100+ datasets found
  1. Z

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liu, Jie (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Liu, Jie
    Zhu, Guang-Fu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  2. A

    CA Geographic Boundaries

    • data.amerigeoss.org
    shp
    Updated Oct 23, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). CA Geographic Boundaries [Dataset]. https://data.amerigeoss.org/dataset/ca-geographic-boundaries-2add9
    Explore at:
    shpAvailable download formats
    Dataset updated
    Oct 23, 2019
    Dataset provided by
    United States
    Description

    This dataset contains shapefile boundaries for CA State, counties and places from the US Census Bureau's 2016 MAF/TIGER database. The 2016 TIGER/Line Shapefiles contain current geography for the United States, the District of Columbia, Puerto Rico, and the Island areas. Current geography in the 2016 TIGER/Line Shapefiles generally reflects the boundaries of governmental units in effect as of January 1, 2016, and other legal and statistical area boundaries that have been adjusted and/or corrected since the 2010 Census. This vintage includes boundaries of governmental units that match the data from the surveys that use 2016 geography, such as the 2016 Population Estimates and the 2016 American Community Survey.

    The 2016 TIGER/Line Shapefiles contain the geographic extent and boundaries of both legal and statistical entities. A legal entity is a geographic entity whose boundaries, name, origin, and area description result from charters, laws, treaties, or other administrative or governmental action. A statistical entity is any geographic entity or combination of entities identified and defined solely for the tabulation and presentation of data. Statistical entity boundaries are not legally defined and the entities have no governmental standing.

  3. S

    Current Geographic Boundaries Table

    • datafinder.stats.govt.nz
    csv, dbf (dbase iii) +4
    Updated Dec 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2024). Current Geographic Boundaries Table [Dataset]. https://datafinder.stats.govt.nz/table/114916-current-geographic-boundaries-table/
    Explore at:
    csv, geodatabase, geopackage / sqlite, mapinfo tab, mapinfo mif, dbf (dbase iii)Available download formats
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Description

    The geographies table lists the most up to date versions of geographies maintained by Stats NZ. The geographies divide New Zealand into geographic areas, such as statistical areas, territorial authorities, and regional councils.

    From 2024 onwards, new geographies are published when they change, rather than annually, in a high-definition version not a generalised version. The table will be maintained and updated to reflect new versions of geographies.

    This file provides a definitive list of the current version of each geography. Additionally, supplementary information provided includes the date published, current version, a comments field along with a pdf link to each layer in Datafinder.

    For further details about our geographies please refer to the Statistical standard for geographic areas 2023.

    For our geographic hierarchy please refer to the Geographic hierarchy diagram.

  4. World Countries Generalized

    • hub.arcgis.com
    • cacgeoportal.com
    • +5more
    Updated May 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). World Countries Generalized [Dataset]. https://hub.arcgis.com/datasets/esri::world-countries-generalized
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    World Countries Generalized represents generalized boundaries for the countries of the world as of August 2022. The generalized political boundaries improve draw performance and effectiveness at a global or continental level. This layer is best viewed out beyond a scale of 1:5,000,000.This layer's geography was developed by Esri and sourced from Garmin International, Inc., the U.S. Central Intelligence Agency (The World Factbook), and the National Geographic Society for use as a world basemap. It is updated annually as country names or significant borders change.

  5. d

    500 Cities: City Boundaries

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). 500 Cities: City Boundaries [Dataset]. https://catalog.data.gov/dataset/500-cities-city-boundaries
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.

  6. D

    Bay Area County Polygons

    • data.sfgov.org
    • s.cnmilf.com
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Bay Area County Polygons [Dataset]. https://data.sfgov.org/Geographic-Locations-and-Boundaries/Bay-Area-County-Polygons/wamw-vt4s
    Explore at:
    csv, tsv, xml, kml, application/rdfxml, application/rssxml, application/geo+json, kmzAvailable download formats
    Dataset updated
    Feb 3, 2025
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    San Francisco Bay Area
    Description

    Summary Geographic boundaries for the bay area counties

  7. 2022 Cartographic Boundary File (SHP), Current Census Tract for United...

    • catalog.data.gov
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2022 Cartographic Boundary File (SHP), Current Census Tract for United States, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2022-cartographic-boundary-file-shp-current-census-tract-for-united-states-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    The 2022 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  8. H

    Replication data for: Geographic Boundaries as Regression Discontinuities

    • dataverse.harvard.edu
    Updated Sep 30, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luke Keele; Rocio Titiunik (2014). Replication data for: Geographic Boundaries as Regression Discontinuities [Dataset]. http://doi.org/10.7910/DVN/26453
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 30, 2014
    Dataset provided by
    Harvard Dataverse
    Authors
    Luke Keele; Rocio Titiunik
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2008
    Area covered
    United States
    Description

    Data to illustrate our geographic RD methodological framework. Illustration is a a re-examination of the effects of political advertisements on voter turnout during a presidential campaign, exploiting the exogenous variation in the volume of presidential ads that is created by media market boundaries. We rely on two data sources. Our main source is the New Jersey voter file. This dataset has measures of party registration, gender and age directly from the voter file, and imputed values of education, income, poverty status, and employment status. The voter file also contains the address of each voter, which allows us to find each voter's geographic location and avoid the use of naive distances. Our second data source is property sales records. We acquired records for all houses sold in the appropriate zip codes in New Jersey from January 2006 to November 2008. In this time period, nearly 3,000 homes were sold in this area -- although we only used the 1,800 house sales inside one specific school district, see below. The housing sales data allow us to conduct a fine-grained analysis of the sales price differential along the boundary of interest.

  9. E

    Data from: Boundary Dataset for the Jazira Region of Syria

    • dtechtive.com
    • data.gov.uk
    • +1more
    xml, zip
    Updated Feb 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Edinburgh (2017). Boundary Dataset for the Jazira Region of Syria [Dataset]. http://doi.org/10.7488/ds/1786
    Explore at:
    zip(0.0093 MB), xml(0.0075 MB)Available download formats
    Dataset updated
    Feb 21, 2017
    Dataset provided by
    University of Edinburgh
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Syria
    Description

    This boundary dataset complements 13 other datasets as part of a study that compared ancient settlement patterns with modern environmental conditions in the Jazira region of Syria. This study examined settlement distribution and density patterns over the past five millennia using archaeological survey reports and French 1930s 1:200,000 scale maps to locate and map archaeological sites. An archaeological site dataset was created and compared to and modelled with soil, geology, terrain (contour), surface and subsurface hydrology and normal and dry year precipitation pattern datasets; there are also three spreadsheet datasets providing 1963 precipitation and temperature readings collected at three locations in the region. The environmental datasets were created to account for ancient and modern population subsistence activities, which comprise barley and wheat farming and livestock grazing. These environmental datasets were subsequently modelled with the archaeological site dataset, as well as, land use and population density datasets for the Jazira region. Ancient trade routes were also mapped and factored into the model, and a comparison was made to ascertain if there was a correlation between ancient and modern settlement patterns and environmental conditions; the latter influencing subsistence activities. This boundary dataset was generated to define the extent of the study area, which comprises the border between Syria and Turkey, Syria and Iraq, the River Tigris and the River Euphrates. All related data collected was confined within this boundary dataset with the exception of the archaeological dataset. Archaeological sites were identified and mapped along both banks of the River Euphrates. Also, the town of Dayr az-Zawr, where the 1963 precipitation and temperature monthly values were collected for one of the datasets, falls outside the Jazira Region. Derived from 1:200,000 French Levant Map Series (Further Information element in this metadata record provides list of sheets).The boundary line dataset was captured from 11 map sheets, which were based on the French Levant surveys conducted in Syria during the 1930s and mapped at a scale of 1:200,000. The size of each map measures 69 x 59 cm. The boundary line on each sheet was traced to mylar. Subsequently, each mylar sheet was photocopied and reduced in size to an 11 x 17 inch sheet. These sheets were merged to form the contiguous area comprising the full extent of the boundary for the study area. This was then traced again to another mylar sheet and subsequently scanned and cleaned for further processing and use in a GIS as a polygon coverage. Thesis M 2001 MATH, Ohio University Mathys, Antone J 'A GIS comparative analysis of bronze age settlement patterns and the contemporary physical landscape in the Jazira Region of Syria'., French Levant Map Series (1:200,000) for Syrie (Syria). Projected to Lambert grid. These are colour maps measuring to 69 x 59 cm in size. The dataset was created from the following sheet numbers and titles: 1) NI-37 XVII, Abou Kemal 2) NI-37 XVIII, Ana 3) NI-37 XXI, Ressafe 4) NI-37 XXII, Raqqa 5) NI-37 XXIII, Deir ez Zoir 6) NI-37 XXIV, Bouara 7) NI-37-III, Djerablous 8) NJ-37 IV, Toual Aaba 9) NJ-37 V, Hassetche 10) NJ-37 VI, Qamishliye-Sinjar 11) (No sheet number), Qaratchok-Darh Dressepar la Service Geographique des F.F.L. en 1945 Reimprime par l'Institut Geographique National en 1950 (Originally produced by this Geographic Service of the F.F.L. (Forces Francaises Libres) in 1945 and reprinted by the National Geographic Institute in 1950). Paris: France. Institut Geographique National, 1945-1950. Original map series might be traced to Beirut: Bureau Topographique des Troupes francaises du Levant, 1933-1938. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2010-06-09 and migrated to Edinburgh DataShare on 2017-02-21.

  10. Geographic Location

    • catalog.data.gov
    • data.amerigeoss.org
    • +1more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Farm Service Agency, Department of Agriculture (2025). Geographic Location [Dataset]. https://catalog.data.gov/dataset/geographic-location
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    United States Department of Agriculturehttp://usda.gov/
    Farm Service Agencyhttps://www.fsa.usda.gov/
    Description

    Information which constitutes the geography or location of a land unit, farm, ranch or facility. This could include latitudinal/longitudinal points, boundaries, borders, addresses.

  11. California County Boundaries and Identifiers

    • data.ca.gov
    • gis.data.ca.gov
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2025). California County Boundaries and Identifiers [Dataset]. https://data.ca.gov/dataset/california-county-boundaries-and-identifiers
    Explore at:
    arcgis geoservices rest api, zip, html, csv, gdb, gpkg, txt, xlsx, kmlAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    California Department of Technologyhttp://cdt.ca.gov/
    Area covered
    California
    Description

    WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of March 2025. The schema changed in February 2025 - please see below. We will post a roadmap of upcoming changes, but service URLs and schema are now stable. For deployment status of new services in February 2025, see https://gis.data.ca.gov/pages/city-and-county-boundary-data-status. Additional roadmap and status links at the bottom of this metadata.

    This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.

    Purpose

    County boundaries along with third party identifiers used to join in external data. Boundaries are from the California Department of Tax and Fee Administration (CDTFA). These boundaries are the best available statewide data source in that CDTFA receives changes in incorporation and boundary lines from the Board of Equalization, who receives them from local jurisdictions for tax purposes. Boundary accuracy is not guaranteed, and though CDTFA works to align boundaries based on historical records and local changes, errors will exist. If you require a legal assessment of boundary location, contact a licensed surveyor.

    This dataset joins in multiple attributes and identifiers from the US Census Bureau and Board on Geographic Names to facilitate adding additional third party data sources. In addition, we attach attributes of our own to ease and reduce common processing needs and questions. Finally, coastal buffers are separated into separate polygons, leaving the land-based portions of jurisdictions and coastal buffers in adjacent polygons. This layer removes the coastal buffer polygons. This feature layer is for public use.

    Related Layers

    This dataset is part of a grouping of many datasets:

    1. Cities: Only the city boundaries and attributes, without any unincorporated areas
    2. Counties: Full county boundaries and attributes, including all cities within as a single polygon
    3. Cities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.
    4. City and County Abbreviations
    5. Unincorporated Areas (Coming Soon)
    6. Census Designated Places
    7. Cartographic Coastline
    Working with Coastal Buffers
    The dataset you are currently viewing excludes the coastal buffers for cities and counties that have them in the source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except OFFSHORE and AREA_SQMI to get a version with the correct identifiers.

    Point of Contact

    California Department of Technology, Office of Digital Services, odsdataservices@state.ca.gov

    Field and Abbreviation Definitions

    • CDTFA_COUNTY: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.
    • CDTFA_COPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering system. The boundary data originate with CDTFA's teams managing tax rate information, so this field is preserved and flows into this dataset.
    • CENSUS_GEOID: numeric geographic identifiers from the US Census Bureau
    • CENSUS_PLACE_TYPE: City, County, or Town, stripped off the census name for identification purpose.
    • GNIS_PLACE_NAME: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information System
    • GNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.
    • CDT_COUNTY_ABBR: Abbreviations of county names - originally derived from CalTrans Division of Local Assistance and now managed by CDT. Abbreviations are 3 characters.
    • CDT_NAME_SHORT: The name of the jurisdiction (city or county) with the word "City" or "County" stripped off the end. Some changes may come to how we process this value to make it more consistent.
    • AREA_SQMI: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.
    • OFFSHORE: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".
    • PRIMARY_DOMAIN: Currently empty/null for all records. Placeholder field for official URL of the city or county
    • CENSUS_POPULATION: Currently null for all records. In the future, it will include the most recent US Census population estimate for the jurisdiction.
    • GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.

    Boundary Accuracy
    County boundaries were originally derived from a

  12. Human Geography Dark Map

    • digital-earth-pacificcore.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +20more
    Updated May 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). Human Geography Dark Map [Dataset]. https://digital-earth-pacificcore.hub.arcgis.com/maps/4f2e99ba65e34bb8af49733d9778fb8e
    Explore at:
    Dataset updated
    May 4, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Human Geography Dark Map (World Edition) web map provides a detailed world basemap with a dark monochromatic style and content adjusted to support human geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Dark Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Dark Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Dark Base, a simple basemap consisting of land areas in a very dark gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in A Dark Version of the Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.

  13. 2010-2014 ACS Geographical Mobility Variables - Boundaries

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    Updated Nov 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). 2010-2014 ACS Geographical Mobility Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/ee3721843e084c65b3872c4cbdef3c6f
    Explore at:
    Dataset updated
    Nov 20, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows residence one year ago for those 1 year and older. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Data for Puerto Rico not available for Table 07204. This layer is symbolized to show the percent of people one year and over who lived in a different state one year ago. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B07204 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 11, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  14. o

    Data from: US County Boundaries

    • public.opendatasoft.com
    • smartregionidf.opendatasoft.com
    csv, excel, geojson +1
    Updated Jun 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). US County Boundaries [Dataset]. https://public.opendatasoft.com/explore/dataset/us-county-boundaries/
    Explore at:
    json, csv, excel, geojsonAvailable download formats
    Dataset updated
    Jun 27, 2017
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2017, primarily as reported through the Census Bureau's Boundary and Annexation Survey (BAS).

  15. 2023 Cartographic Boundary File (SHP), Census Tract for Arizona, 1:500,000

    • catalog.data.gov
    • s.cnmilf.com
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2024). 2023 Cartographic Boundary File (SHP), Census Tract for Arizona, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2023-cartographic-boundary-file-shp-census-tract-for-arizona-1-500000
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The 2023 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  16. Borders, boundaries, and barriers - Human Geography GeoInquiries 2020

    • geoinquiries-education.hub.arcgis.com
    • hub.arcgis.com
    Updated Nov 2, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2015). Borders, boundaries, and barriers - Human Geography GeoInquiries 2020 [Dataset]. https://geoinquiries-education.hub.arcgis.com/maps/c55876b9a2ca486e88fb795a45a74162
    Explore at:
    Dataset updated
    Nov 2, 2015
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Area covered
    Description

    Identify major boundaries, borders, and barriers around the world. The GeoInquiry activity is available here.Educational standards addressed:APHG: IV.B2. Evaluate the nature & function of boundaries including types. APHG: IV.B1. Explain the concepts of political power and territoriality.This map is part of a Human Geography GeoInquiry activity. Learn more about GeoInquiries.

  17. d

    Massachusetts Bay and adjacent land: Polygon boundaries for source data of a...

    • catalog.data.gov
    • datasets.ai
    Updated Jul 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Massachusetts Bay and adjacent land: Polygon boundaries for source data of a continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf: (Esri polygon shapefile, Geographic, NAD 83). [Dataset]. https://catalog.data.gov/dataset/massachusetts-bay-and-adjacent-land-polygon-boundaries-for-source-data-of-a-continuous-bat
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Massachusetts
    Description

    Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to Hyannis; Buzzards Bay from the Cape Cod Canal southwest to the State border including the Elizabeth Islands and extending north to Fall River and Mount Hope Bay; and Nantucket and Vineyard Sounds, from Hyannis south to the border of the Massachusetts Coastal zone approximately 8 kilometers south of Nantucket. A Triangulated Irregular Network was created from public-domain bathymetric and LiDAR data using the ArcGIS terrain-model framework and then interpolated into a 32-bit GeoTiff of 10 meter resolution. The grids for each of the four geographical areas are referenced to the Universal Transverse Mercator, Zone 19, North American Datum of 1983 coordinate system, and the North American Vertical Datum of 1988. A polygon shapefile recording the source datasets accompanies each of the four grids.

  18. Provinces/Territories, Cartographic Boundary File - 2016 Census

    • open.canada.ca
    • data.wu.ac.at
    gml, html, shp
    Updated Feb 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2022). Provinces/Territories, Cartographic Boundary File - 2016 Census [Dataset]. https://open.canada.ca/data/en/dataset/a883eb14-0c0e-45c4-b8c4-b54c4a819edb
    Explore at:
    gml, html, shpAvailable download formats
    Dataset updated
    Feb 23, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    There are two types of boundary files: cartographic and digital. Cartographic boundary files portray the geographic areas using only the major land mass of Canada and its coastal islands. Digital boundary files portray the full extent of the geographic areas, including the coastal water area.

  19. w

    FSA District Director Boundaries

    • data.wu.ac.at
    • catalog.data.gov
    • +1more
    Updated Feb 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Agriculture (2018). FSA District Director Boundaries [Dataset]. https://data.wu.ac.at/schema/data_gov/ZGZkNzVjYTctODcwMy00MTUzLTk2ZDUtODVjZjgzNjlmOTYy
    Explore at:
    Dataset updated
    Feb 4, 2018
    Dataset provided by
    Department of Agriculture
    Description

    The FSA district boundaries are internal administrative collections of counties that are established at the state level. FSA does not have a formal national geospatial layer for District Directors’ district boundaries. The Deputy Administrator for Field Operations (DAFO) has been working with the states to update/adjust the number of districts in each state. DAFO manages these boundaries and they change as office closures and resource changes occur. Such a layer could be created, but the updated information must be received before a boundary file can be created. If a geographic boundary file were to be created, FSA would have to organize a regular cycle when DAFO provides updated information as changes occur, establish a process for creating that geospatial boundary layer, and determine where and how FSA would host this and make it accessible for the future. With the exception of NAIP imagery, none of the other geospatial layers are publicly releasable data. Under these circumstances, FSA has information that routinely changes and does not have the resources to provide this geospatial data at this time. Such spatial data would be primarily useful for FSA internal administrative use.

  20. Large Scale International Boundaries

    • geodata.state.gov
    • catalog.data.gov
    www:download:gpkg +3
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (2025). Large Scale International Boundaries [Dataset]. https://geodata.state.gov/geonetwork/srv/api/records/3bdb81a0-c1b9-439a-a0b1-85dac30c59b2
    Explore at:
    www:link-1.0-http--link, www:link-1.0-http--related, www:download:gpkg, www:download:zipAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Authors
    U.S. Department of State
    Area covered
    Description

    Overview

    The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control.

    National Geospatial Data Asset

    This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee.

    Dataset Source Details

    Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.

    Cartographic Visualization

    The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below.

    Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html

    Contact

    Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip

    Attribute Structure

    The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension

    These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE

    The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB.

    Core Attributes

    The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields.

    County Code and Country Name Fields

    “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard.

    The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user.

    Descriptive Fields

    The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes

    Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line.

    ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line

    A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively.

    The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps.

    The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line.

    Use of Core Attributes in Cartographic Visualization

    Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between:

    • International Boundaries (Rank 1);
    • Other Lines of International Separation (Rank 2); and
    • Special Lines (Rank 3).

    Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction.

    The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling.

    Use of

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Liu, Jie (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939

Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions

Explore at:
Dataset updated
Apr 12, 2022
Dataset provided by
Liu, Jie
Zhu, Guang-Fu
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Tibetan Plateau
Description

Introduction

Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

(1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

(2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

(3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

Data processing

We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

Version

Version 2022.1.

Acknowledgements

This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

Citation

Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

Contacts

Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

Institution: Kunming Institute of Botany, Chinese Academy of Sciences

Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

Copyright

This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

Search
Clear search
Close search
Google apps
Main menu