage Program). 2) Select local government (i.e. county, city) protected areas (3,632) across the country (to complement the current PAD-US inventory) aggregated by the Trust for Public Land (TPL) for their Conservation Almanac that tracks the conservation finance movement across the country. 3) A new Date of Establishment field that identifies the year an area was designated or otherwise protected, attributed for 86% of GAP Status Code 1 and 2 protected areas. Additional dates will be provided in future updates. 4) A national wilderness area update from wilderness.net 5) The Access field that describes public access to protected areas as defined by data stewards or categorical assignment by Primary Designation Type. . The new Access Source field documents local vs. categorical assignments. See the PAD-US Standard Manual for more information: gapanalysis.usgs.gov/padus 6) The transfer of conservation measures (i.e. GAP Status Codes, IUCN Categories) and documentation (i.e. GAP Code Source, GAP Code Date) from PAD-US version 1.2 or categorical assignments (see PAD-US Standard) when not provided by data stewards 7) Integration of non-sensitive National Conservation Easement Database (NCED) easements from August 2011, July 2012 with PAD-US version 1.2 easements. Duplicates were removed, unless 'Stacked' = Y and multiple easements exist. 8) Unique ID's transferred from NCED or requested for new easements. NCED and PAD-US are linked via Source UID in the PAD-US version 1.3 Easement feature class. 9) Official (member and eligible) MPAs from the NOAA MPA Inventory (March 2011, www.mpa.gov) translated into the PAD-US schema with conservation measures transferred from PAD-US version 1.2 or categorically assigned to new protected areas. Contact the PAD-US Coordinator for documentation of categorical GAP Status Code assignments for MPAs. 10) Identified MPA records that overlap existing protected areas in the PAD-US Fee feature class (i.e. PADUS Overlap field in MPA feature class). For example, many National Wildlife Refuges and National Parks are also MPAs and are represented in the PAD-US MPA and Fee feature classes.(ei
Facebook
TwitterThis dataset contains model-based place (incorporated and census designated places) estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia —at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population estimates, and American Community Survey (ACS) 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the 2020 Census place boundary file in a GIS system to produce maps for 40 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The use of social media and location-based networks through GPS-enabled devices provides geospatial data for a plethora of applications in urban studies. However, the extent to which information found in geo-tagged social media activity corresponds to the spatial context is still a topic of debate. In this article, we developed a framework aimed at retrieving the thematic and spatial relationships between content originated from space-based (Twitter) and place-based (Google Places and OSM) sources of geographic user-generated content based on topics identified by the embedding-based BERTopic model. The contribution of the framework lies on the combination of methods that were selected to improve previous works focused on content-location relationships. Using the city of Lisbon (Portugal) to test our methodology, we first applied the embedding-based topic model to aggregated textual data coming from each source. Results of the analysis evidenced the complexity of content-location relationships, which are mostly based on thematic profiles. Nonetheless, the framework can be employed in other cities and extended with other metrics to enrich the research aimed at exploring the correlation between online discourse and geography.
Facebook
TwitterBy Homeland Infrastructure Foundation [source]
Each urban area is uniquely identified by a 5-character numeric census code that may contain leading zeroes as necessary. The dataset comprises several key attributes such as the name of the urban area (represented by multiple columns), legal/statistical area description, MAF/TIGER feature class code for classification purposes (MTFCC10), urban area type code (UATYP10), functional status indicating its operational characteristics (FUNCSTAT10), and geographic coordinates specifying the latitude and longitude of the interior point of each urban area.
Additional information available includes the land area in square meters (ALAND10) which denotes the extent of developed territory within an urban zone. Similarly, water areas associated with each urban area are provided as well in square meters measurement (AWATER10). Furthermore, shape length is included to describe the total length of an individual's shape or outline within an urban region while shape area signifies its overall spatial extent.
Here is a step-by-step guide on how to effectively use this dataset:
Import the Data: Load the dataset into your preferred tool or programming language for data analysis. Popular options include Python with libraries like pandas or R with packages like tidyr.
Explore the Columns: Familiarize yourself with the available columns in the dataset. Here are some important ones:
NAME10: The name of each urban area.NAMELSAD10: The name and legal/statistical area description of each urban area.UACE10: A 5-character numeric census code that uniquely identifies each urban area.ALAND10: The land area of each urban area in square meters.AWATER10: The water area of each urban area in square meters.FUNCSTAT10: The functional status of each urban area.INTPTLAT10andINTPTLON10: The latitude and longitude coordinates of the interior point of each urban area.Understand Urban Area Types: The dataset distinguishes between two types of urban areas:
a) Urbanized Areas (UAs): These areas contain 50,000 or more people.
b) Urban Clusters (UCs): These areas contain at least 2,500 people but fewer than 50,000 people. (Except in the U.S. Virgin Islands and Guam, which may have urban clusters with populations greater than 50,000).
The column
UATYP10provides the urban area type code for each entry.Analyze Functional Status: Explore the
FUNCSTAT10column to understand the functional status of each urban area. This information indicates whether an area is deemed functional for residential, commercial, or other non-residential purposes.Visualize Geographic Data: Util
- Urban Planning Analysis: This dataset can be used to analyze and compare different urban areas based on their land area, water area, population density, and functional status. It can provide valuable insights for urban planners in terms of designing infrastructure, allocating resources, and making informed decisions to ensure sustainable development.
- Demographic Research: Researchers studying population trends and demographics can utilize this dataset to understand the growth, distribution, and characteristics of urban areas over time. By analyzing the population size and density of different urban areas, they can identify patterns of urbanization and assess the impact of policies or events on urban populations.
- Environmental Impact Assessment: The land area and water area information in this dataset can be used to assess the environmental impact of urban areas. Researchers or environmentalists can analyze the proportion of green spaces versus built-up areas within each urban area to evaluate levels of air pollution, biodiversity loss, or potential for implementing sustainable practices like rooftop gardens or rainwater harvesting systems
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate i...
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Description: These Reference grids have been created for the NaturaConnect project and are based on an intersection of the European Coastline delineation and the GADM database. Thee reference grids have been created in a way so that they are fully consistent with the EEA reference grid (https://www.eea.europa.eu/data-and-maps/data/eea-reference-grids-2), meaning that for example two 5km gridded cells fully match a 10km grid cell in width.
Filestructure: ReferenceGrid_Europe_{format}_{grain}
format is either "frac" for fractional data (which has been multiplied with 10000 to save in integer format) or binary (0,1).
grain is provided as layers in 100m, 1000m, 5000m, 10000m, 50000m spatial resolution. Alternative aggregations can be provided on request.
File format: The layers are gridded geoTiff files and can be loaded in any conventional Graphical Information System (GIS) or specific analytical programming languages (e.g. R or python). In addition external pyramids (.tfw) have been precreated to enable faster rendering.
Geographic projection: We use the Lamberts-Equal-Area Projection by default for all layers in NaturaConnect. This is an equal-area (but distorted shape) projection and commonly used by European institution with a focus on the European continent. For global layers the equal-area World Mollweide projection is used.
Sourcecode: The code to reproduce the layers has been made available in the "code" file.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Facebook
TwitterThis dataset represents a two-to-three mile buffer of the Padre Island National Seashore (PINS) feature. Features in this dataset were used to satisfy Texas Resource Management Codes Sensitive Areas definitions requirements Original: The Protected Areas Database of the United States (PAD-US) is a geodatabase, managed by USGS GAP, that illustrates and describes public land ownership, management and other conservation lands, including voluntarily provided privately protected areas. The State, Regional and LCC geodatabases contain two feature classes. The PADUS1_3_FeeEasement feature class and the national MPA feature class. Legitimate and other protected area overlaps exist in the full inventory, with Easements loaded on top of Fee. Parcel data within a protected area are dissolved in this file that powers the PAD-US Viewer. As overlaps exist, GAP creates separate analytical layers to summarize area statistics for "GAP Status Code" and "Owner Name". Contact the PAD-US Coordinator for more information. The lands included in PAD-US are assigned conservation measures that qualify their intent to manage lands for the preservation of biological diversity and to other natural, recreational and cultural uses; managed for these purposes through legal or other effective means. The geodatabase includes: 1) Geographic boundaries of public land ownership and voluntarily provided private conservation lands (e.g., Nature Conservancy Preserves); 2) The combination land owner, land manager, management designation or type, parcel name, GIS Acres and source of geographic information of each mapped land unit 3) GAP Status Code conservation measure of each parcel based on USGS National Gap Analysis Program (GAP) protection level categories which provide a measurement of management intent for long-term biodiversity conservation 4) IUCN category for a protected area's inclusion into UNEP-World Conservation Monitoring Centre's World Database for Protected Areas. IUCN protected areas are defined as, "A clearly defined geographical space, recognized, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and cultural values" and are categorized following a classification scheme available through USGS GAP; 5) World Database of Protected Areas (WDPA) Site Codes linking the multiple parcels of a single protected area in PAD-US and connecting them to the Global Community. As legitimate and other overlaps exist in the combined inventory GAP creates separate analytical layers to obtain area statistics for "GAP Status Code" and "Owner Name". PAD-US version 1.3 Combined updates include: 1) State, local government and private protected area updates delivered September 2011 from PAD-US State Data Stewards: CO (Colorado State University), FL (Florida Natural Areas Inventory), ID (Idaho Fish and Game), MA (The Commonwealth's Office of Geographic Information Systems, MassGIS), MO (University of Missouri, MoRAP), MT (Montana Natural Heritage Program), NM (Natural Heritage New Mexico), OR (Oregon Natural Heritage Program), VA (Department of Conservation and Recreation, Virginia Natural Heritage Program). 2) Select local government (i.e. county, city) protected areas (3,632) across the country (to complement the current PAD-US inventory) aggregated by the Trust for Public Land (TPL) for their Conservation Almanac that tracks the conservation finance movement across the country. 3) A new Date of Establishment field that identifies the year an area was designated or otherwise protected, attributed for 86% of GAP Status Code 1 and 2 protected areas. Additional dates will be provided in future updates. 4) A national wilderness area update from wilderness.net 5) The Access field that describes public access to protected areas as defined by data stewards or categorical assignment by Primary Designation Type. . The new Access Source field documents local vs. categorical assignments. See the PAD-US Standard Manual for more information: gapanalysis.usgs.gov/padus 6) The transfer of conservation measures (i.e. GAP Status Codes, IUCN Categories) and documentation (i.e. GAP Code Source, GAP Code Date) from PAD-US version 1.2 or categorical assignments (see PAD-US Standard) when not provided by data stewards 7) Integration of non-sensitive National Conservation Easement Database (NCED) easements from August 2011, July 2012 with PAD-US version 1.2 easements. Duplicates were removed, unless 'Stacked' = Y and multiple easements exist. 8) Unique ID's transferred from NCED or requested for new easements. NCED and PAD-US are linked via Source UID in the PAD-US version 1.3 Easement feature class. 9) Official (member and eligible) MPAs from the NOAA MPA Inventory (March 2011, www.mpa.gov) translated into the PAD-US schema with conservation measures transferred from PAD-US version 1.2 or categorically assigned to new protected areas. Contact the PAD-US Coordinator for documentation of categorical GAP Status Code assignments for MPAs. 10) Identified MPA records that overlap existing protected areas in the PAD-US Fee feature class (i.e. PADUS Overlap field in MPA feature class). For example, many National Wildlife Refuges and National Parks are also MPAs and are represented in the PAD-US MPA and Fee feature classes.Field Definitions:For field definitions contact the US Geological Survey
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset provides detailed information on road surfaces from OpenStreetMap (OSM) data, distinguishing between paved and unpaved surfaces across the region. This information is based on road surface prediction derived from hybrid deep learning approach. For more information on Methods, refer to the paper
Roughly 0.2839 million km of roads are mapped in OSM in this region. Based on AI-mapped estimates the share of paved and unpaved roads is approximately 0.026 and 0.0089 (in million kms), corressponding to 9.1664% and 3.1261% respectively of the total road length in the dataset region. 0.249 million km or 87.7075% of road surface information is missing in OSM. In order to fill this gap, Mapillary derived road surface dataset provides an additional 0.0003 million km of information (corressponding to 0.1046% of total missing information on road surface)
It is intended for use in transportation planning, infrastructure analysis, climate emissions and geographic information system (GIS) applications.
This dataset provides comprehensive information on road and urban area features, including location, surface quality, and classification metadata. This dataset includes attributes from OpenStreetMap (OSM) data, AI predictions for road surface, and urban classifications.
AI features:
pred_class: Model-predicted class for the road surface, with values "paved" or "unpaved."
pred_label: Binary label associated with pred_class (0 = paved, 1 = unpaved).
osm_surface_class: Classification of the surface type from OSM, categorized as "paved" or "unpaved."
combined_surface_osm_priority: Surface classification combining pred_label and surface(OSM) while prioritizing the OSM surface tag, classified as "paved" or "unpaved."
combined_surface_DL_priority: Surface classification combining pred_label and surface(OSM) while prioritizing DL prediction pred_label, classified as "paved" or "unpaved."
n_of_predictions_used: Number of predictions used for the feature length estimation.
predicted_length: Predicted length based on the DL model’s estimations, in meters.
DL_mean_timestamp: Mean timestamp of the predictions used, for comparison.
OSM features may have these attributes(Learn what tags mean here):
name: Name of the feature, if available in OSM.
name:en: Name of the feature in English, if available in OSM.
name:* (in local language): Name of the feature in the local official language, where available.
highway: Road classification based on OSM tags (e.g., residential, motorway, footway).
surface: Description of the surface material of the road (e.g., asphalt, gravel, dirt).
smoothness: Assessment of surface smoothness (e.g., excellent, good, intermediate, bad).
width: Width of the road, where available.
lanes: Number of lanes on the road.
oneway: Indicates if the road is one-way (yes or no).
bridge: Specifies if the feature is a bridge (yes or no).
layer: Indicates the layer of the feature in cases where multiple features are stacked (e.g., bridges, tunnels).
source: Source of the data, indicating the origin or authority of specific attributes.
Urban classification features may have these attributes:
continent: The continent where the data point is located (e.g., Europe, Asia).
country_iso_a2: The ISO Alpha-2 code representing the country (e.g., "US" for the United States).
urban: Binary indicator for urban areas based on the GHSU Urban Layer 2019. (0 = rural, 1 = urban)
urban_area: Name of the urban area or city where the data point is located.
osm_id: Unique identifier assigned by OpenStreetMap (OSM) to each feature.
osm_type: Type of OSM element (e.g., node, way, relation).
The data originates from OpenStreetMap (OSM) and is augmented with model predictions using images downloaded from Mapillary in combination with the GHSU Global Human Settlement Urban Layer 2019 and AFRICAPOLIS2020 urban layer.
This dataset is one of many HeiGIT exports on HDX. See the HeiGIT website for more information.
We are looking forward to hearing about your use-case! Feel free to reach out to us and tell us about your research at communications@heigit.org – we would be happy to amplify your work.
Facebook
TwitterAccepts and provides access to high-resolution (meter to sub-meter scale) Earth science-oriented topography data (e.g. LiDAR) and bathymetric data, and related tools and resources. The OpenTopography Tool Registry provides a community populated clearinghouse of software, utilities, and tools oriented towards high-resolution topography data (e.g. collected with LiDAR technology) handling, processing, and analysis. Tools registered range from source code to full-featured software applications. Contributions to the registry via the Contribute a Tool page are welcome. OpenTopography also hosts a dataset catalog to which users can register datasets hosted elsewhere; these entries are discoverable by users alongside OpenTopography hosted datasets. Lidar point cloud data are available in LAS, LAZ and ASCII formats. Raster datasets and derived products can be downloaded in Arc ASCII, IMG, and GeoTIFF formats. Derived products and visualizations are available in Google Earth KML format. The OpenTopography user community and advisory committee provides feedback to define the scope of collaborations on data hosting and cyberinfrastructure development
Facebook
TwitterThis layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data.
EOSDIS integrates remote sensing and GIS technologies to deliver global
MODIS hotspot/fire locations to natural resource managers and other
stakeholders around the World.
Consumption Best Practices:
Facebook
TwitterThe Protected Areas Database of the United States (PAD-US) is a geodatabase, managed by USGS GAP, that illustrates and describes public land ownership, management and other conservation lands, including voluntarily provided privately protected areas. The State, Regional and LCC geodatabases contain two feature classes. The PADUS1_3_FeeEasement feature class and the national MPA feature class. Legitimate and other protected area overlaps exist in the full inventory, with Easements loaded on top of Fee. Parcel data within a protected area are dissolved in this file that powers the PAD-US Viewer. As overlaps exist, GAP creates separate analytical layers to summarize area statistics for "GAP Status Code" and "Owner Name". Contact the PAD-US Coordinator for more information. The lands included in PAD-US are assigned conservation measures that qualify their intent to manage lands for the preservation of biological diversity and to other natural, recreational and cultural uses; managed for these purposes through legal or other effective means. The geodatabase includes: 1) Geographic boundaries of public land ownership and voluntarily provided private conservation lands (e.g., Nature Conservancy Preserves); 2) The combination land owner, land manager, management designation or type, parcel name, GIS Acres and source of geographic information of each mapped land unit 3) GAP Status Code conservation measure of each parcel based on USGS National Gap Analysis Program (GAP) protection level categories which provide a measurement of management intent for long-term biodiversity conservation 4) IUCN category for a protected area's inclusion into UNEP-World Conservation Monitoring Centre's World Database for Protected Areas. IUCN protected areas are defined as, "A clearly defined geographical space, recognized, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and cultural values" and are categorized following a classification scheme available through USGS GAP; 5) World Database of Protected Areas (WDPA) Site Codes linking the multiple parcels of a single protected area in PAD-US and connecting them to the Global Community. As legitimate and other overlaps exist in the combined inventory GAP creates separate analytical layers to obtain area statistics for "GAP Status Code" and "Owner Name". PAD-US version 1.3 Combined updates include: 1) State, local government and private protected area updates delivered September 2011 from PAD-US State Data Stewards: CO (Colorado State University), FL (Florida Natural Areas Inventory), ID (Idaho Fish and Game), MA (The Commonwealth's Office of Geographic Information Systems, MassGIS), MO (University of Missouri, MoRAP), MT (Montana Natural Heritage Program), NM (Natural Heritage New Mexico), OR (Oregon Natural Heritage Program), VA (Department of Conservation and Recreation, Virginia Natural Heritage Program). 2) Select local government (i.e. county, city) protected areas (3,632) across the country (to complement the current PAD-US inventory) aggregated by the Trust for Public Land (TPL) for their Conservation Almanac that tracks the conservation finance movement across the country. 3) A new Date of Establishment field that identifies the year an area was designated or otherwise protected, attributed for 86% of GAP Status Code 1 and 2 protected areas. Additional dates will be provided in future updates. 4) A national wilderness area update from wilderness.net 5) The Access field that describes public access to protected areas as defined by data stewards or categorical assignment by Primary Designation Type. . The new Access Source field documents local vs. categorical assignments. See the PAD-US Standard Manual for more information: gapanalysis.usgs.gov/padus 6) The transfer of conservation measures (i.e. GAP Status Codes, IUCN Categories) and documentation (i.e. GAP Code Source, GAP Code Date) from PAD-US version 1.2 or categorical assignments (see PAD-US Standard) when not provided by data stewards 7) Integration of non-sensitive National Conservation Easement Database (NCED) easements from August 2011, July 2012 with PAD-US version 1.2 easements. Duplicates were removed, unless 'Stacked' = Y and multiple easements exist. 8) Unique ID's transferred from NCED or requested for new easements. NCED and PAD-US are linked via Source UID in the PAD-US version 1.3 Easement feature class. 9) Official (member and eligible) MPAs from the NOAA MPA Inventory (March 2011, www.mpa.gov) translated into the PAD-US schema with conservation measures transferred from PAD-US version 1.2 or categorically assigned to new protected areas. Contact the PAD-US Coordinator for documentation of categorical GAP Status Code assignments for MPAs. 10) Identified MPA records that overlap existing protected areas in the PAD-US Fee feature class (i.e. PADUS Overlap field in MPA feature class). For example, many National Wildlife Refuges and National Parks are also MPAs and are represented in the PAD-US MPA and Fee feature classes.