Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This map is designed to be used as a general reference map for informational and educational purposes as well as a basemap by GIS professionals and other users for creating web maps and web mapping applications.The map was developed by National Geographic and Esri and reflects the distinctive National Geographic cartographic style in a multi-scale reference map of the world. The map was authored using data from a variety of leading data providers, including Garmin, HERE, UNEP-WCMC, NASA, ESA, USGS, and others.This reference map includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings and landmarks, overlaid on shaded relief and land cover imagery for added context. The map includes global coverage down to ~1:144k scale and more detailed coverage for North America down to ~1:9k scale.Map Note: Although small-scale boundaries, place names and map notes were provided and edited by National Geographic, boundaries and names shown do not necessarily reflect the map policy of the National Geographic Society, particularly at larger scales where content has not been thoroughly reviewed or edited by National Geographic.Data Notes: The credits below include a list of data providers used to develop the map. Below are a few additional notes:Reference Data: National Geographic, Esri, Garmin, HERE, iPC, NRCAN, METILand Cover Imagery: NASA Blue Marble, ESA GlobCover 2009 (Copyright notice: © ESA 2010 and UCLouvain)Protected Areas: IUCN and UNEP-WCMC (2011), The World Database on Protected Areas (WDPA) Annual Release. Cambridge, UK: UNEP-WCMC. Available at:www.protectedplanet.net.Ocean Data: GEBCO, NOAA
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
This dataset comprises 2 collections of maps. The facsmile collection contains all the marginalia information from the original map as well as the map itself, while the georectified collection contains just the map with an associated index for locating them. Each collection comprises approximately 101 000 monochrome images at 6-inch (1:10560) scale. Each image is supplied in .tiff format with appropriate ArcView and MapInfo world files, and shows the topography for all areas of England, Wales and Scotland as either quarter or, in some cases, full sheets. The images will cover the approximate epochs 1880's, 1900's, 1910's, 1920's and 1930's, but note that coverage is not countrywide for each epoch. The data was purchased by BGS from Sitescope, who obtained it from three sources - Royal Geographical Society, Trinity College Dublin and the Ordnance Survey. The data is for internal use by BGS staff on projects, and is available via a customised application created for the network GDI enabling users to search for and load the maps of their choice. The dataset will have many uses across all the geoscientific disciplines across which BGS operates, and should be viewed as a valuable addition to the BGS archive. There has been a considerable amount of work done during 2005, 2006 and 2007 to improve the accuracy of the OS Historic Map Collection. All maps should now be located to +- 50m or better. This is the best that can be achieved cost effectively. There are a number of reasons why the maps are inaccurate. Firstly, the original maps are paper and many are over 100 years old. They have not been stored in perfect condition. The paper has become distorted to varying degrees over time. The maps were therefore not accurate before scanning. Secondly, different generations of maps will have used different surveying methods and different spatial referencing systems. The same geographical object will not necessarily be in the same spatial location on subsequent editions. Thirdly, we are discussing maps, not plans. There will be cartographic generalisations which will affect the spatial representation and location of geographic objects. Finally, the georectification was not done in BGS but by the company from whom we purchased the maps. The company no longer exists. We do not know the methodology used for georectification.
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
Health geography hierarchy boundaries, December 2023, England and Wales.Boundaries used (BGC) for geographies in England and Wales are generalised (20m) and are clipped to the coastline for England and Wales.
How would you define the boundaries of a town or city in England and Wales in 2016?
Maybe your definition would be based on its population size, geographic extent or where the industry and services are located. This was a question the ONS had to consider when creating a new statistical geography called Towns and Cities.
In reality, the ability to delimit the boundaries of a city or town is difficult!
Major Towns and Cities
The new statistical geography, Towns and Cities has been created based on population size and the extent of the built environment. It contains 112 towns and cities in England and Wales, where the residential and/or workday population > 75,000 people at the 2011 Census. It has been constructed using the existing Built-Up Area boundary set produced by Ordnance Survey in 2011.
This swipe map shows where the towns and cities and built-up areas are different. Just swipe the bar from left to right.
The blue polygons are the towns and cities and the purple polygons are the built-up areas.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
This layer of the GeoIndex shows the location of available 1:10000 scale digital geological maps within Great Britain. The Digital Geological Map of Great Britain project (DiGMapGB) has prepared 1:625 000, 1:250 000 and 1:50 000 scale datasets for England, Wales and Scotland. The datasets themselves are available as vector data in a variety of formats in which they are structured into themes primarily for use in geographical information systems (GIS) where they can be integrated with other types of spatial data for analysis and problem solving in many earth-science-related issues. The DiGMapGB-10 dataset is as yet incomplete, current work is concentrated on extending the geographical cover, especially to cover high priority urban areas.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
National Library of Scotland Historic Maps APIHistorical Maps of Great Britain for use in mashups and ArcGIS Onlinehttps://nls.tileserver.com/https://maps.nls.uk/projects/api/index.htmlThis seamless historic map can be:embedded in your own websiteused for research purposesused as a backdrop for your own markers or geographic dataused to create derivative work (such as OpenStreetMap) from it.The mapping is based on out-of-copyright Ordnance Survey maps, dating from the 1920s to the 1940s.The map can be directly opened in a web browser by opening the Internet address: https://nls.tileserver.com/The map is ready for natural zooming and panning with finger pinching and dragging.How to embed the historic map in your websiteThe easiest way of embedding the historical map in your website is to copy < paste this HTML code into your website page. Simple embedding (try: hello.html):You can automatically position the historic map to open at a particular place or postal address by appending the name as a "q" parameter - for example: ?q=edinburgh Embedding with a zoom to a place (try: placename.html):You can automatically position the historic map to open at particular latitude and longitude coordinates: ?lat=51.5&lng=0&zoom=11. There are many ways of obtaining geographic coordinates. Embedding with a zoom to coordinates (try: coordinates.html):The map can also automatically detect the geographic location of the visitor to display the place where you are right now, with ?q=auto Embedding with a zoom to coordinates (try: auto.html):How to use the map in a mashupThe historic map can be used as a background map for your own data. You can place markers on top of it, or implement any functionality you want. We have prepared a simple to use JavaScript API to access to map from the popular APIs like Google Maps API, Microsoft Bing SDK or open-source OpenLayers or KHTML. To use our map in your mashups based on these tools you should include our API in your webpage: ... ...
This is the land parcels (polygon) dataset for the UKCEH Land Cover Map of 2018(LCM2018) representing Northern Ireland. It describes Northern Ireland's land cover in 2018 using UKCEH Land Cover Classes, which are based on UK Biodiversity Action Plan broad habitats. This dataset was derived from the corresponding LCM2018 20m classified pixels dataset. All further LCM2018 datasets for Northern Ireland are derived from this land parcel product. A range of land parcel attributes are provided. These include the dominant UKCEH Land Cover Class given as an integer value, and a range of per-parcel pixel statistics to help to assess classification confidence and accuracy; for a full explanation please refer to the dataset documentation. LCM2018 represents a suite of geospatial land cover datasets (raster and polygon) describing the UK land surface in 2018. These were produced at the UK Centre for Ecology & Hydrology by classifying satellite images from 2018. LCM2018 was simultaneously released with LCM2017 and LCM2019. These are the latest in a series of UKCEH land cover maps, which began with the 1990 Land Cover Map of Great Britain (now usually referred to as LCM1990) followed by UK-wide land cover maps LCM2000, LCM2007 and LCM2015. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability. Full details about this dataset can be found at https://doi.org/10.5285/35f15502-d340-4ab5-a586-abd42f238b6e
This dataset contains gridded human population with a spatial resolution of 1 km x 1 km for the UK based on Census 2021 (Census 2022 for Scotland) and Land Cover Map 2021 input data. Data on population distribution for the United Kingdom is available from statistical offices in England, Wales, Northern Ireland and Scotland and provided to the public e.g. via the Office for National Statistics (ONS). Population data is typically provided in tabular form or, based on a range of different geographical units, in file types for geographical information systems (GIS), for instance as ESRI Shapefiles. The geographical units reflect administrative boundaries at different levels of detail, from Devolved Administration to Output Areas (OA), wards or intermediate geographies. While the presentation of data on the level of these geographical units is useful for statistical purposes, accounting for spatial variability for instance of environmental determinants of public health requires a more spatially homogeneous population distribution. For this purpose, the dataset presented here combines 2021/2022 UK Census population data on Output Area level with Land Cover Map 2021 land-use classes 'urban' and 'suburban' to create a consistent and comprehensive gridded population data product at 1 km x 1 km spatial resolution. The mapping product is based on British National Grid (OSGB36 datum).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supplementary information files for article: 'The future scope of large-scale solar in the UK: site suitability and target analysis'.Abstract:This paper uses site suitability analysis to identify locations for solar farms in the UK to help meet climate change targets. A set of maps, each representing a given suitability criterion, is created with geographical information systems (GIS) software. These are combined to give a Boolean map of areas which are appropriate for large-scale solar farm installation. Several scenarios are investigated by varying the criteria, which include geographical (land use) factors, solar energy resource and electrical distribution network constraints. Some are dictated by the physical and technical requirements of large-scale solar construction, and some by government or distribution network operator (DNO) policy. It is found that any suitability map which does not heed planning permission and grid constraints will overstate potential solar farm area by up to 97%. This research finds sufficient suitable land to meet Future Energy Scenarios (UK National Grid outlines for the coming energy landscape).
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A web map showing administrative geography hierarchy boundaries in the UK as at 31 December 2022.Boundaries used (BGC) for geographies in Great Britain are generalised (20m) and are clipped to the coastline for Great BritainBoundaries used (BGE) for geographies in Northern Ireland are generalised (20m) and are extent of the realm and are not clipped to the coastline for Northern Ireland.
A national interactive map viewer with spatial information compiled by the USGS. US Topography, Geographic Names, Structures, Transportation, Governmental Unit Boundaries, Map Indices, Hydrology, Land Cover, Elevation, Elevation Contours, Imagery, Reference Polygons, Natural Hazards
Digital Map Market Size 2025-2029
The digital map market size is forecast to increase by USD 31.95 billion at a CAGR of 31.3% between 2024 and 2029.
The market is driven by the increasing adoption of intelligent Personal Digital Assistants (PDAs) and the availability of location-based services. PDAs, such as smartphones and smartwatches, are becoming increasingly integrated with digital map technologies, enabling users to navigate and access real-time information on-the-go. The integration of Internet of Things (IoT) enables remote monitoring of cars and theft recovery. Location-based services, including mapping and navigation apps, are a crucial component of this trend, offering users personalized and convenient solutions for travel and exploration. However, the market also faces significant challenges.
Ensuring the protection of sensitive user information is essential for companies operating in this market, as trust and data security are key factors in driving user adoption and retention. Additionally, the competition in the market is intense, with numerous players vying for market share. Companies must differentiate themselves through innovative features, user experience, and strong branding to stand out in this competitive landscape. Security and privacy concerns continue to be a major obstacle, as the collection and use of location data raises valid concerns among consumers.
What will be the Size of the Digital Map Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the market, cartographic generalization and thematic mapping techniques are utilized to convey complex spatial information, transforming raw data into insightful visualizations. Choropleth maps and dot density maps illustrate distribution patterns of environmental data, economic data, and demographic data, while spatial interpolation and predictive modeling enable the estimation of hydrographic data and terrain data in areas with limited information. Urban planning and land use planning benefit from these tools, facilitating network modeling and location intelligence for public safety and emergency management.
Spatial regression and spatial autocorrelation analyses provide valuable insights into urban development trends and patterns. Network analysis and shortest path algorithms optimize transportation planning and logistics management, enhancing marketing analytics and sales territory optimization. Decision support systems and fleet management incorporate 3D building models and real-time data from street view imagery, enabling effective resource management and disaster response. The market in the US is experiencing robust growth, driven by the integration of Geographic Information Systems (GIS), Global Positioning Systems (GPS), and advanced computer technology into various industries.
How is this Digital Map Industry segmented?
The digital map industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Application
Navigation
Geocoders
Others
Type
Outdoor
Indoor
Solution
Software
Services
Deployment
On-premises
Cloud
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Indonesia
Japan
South Korea
Rest of World (ROW)
By Application Insights
The navigation segment is estimated to witness significant growth during the forecast period. Digital maps play a pivotal role in various industries, particularly in automotive applications for driver assistance systems. These maps encompass raster data, aerial photography, government data, and commercial data, among others. Open-source data and proprietary data are integrated to ensure map accuracy and up-to-date information. Map production involves the use of GPS technology, map projections, and GIS software, while map maintenance and quality control ensure map accuracy. Location-based services (LBS) and route optimization are integral parts of digital maps, enabling real-time navigation and traffic data.
Data validation and map tiles ensure data security. Cloud computing facilitates map distribution and map customization, allowing users to access maps on various devices, including mobile mapping and indoor mapping. Map design, map printing, and reverse geocoding further enhance the user experience. Spatial analysis and data modeling are essential for data warehousing and real-time navigation. The automotive industry's increasing adoption of connected cars and long-term evolution (LTE) technologies have fueled the demand for digital maps. These maps enable driver assistance app
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data for paper in Finance and Space, 1(1), 489–493 (Dec 2024)This database, which was collated from open and proprietary datasets before being cleaned, includes 915 contracts awarded to UK-based private sector contractors by the UK’s Foreign, Commonwealth and Development Office (formerly Department for International Development), between 1st January 2012 and 31st December 2022. The data includes contract award totals by firm, and the registered addresses and regional locations of firms that win UK aid contract awards.AbstractThis financial visualisation (FinVis) shows the geographical distribution of the UK’s top for-profit development contractors. Using a novel database, we map the location and value of 915 contracts awarded to UK-based private sector contractors by the UK’s Foreign, Commonwealth and Development Office (formerly the Department for International Development). It shows the geography of firms capturing aid finance, concentrated in London and the southeast of England. It contributes to understanding ‘aid contractor assemblages’ (cf. Roberts, S. M. 2014. Development Capital: USAID and the Rise of Development Contractors. Annals of The Association of American Geographers, 104(5), 1030–1051), and the knowledge economies and networks of firms which have become increasingly powerful in shaping a market around the ‘business of development’.
Details of all Calderdale establishments registered to sell food including, name, address, ward and type.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Traffic count from 8 counter located around Calderdale. Please note * Sdate - indicates the date and time the count was taken. * Cosit - camera ID number which indicates the camera location (see Counter Locations document below). * Period - length of time count was taken. * LaneNumber - Lane ID number which indicates the number of lanes. * LaneDirection - the number of directions the lane or lanes go. * Direction - the direction of the lane. * Volume - the number of vehicles counted, if the number is negative the count has been discarded. * Flag Text - Additional information e.g. roadworks, holiday, etc The Traffic count dashboard is a visualisation of this raw data split by full year count and snapshot count of vehicles at each counter location.
To understand the relationship between place and politics, we must measure both political attitudes and the ways in which place is represented in the minds of individuals. In this paper, we assess a new measure of mental-representation of geography, in which survey respondents draw their own local communities on maps and describe them. This mapping measure has been used in Canada, the UK, Denmark, and the U.S. so far. We use a panel study in Canada to present evidence that these maps are both valid and reliable measures of a personally relevant geographic area, laying the measurement groundwork for the growing number of studies using this technology. We hope to set efforts to measure ‘place’ for the study of context and politics on firmer footing. Our validity assessments show that individuals are thinking about people and places with which they have regular contact when asked to draw their communities. Our reliability assessments show that people can draw more or less the same map twice, even when the exercise is repeated months later. Finally, we provide evidence that the concept of community is a tangible consideration in the minds of ordinary citizens and is not simply a normative aspiration or motivation.
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
International Territorial Level (ITL) geography hierarchy boundaries, January 2021, UK.Boundaries used (BGC) are generalised (20m) and are clipped to the coastline for Great Britain, but for Northern Ireland they are generalised (20m) and are extent of the realm and are not clipped to the coastline for Northern Ireland.
The three digital maps provided in this product aim to assess the degree of Offshore windfarm siting suitability existing over the geographical area extent with a focal point where waters of France, Ireland and UK meet. The maps display respectively the spatial distribution of the average and lowest windfarm siting suitability scores along with the average wind speed distribution over a time period of 10 years. They are part of a process set up to assess the fit for use quality of the currently available datasets to support a preliminary selection of potential offshore sites for wind energy development. To build these maps, GIS tools were applied to several key spatial datasets from the 5 data type domains considered in the project: Air, Marine Water, Riverbed/Seabed, Biota/Biology and Human Activities, collated during the initial stages of the project. Initially, each selected dataset was formatted and clipped to the study area extent and spatially classified according to suitability scores, to define raster layers with the variables depicting levels of current anthropogenic and environmental spatial occupation of activities, seabed depth and slope, distances to shoreline, shipping intensity, mean significant wave height, and substrate type. These pre-processed layers were employed as inputs for applying a spatial multi-criteria model using a wind farming suitability classification based on a discrete 5 grades index, ranging from Very Low up to Very High suitability. In adition to suitability maps, an average wind speed spatial distribution map for a 10 years period, at 10 m height, was obtained over the study area from the raster processing of a wind speed time series of monthly means available from daily wind analysis data. The characteristics of the datasets used in this exercise underwent an appropriateness evaluation procedure based on a comparison between their measured quality and those specified for the product. The most part of the area was classified with low scores due to the high depths, unsuited seafloor and remote location in average 350 km from land, despite the low presence of human activities. All the spatial information made available in these maps and from the subsequent appropriateness analysis of the datasets, contributes to a clearer overview of the amount of public-access baseline knowledge currently existing for the North Atlantic basin area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 1885 UK parliamentary constituencies for Ireland were re-created in 2017 as part of a conference paper delivered at the Southern Irish Loyalism in Context conference at Maynooth University. The intial map only included the territory of the Irish Free State and was created by Martin Charlton and Jack Kavanagh. The remaining six counties of Ulster were completed by Eoin McLaughlin in 2018-19, the combined result is a GIS map of all the parliamentary constituecies across the island of Ireland for the period 1885-1918. The map is available in both ESRI Shapefile format and as a GeoPackage (GPKG). The methodology for creating the constituencies is outlined in detail below.
A map showing the outlines of the 1855 – 1918 Constituency boundaries can be found on page 401 of Parliamentary Elections in Ireland, 1801-1922 (Dublin, 1978) by Brian Walker. This forms the basis for the creation of a set of digital boundaries which can then be used in a GIS. The general workflow involves allocating an 1885 Constituency identifier to each of the 309 Electoral Divisions present in the boundaries made available for the 2011 Census of Population data release by CSO. The ED boundaries are available in ‘shapefile’ format (a de facto standard for spatial data transfer). Once a Constituency identifier has been given to each ED, the GIS operation known as ‘dissolve’ is used to remove the boundaries between EDs in the same Constituency. To begin with Walker’s map was scanned at 1200 dots per inch in JPEG form. A scanned map cannot be linked to other spatial data without undergoing a process known as georeferencing. The CSO boundaries are available with spatial coordinates in the Irish National Grid system. The goal of georeferencing is to produce a rectified version of the map together with a world file. Rectification refers to the process of recomputing the pixel positions in the scanned map so that they are oriented with the ING coordinate system; the world file contains the extent in both the east-west and north-south directions of each pixel (in metres) and the coordinates of the most north-westerly pixel in the rectified image.
Georeferencing involves the identification of Ground Control Points – these are locations on the scanned map for which the spatial coordinates in ING are known. The Georeferencing option in ArcGIS 10.4 makes this a reasonably pain free task. For this map 36 GCPs were required for a local spline transformation. The Redistribution of Seats Act 1885 provides the legal basis for the constituencies to be used for future elections in England, Wales, Scotland and Ireland. Part III of the Seventh Schedule of the Act defines the Constituencies in terms of Baronies, Parishes (and part Parishes) and Townlands for Ireland. Part III of the Sixth Schedule provides definitions for the Boroughs of Belfast and Dublin.
The CSO boundary collection also includes a shapefile of Barony boundaries. This makes it possible code a barony in two ways: (i) allocated completely to a Division or (ii) split between two Divisions. For the first type, the code is just the division name, and for the second the code includes both (or more) division names. Allocation of these names to the data in the ED shapefile is accomplished by a spatial join operation. Recoding the areas in the split Baronies is done interactively using the GIS software’s editing option. EDs or groups of EDs can be selected on the screen, and the correct Division code updated in the attribute table. There are a handful of cases where an ED is split between divisions, so a simple ‘majority’ rule was used for the allocation. As the maps are to be used at mainly for displaying data at the national level, a misallocation is unlikely to be noticed. The final set of boundaries was created using the dissolve operation mentioned earlier. There were a dozen ED that had initially escaped being allocated a code, but these were quickly updated. Similarly, a few of the EDs in the split divisions had been overlooked; again updating was painless. This meant that the dissolve had to be run a few more times before all the errors have been corrected.
For the Northern Ireland districts, a slightly different methodology was deployed which involved linking parishes and townlands along side baronies, using open data sources from the OSM Townlands.ie project and OpenData NI.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
🇬🇧 영국
Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This map is designed to be used as a general reference map for informational and educational purposes as well as a basemap by GIS professionals and other users for creating web maps and web mapping applications.The map was developed by National Geographic and Esri and reflects the distinctive National Geographic cartographic style in a multi-scale reference map of the world. The map was authored using data from a variety of leading data providers, including Garmin, HERE, UNEP-WCMC, NASA, ESA, USGS, and others.This reference map includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings and landmarks, overlaid on shaded relief and land cover imagery for added context. The map includes global coverage down to ~1:144k scale and more detailed coverage for North America down to ~1:9k scale.Map Note: Although small-scale boundaries, place names and map notes were provided and edited by National Geographic, boundaries and names shown do not necessarily reflect the map policy of the National Geographic Society, particularly at larger scales where content has not been thoroughly reviewed or edited by National Geographic.Data Notes: The credits below include a list of data providers used to develop the map. Below are a few additional notes:Reference Data: National Geographic, Esri, Garmin, HERE, iPC, NRCAN, METILand Cover Imagery: NASA Blue Marble, ESA GlobCover 2009 (Copyright notice: © ESA 2010 and UCLouvain)Protected Areas: IUCN and UNEP-WCMC (2011), The World Database on Protected Areas (WDPA) Annual Release. Cambridge, UK: UNEP-WCMC. Available at:www.protectedplanet.net.Ocean Data: GEBCO, NOAA