The statistic shows the 30 largest countries in the world by area. Russia is the largest country by far, with a total area of about 17 million square kilometers.
Population of Russia
Despite its large area, Russia - nowadays the largest country in the world - has a relatively small total population. However, its population is still rather large in numbers in comparison to those of other countries. In mid-2014, it was ranked ninth on a list of countries with the largest population, a ranking led by China with a population of over 1.37 billion people. In 2015, the estimated total population of Russia amounted to around 146 million people. The aforementioned low population density in Russia is a result of its vast landmass; in 2014, there were only around 8.78 inhabitants per square kilometer living in the country. Most of the Russian population lives in the nation’s capital and largest city, Moscow: In 2015, over 12 million people lived in the metropolis.
World Countries Generalized represents generalized boundaries for the countries of the world. It has fields for official names and country codes. The generalized political boundaries improve draw performance and effectiveness at a global or continental level.This layer is best viewed out beyond a scale of 1:5,000,000.This layer's geography was developed by Esri, Garmin International, Inc., the U.S. Central Intelligence Agency (The World Factbook), and the National Geographic Society for use as a world basemap. It is updated annually as country names or significant borders change.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This reference data provides a standard list of values for all Countries, Territories and Geographic areas. This list is intended to standardize the way Countries, Territories and Geographic areas are described in datasets to enable data interoperability and improve data quality. The data dictionary explains what each column means in the list.
The Human Geography Map (World Edition) web map provides a detailed vector basemap with a monochromatic style and content adjusted to support Human Geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Base, a simple basemap consisting of land areas in a very light gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in Introducing a Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
In the context of the UK, each of the four main subdivisions (England, Scotland, Wales and Northern Ireland) is referred to as a country.
Please visit ONS Beginner's Guide to UK Geography for more info.
The boundaries are available as either extent of the realm (usually this is the Mean Low Water mark but in some cases boundaries extend beyond this to include off shore islands) or
clipped to the coastline (Mean High Water mark).
Outline of the USA, low resolution world data
World framework data from Intergraph Corporation
Which county has the most Facebook users? There are more than 383 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country, then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 196.9 million, 122.3 million, and 111.65 million Facebook users respectively. Facebook – the most used social media Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3.5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising. Facebook usage by device As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the
The Global Data Regulation Diagnostic provides a comprehensive assessment of the quality of the data governance environment. Diagnostic results show that countries have put in greater effort in adopting enabler regulatory practices than in safeguard regulatory practices. However, for public intent data, enablers for private intent data, safeguards for personal and nonpersonal data, cybersecurity and cybercrime, as well as cross-border data flows. Across all these dimensions, no income group demonstrates advanced regulatory frameworks across all dimensions, indicating significant room for the regulatory development of both enablers and safeguards remains at an intermediate stage: 47 percent of enabler good practices and 41 percent of good safeguard practices are adopted across countries. Under the enabler and safeguard pillars, the diagnostic covers dimensions of e-commerce/e-transactions, enablers further improvement on data governance environment.
The Global Data Regulation Diagnostic is the first comprehensive assessment of laws and regulations on data governance. It covers enabler and safeguard regulatory practices in 80 countries providing indicators to assess and compare their performance. This Global Data Regulation Diagnostic develops objective and standardized indicators to measure the regulatory environment for the data economy across countries. The indicators aim to serve as a diagnostic tool so countries can assess and compare their performance vis-á-vis other countries. Understanding the gap with global regulatory good practices is a necessary first step for governments when identifying and prioritizing reforms.
80 countries
Country
Observation data/ratings [obs]
The diagnostic is based on a detailed assessment of domestic laws, regulations, and administrative requirements in 80 countries selected to ensure a balanced coverage across income groups, regions, and different levels of digital technology development. Data are further verified through a detailed desk research of legal texts, reflecting the regulatory status of each country as of June 1, 2020.
Mail Questionnaire [mail]
The questionnaire comprises 37 questions designed to determine if a country has adopted good regulatory practice on data governance. The responses are then scored and assigned a normative interpretation. Related questions fall into seven clusters so that when the scores are averaged, each cluster provides an overall sense of how it performs in its corresponding regulatory and legal dimensions. These seven dimensions are: (1) E-commerce/e-transaction; (2) Enablers for public intent data; (3) Enablers for private intent data; (4) Safeguards for personal data; (5) Safeguards for nonpersonal data; (6) Cybersecurity and cybercrime; (7) Cross-border data transfers.
100%
A global self-hosted Market Research dataset containing all administrative divisions, cities, addresses, and zip codes for 247 countries. All geospatial data is updated weekly to maintain the highest data quality, including challenging countries such as China, Brazil, Russia, and the United Kingdom.
Use cases for the Global Zip Code Database (Market Research data)
Address capture and validation
Map and visualization
Reporting and Business Intelligence (BI)
Master Data Mangement
Logistics and Supply Chain Management
Sales and Marketing
Data export methodology
Our map data packages are offered in variable formats, including .csv. All geographic data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Product Features
Fully and accurately geocoded
Administrative areas with a level range of 0-4
Multi-language support including address names in local and foreign languages
Comprehensive city definitions across countries
For additional insights, you can combine the map data with:
UNLOCODE and IATA codes
Time zones and Daylight Saving Times
Why do companies choose our Market Research databases
Enterprise-grade service
Reduce integration time and cost by 30%
Weekly updates for the highest quality
Note: Custom geographic data packages are available. Please submit a request via the above contact button for more details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mexico Exports: WP: Paper & Paperboard, Articles of Paper Pulp, Paper data was reported at 0.231 USD mn in Jan 2025. This records an increase from the previous number of 0.101 USD mn for Dec 2024. Mexico Exports: WP: Paper & Paperboard, Articles of Paper Pulp, Paper data is updated monthly, averaging 0.074 USD mn from Jan 2021 (Median) to Jan 2025, with 49 observations. The data reached an all-time high of 2.899 USD mn in Nov 2024 and a record low of 0.006 USD mn in Jan 2022. Mexico Exports: WP: Paper & Paperboard, Articles of Paper Pulp, Paper data remains active status in CEIC and is reported by National Institute of Statistics and Geography. The data is categorized under Global Database’s Mexico – Table MX.JA012: Exports: by Country and Commodity: by 2 Digit HS Code: National Institute of Statistics and Geography.
This statistical dataset contains estimates on the number of active online Facebook users living outside of their country of origin within the European Union. The dataset includes information on Facebook users' age, gender, country of residence, and country of previous residence. The data is divided in the number of Monthly Active Users and Daily Active Users. The data was collected through standard CSV format via an advertising API platform by using an R Studio code, and the data collection was conducted twice a month from January to November 2021.
The dataset was originally published in DiVA and moved to SND in 2024.
A global self-hosted location dataset containing all administrative divisions, cities, and zip codes for 247 countries. All geospatial data is updated weekly to maintain the highest data quality, including challenging countries such as China, Brazil, Russia, and the United Kingdom.
Use cases for the Global Zip Code Database (Geospatial data)
Address capture and validation
Map and visualization
Reporting and Business Intelligence (BI)
Master Data Mangement
Logistics and Supply Chain Management
Sales and Marketing
Data export methodology
Our location data packages are offered in variable formats, including .csv. All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Product Features
Fully and accurately geocoded
Administrative areas with a level range of 0-4
Multi-language support including address names in local and foreign languages
Comprehensive city definitions across countries
For additional insights, you can combine the map data with:
UNLOCODE and IATA codes
Time zones and Daylight Saving Times
Why do companies choose our location databases
Enterprise-grade service
Reduce integration time and cost by 30%
Weekly updates for the highest quality
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
This statistic displays the countries with the greatest range between their highest and lowest elevation points. China and Nepal share the highest elevation point worldwide, which ascends to an amount of 8848 meters above sea level. Near the city Turpan Pendi, Xinjiang, China's elevation reaches *** meters below sea level.
This layer shows particulate matter in the air sized 2.5 micrometers of smaller (PM 2.5). The data is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into country boundaries, administrative 1 boundaries, and 50 km hex bins. The unit of measurement is micrograms per cubic meter.The layer shows the annual average PM 2.5 from 1998 to 2016, highlighting if the overall mean for an area meets the World Health Organization guideline of 10 micrograms per cubic meter annually. Areas that don't meet the guideline and are above the threshold are shown in red, and areas that are lower than the guideline are in grey.The data is averaged for each year and over the the 19 years to provide an overall picture of air quality globally. Some of the things we can learn from this layer:What is the average annual PM 2.5 value over 19 years? (1998-2016)What is the annual average PM 2.5 value for each year from 1998 to 2016?What is the statistical trend for PM 2.5 over the 19 years? (downward or upward)Are there hot spots (or cold spots) of PM 2.5 over the 19 years?How many people are impacted by the air quality in an area?What is the death rate caused by the joint effects of air pollution?Choose a different attribute to symbolize in order to reveal any of the patterns above.A space time cube was performed on a multidimensional mosaic version of the data in order to derive an emerging hot spot analysis, trends, and a 19-year average. The country and administrative 1 layers provide a population-weighted PM 2.5 value to emphasize which areas have a higher human impact. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.Boundaries and population figures:Antarctica is excluded from all maps because it was not included in the original NASA grids.50km hex bins generated using the Generate Tessellation tool - projected to Behrmann Equal Area projection for analysesPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Administrative boundaries from World Administrative Divisions layer from ArcGIS Living Atlas - projected to Behrmann Equal Area projection for analyses and hosted in Web MercatorSources: Garmin, CIA World FactbookPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Country boundaries from Esri 2019 10.8 Data and Maps - projected to Behrmann Equal Area projection for analyses and hosted in Web Mercator. Sources: Garmin, Factbook, CIAPopulation figures attached to the country boundaries come from the World Population Estimate 2016 Sources Living Atlas layer Data processing notes:NASA's GeoTIFF files for 19 years (1998-2016) were first brought into ArcGIS Pro 2.5.0 and put into a multidimensional mosaic dataset.For each geography level, the following was performed: Zonal Statistics were run against the mosaic as a multidimensional layer.A Space Time Cube was created to compare the 19 years of PM 2.5 values and detect hot/cold spot patterns. To learn more about Space Time Cubes, visit this page.The Space Time Cube is processed for Emerging Hot Spots where we gain the trends and hot spot results.The layers are hosted in Web Mercator Auxillary Sphere projection, but were processed using an equal area projection: Behrmann. If using this layer for analysis, it is recommended to start by projecting the data back to Behrmann.The country and administrative layer were dissolved and joined with population figures in order to visualize human impact.The dissolve tool ensures that each geographic area is only symbolized once within the map.Country boundaries were generalized post-analysis for visualization purposes. The tolerance used was 700m. If performing analysis with this layer, find detailed country boundaries in ArcGIS Living Atlas. To create the population-weighted attributes on the country and Admin 1 layers, the hex value population values were used to create the weighting. Within each hex bin, the total population figure and average PM 2.5 were multiplied.The hex bins were converted into centroids and the PM2.5 and population figures were summarized within the country and Admin 1 boundaries.The summation of the PM 2.5 values were then divided by the total population of each geography. This population value was determined by summarizing the population values from the hex bins within each geography.Some artifacts in the hex bin layer as a result of the input NASA rasters. Because the gridded surface is created from multiple satellites, there are strips within some areas that are a result of satellite paths. Some areas also have more of a continuous pattern between hex bins as a result of the input rasters.Within the country layer, an air pollution attributable death rate is included. 2016 figures are offered by the World Health Organization (WHO). Values are offered as a mean, upper value, lower value, and also offered as age standardized. Values are for deaths caused by all possible air pollution related diseases, for both sexes, and all age groups. For more information visit this page, and here for methodology. According to WHO, the world average was 95 deaths per 100,000 people.To learn the techniques used in this analysis, visit the Learn ArcGIS lesson Investigate Pollution Patterns with Space-Time Analysis by Esri's Kevin Bulter and Lynne Buie.
This tab-delimited file, assignees2015_5yr.txt, prepared from the U.S. Patent and Trademark Office (USPTO), Technology Assessment and Forecast (TAF) database, displays a listing of organizations receiving the most utility patents (i.e., patents for invention) during the indicated 5 year time period. Each displayed annual count corresponds to the count of patents received in a calendar year (January 1 to December 31). It will import into a Microsoft Excel spreadsheet. This file generally contains the contents of the PTMT report, DRILL-DOWN Utility Patent Report, Patenting by Geographic Origin (State and Country) - Breakout By Organization, available on the USPTO Web Site at: https://www.uspto.gov/web/offices/ac/ido/oeip/taf/stcasg/regions_stcorg.htm
The smallest country in the world is Vatican City, with a landmass of just **** square kilometers (0.19 square miles). Vatican City is an independent state surrounded by Rome. Vatican City is not the only small country located inside Italy. San Marino is another microstate, with a land area of ** square kilometers, making it the fifth-smallest country in the world. Many of these small nations have equally small populations, typically less than ************** inhabitants. However, the population of Singapore is almost *** million, and it is the twentieth smallest country in the world with a land area of *** square kilometers. In comparison, Jamaica is almost eight times larger than Singapore, but has half the population.
Xverum’s Point of Interest (POI) Data is a comprehensive dataset containing 230M+ verified locations across 5000 business categories. Our dataset delivers structured geographic data, business attributes, location intelligence, and mapping insights, making it an essential tool for GIS applications, market research, urban planning, and competitive analysis.
With regular updates and continuous POI discovery, Xverum ensures accurate, up-to-date information on businesses, landmarks, retail stores, and more. Delivered in bulk to S3 Bucket and cloud storage, our dataset integrates seamlessly into mapping, geographic information systems, and analytics platforms.
🔥 Key Features:
Extensive POI Coverage: ✅ 230M+ Points of Interest worldwide, covering 5000 business categories. ✅ Includes retail stores, restaurants, corporate offices, landmarks, and service providers.
Geographic & Location Intelligence Data: ✅ Latitude & longitude coordinates for mapping and navigation applications. ✅ Geographic classification, including country, state, city, and postal code. ✅ Business status tracking – Open, temporarily closed, or permanently closed.
Continuous Discovery & Regular Updates: ✅ New POIs continuously added through discovery processes. ✅ Regular updates ensure data accuracy, reflecting new openings and closures.
Rich Business Insights: ✅ Detailed business attributes, including company name, category, and subcategories. ✅ Contact details, including phone number and website (if available). ✅ Consumer review insights, including rating distribution and total number of reviews (additional feature). ✅ Operating hours where available.
Ideal for Mapping & Location Analytics: ✅ Supports geospatial analysis & GIS applications. ✅ Enhances mapping & navigation solutions with structured POI data. ✅ Provides location intelligence for site selection & business expansion strategies.
Bulk Data Delivery (NO API): ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured format (.json) for seamless integration.
🏆Primary Use Cases:
Mapping & Geographic Analysis: 🔹 Power GIS platforms & navigation systems with precise POI data. 🔹 Enhance digital maps with accurate business locations & categories.
Retail Expansion & Market Research: 🔹 Identify key business locations & competitors for market analysis. 🔹 Assess brand presence across different industries & geographies.
Business Intelligence & Competitive Analysis: 🔹 Benchmark competitor locations & regional business density. 🔹 Analyze market trends through POI growth & closure tracking.
Smart City & Urban Planning: 🔹 Support public infrastructure projects with accurate POI data. 🔹 Improve accessibility & zoning decisions for government & businesses.
💡 Why Choose Xverum’s POI Data?
Access Xverum’s 230M+ POI dataset for mapping, geographic analysis, and location intelligence. Request a free sample or contact us to customize your dataset today!
https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
International Trade in Services Survey and Other International Operations: By type of operation and geographic area. Quarterly. National.
The statistic shows the 30 largest countries in the world by area. Russia is the largest country by far, with a total area of about 17 million square kilometers.
Population of Russia
Despite its large area, Russia - nowadays the largest country in the world - has a relatively small total population. However, its population is still rather large in numbers in comparison to those of other countries. In mid-2014, it was ranked ninth on a list of countries with the largest population, a ranking led by China with a population of over 1.37 billion people. In 2015, the estimated total population of Russia amounted to around 146 million people. The aforementioned low population density in Russia is a result of its vast landmass; in 2014, there were only around 8.78 inhabitants per square kilometer living in the country. Most of the Russian population lives in the nation’s capital and largest city, Moscow: In 2015, over 12 million people lived in the metropolis.