100+ datasets found
  1. H

    Big Data Visualization: A Game changer in GIS, Geo-analysis and...

    • dataverse.harvard.edu
    Updated Feb 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prince Ogbonna (2019). Big Data Visualization: A Game changer in GIS, Geo-analysis and Geo-demographics [Dataset]. http://doi.org/10.7910/DVN/Y5EUPG
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 27, 2019
    Dataset provided by
    Harvard Dataverse
    Authors
    Prince Ogbonna
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Today, everybody around the world is living and working under the coverage of Geographic Information system (GIS) application and services such as the Google Earth, GPS and much more. Big Data visualization tools are increasingly creating a wonder in the world of GIS. GIS has diverse application, from geo-positioning services to 3D demonstrations and virtual reality. Big Data and its tools of visualization has boosted the field of GIS. This article seeks to explore how Big data visualization has expanded the field of Geo- spatial analysis with the intention to present practicable GIS-based tools required to stay ahead in this field.

  2. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Canada, France, Germany, United States, United Kingdom, Global
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,

  3. Geospatial Analytics Market Size, Insights, Trends & Share Report, 2035

    • rootsanalysis.com
    Updated Sep 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roots Analysis (2024). Geospatial Analytics Market Size, Insights, Trends & Share Report, 2035 [Dataset]. https://www.rootsanalysis.com/geospatial-analytics-market
    Explore at:
    Dataset updated
    Sep 10, 2024
    Dataset provided by
    Authors
    Roots Analysis
    License

    https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

    Time period covered
    2021 - 2031
    Area covered
    Global
    Description

    The geospatial analytics market size is predicted to rise from $93.49 billion in 2024 to $362.45 billion by 2035, growing at a CAGR of 13.1% from 2024 to 2035.

  4. Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/geospatial-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Apr 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, Canada, Germany, United States, United Kingdom
    Description

    Snapshot img

    Geospatial Analytics Market Size 2025-2029

    The geospatial analytics market size is forecast to increase by USD 178.6 billion, at a CAGR of 21.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of geospatial analytics in sectors such as healthcare and insurance. This trend is fueled by the ability of geospatial analytics to provide valuable insights from location-based data, leading to improved operational efficiency and decision-making. Additionally, emerging methods in data collection and generation, including the use of drones and satellite imagery, are expanding the scope and potential of geospatial analytics. However, the market faces challenges, including data privacy and security concerns. With the vast amounts of sensitive location data being collected and analyzed, ensuring its protection is crucial for companies to maintain trust with their customers and avoid regulatory penalties. Navigating these challenges and capitalizing on the opportunities presented by the growing adoption of geospatial analytics requires a strategic approach from industry players. Companies must prioritize data security, invest in advanced analytics technologies, and collaborate with stakeholders to build trust and transparency. By addressing these challenges and leveraging the power of geospatial analytics, businesses can gain a competitive edge and unlock new opportunities in various industries.

    What will be the Size of the Geospatial Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for location-specific insights across various sectors. Urban planning relies on geospatial optimization and data enrichment to enhance city designs and improve infrastructure. Cloud-based geospatial solutions facilitate real-time data access, enabling location intelligence for public safety and resource management. Spatial data standards ensure interoperability among different systems, while geospatial software and data visualization tools provide valuable insights from satellite imagery and aerial photography. Geospatial services offer data integration, spatial data accuracy, and advanced analytics capabilities, including 3D visualization, route optimization, and data cleansing. Precision agriculture and environmental monitoring leverage geospatial data to optimize resource usage and monitor ecosystem health. Infrastructure management and real estate industries rely on geospatial data for asset tracking and market analysis. Spatial statistics and disaster management applications help mitigate risks and respond effectively to crises. Geospatial data management and quality remain critical as the volume and complexity of data grow. Geospatial modeling and interoperability enable seamless data sharing and collaboration. Sensor networks and geospatial data acquisition technologies expand the reach of geospatial analytics, while AI-powered geospatial analytics offer new opportunities for predictive analysis and automation. The ongoing development of geospatial technologies and applications underscores the market's continuous dynamism, providing valuable insights and solutions for businesses and organizations worldwide.

    How is this Geospatial Analytics Industry segmented?

    The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TechnologyGPSGISRemote sensingOthersEnd-userDefence and securityGovernmentEnvironmental monitoringMining and manufacturingOthersApplicationSurveyingMedicine and public safetyMilitary intelligenceDisaster risk reduction and managementOthersTypeSurface and field analyticsGeovisualizationNetwork and location analyticsOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Technology Insights

    The gps segment is estimated to witness significant growth during the forecast period.The market encompasses various applications and technologies, including geospatial optimization, data enrichment, location-based services (LBS), spatial data standards, public safety, geospatial software, resource management, location intelligence, geospatial data visualization, geospatial services, data integration, 3D visualization, satellite imagery, remote sensing, GIS platforms, spatial data infrastructure, aerial photography, route optimization, data cleansing, precision agriculture, spatial interpolation, geospatial databases, transportation planning, spatial data accuracy, spatial analysis, map projections, interactive maps, marketing analytics, d

  5. Location Analytics Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Location Analytics Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-location-analytics-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Location Analytics Market Outlook



    The global location analytics market size was valued at approximately USD 18.2 billion in 2023 and is projected to reach around USD 65.4 billion by 2032, growing at a robust CAGR of 15.2% during the forecast period from 2024 to 2032. This impressive growth can be attributed to the escalating demand for spatial data and analytical solutions across various industries, aiming to enhance decision-making processes and optimize business operations.



    One of the primary growth factors driving the location analytics market is the increasing use of smartphones and the proliferation of Internet of Things (IoT) devices. These advancements have led to an explosion of location-based data, offering businesses the capability to analyze real-time information and make informed decisions. Moreover, the integration of location analytics with Geographic Information System (GIS) technologies has further enhanced the scope of applications, making it indispensable for sectors such as retail, transportation, and healthcare.



    Another significant growth driver is the rising need for businesses to gain a competitive edge through location-based insights. Companies are leveraging location analytics to understand customer behaviors, optimize supply chains, and enhance marketing strategies. For instance, retail businesses are increasingly using location analytics to determine ideal store locations, manage inventory efficiently, and provide personalized customer experiences. Similarly, in the transportation and logistics sector, location analytics is crucial for route optimization, fleet management, and reducing operational costs.



    The emergence of advanced technologies such as artificial intelligence (AI) and machine learning (ML) is also catalyzing the growth of the location analytics market. By incorporating AI and ML algorithms, location analytics solutions can offer predictive insights and trend analyses, enabling businesses to anticipate market changes and act proactively. This technological advancement is particularly beneficial for risk management and emergency response applications, where timely and accurate data is critical.



    In this context, Points-of-Interest (POI) Data Solutions have emerged as a crucial component in the location analytics ecosystem. POI data provides detailed information about specific locations, such as businesses, landmarks, and other significant places, which can be leveraged by companies to enhance their spatial analysis capabilities. By integrating POI data, businesses can gain deeper insights into consumer behavior, optimize location-based services, and improve decision-making processes. This data is particularly valuable for sectors like retail and hospitality, where understanding the proximity and accessibility of various points of interest can significantly impact customer engagement and operational efficiency. As the demand for precise and comprehensive location data continues to grow, POI Data Solutions are set to play a pivotal role in advancing the capabilities of location analytics platforms.



    Regionally, North America is expected to dominate the location analytics market due to the early adoption of advanced technologies and the presence of major market players in the region. Additionally, the Asia Pacific region is anticipated to witness significant growth, driven by the rapid urbanization, increasing smartphone penetration, and government initiatives promoting smart city projects. Europe is also poised for substantial growth, supported by stringent data regulations and the growing demand for spatial data analytics in various industries.



    Component Analysis



    The location analytics market can be segmented by component into software and services. The software segment includes tools and platforms that facilitate spatial data analysis, while the services segment encompasses consulting, integration, and maintenance services. The software segment is expected to hold a significant market share due to the increasing adoption of location analytics software solutions by enterprises to gain actionable insights from spatial data. These software solutions are designed to integrate seamlessly with existing business systems, providing users with real-time data analysis and visualization capabilities.



    Location analytics software is further categorized into desktop, mobile, and web-based platforms. Desktop solutions are traditionally used for comprehensive geospati

  6. n

    LANDISVIEW 2.0 : Free Spatial Data Analysis

    • cmr.earthdata.nasa.gov
    Updated Mar 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). LANDISVIEW 2.0 : Free Spatial Data Analysis [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214586381-SCIOPS
    Explore at:
    Dataset updated
    Mar 5, 2021
    Time period covered
    Jan 1, 1970 - Present
    Description

    LANDISVIEW is a tool, developed at the Knowledge Engineering Laboratory at Texas A&M University, to visualize and animate 8-bit/16-bit ERDAS GIS format (e.g., LANDIS and LANDIS-II output maps). It can also convert 8-bit/16-bit ERDAS GIS format into ASCII and batch files. LANDISVIEW provides two major functions: 1) File Viewer: Files can be viewed sequentially and an output can be generated as a movie file or as an image file. 2) File converter: It will convert the loaded files for compatibility with 3rd party software, such as Fragstats, a widely used spatial analysis tool. Some available features of LANDISVIEW include: 1) Display cell coordinates and values. 2) Apply user-defined color palette to visualize files. 3) Save maps as pictures and animations as video files (*.avi). 4) Convert ERDAS files into ASCII grids for compatibility with Fragstats. (Source: http://kelab.tamu.edu/)

  7. f

    Geographic Information Systems, spatial analysis, and HIV in Africa: A...

    • plos.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danielle C. Boyda; Samuel B. Holzman; Amanda Berman; M. Kathyrn Grabowski; Larry W. Chang (2023). Geographic Information Systems, spatial analysis, and HIV in Africa: A scoping review [Dataset]. http://doi.org/10.1371/journal.pone.0216388
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Danielle C. Boyda; Samuel B. Holzman; Amanda Berman; M. Kathyrn Grabowski; Larry W. Chang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionGeographic Information Systems (GIS) and spatial analysis are emerging tools for global health, but it is unclear to what extent they have been applied to HIV research in Africa. To help inform researchers and program implementers, this scoping review documents the range and depth of published HIV-related GIS and spatial analysis research studies conducted in Africa.MethodsA systematic literature search for articles related to GIS and spatial analysis was conducted through PubMed, EMBASE, and Web of Science databases. Using pre-specified inclusion criteria, articles were screened and key data were abstracted. Grounded, inductive analysis was conducted to organize studies into meaningful thematic areas.Results and discussionThe search returned 773 unique articles, of which 65 were included in the final review. 15 different countries were represented. Over half of the included studies were published after 2014. Articles were categorized into the following non-mutually exclusive themes: (a) HIV geography, (b) HIV risk factors, and (c) HIV service implementation. Studies demonstrated a broad range of GIS and spatial analysis applications including characterizing geographic distribution of HIV, evaluating risk factors for HIV, and assessing and improving access to HIV care services.ConclusionsGIS and spatial analysis have been widely applied to HIV-related research in Africa. The current literature reveals a diversity of themes and methodologies and a relatively young, but rapidly growing, evidence base.

  8. Regional Crime Analysis Geographic Information System (RCAGIS)

    • icpsr.umich.edu
    Updated May 29, 2002
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Justice. Criminal Division Geographic Information Systems Staff. Baltimore County Police Department (2002). Regional Crime Analysis Geographic Information System (RCAGIS) [Dataset]. http://doi.org/10.3886/ICPSR03372.v1
    Explore at:
    Dataset updated
    May 29, 2002
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Justice. Criminal Division Geographic Information Systems Staff. Baltimore County Police Department
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/3372/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3372/terms

    Description

    The Regional Crime Analysis GIS (RCAGIS) is an Environmental Systems Research Institute (ESRI) MapObjects-based system that was developed by the United States Department of Justice Criminal Division Geographic Information Systems (GIS) Staff, in conjunction with the Baltimore County Police Department and the Regional Crime Analysis System (RCAS) group, to facilitate the analysis of crime on a regional basis. The RCAGIS system was designed specifically to assist in the analysis of crime incident data across jurisdictional boundaries. Features of the system include: (1) three modes, each designed for a specific level of analysis (simple queries, crime analysis, or reports), (2) wizard-driven (guided) incident database queries, (3) graphical tools for the creation, saving, and printing of map layout files, (4) an interface with CrimeStat spatial statistics software developed by Ned Levine and Associates for advanced analysis tools such as hot spot surfaces and ellipses, (5) tools for graphically viewing and analyzing historical crime trends in specific areas, and (6) linkage tools for drawing connections between vehicle theft and recovery locations, incident locations and suspects' homes, and between attributes in any two loaded shapefiles. RCAGIS also supports digital imagery, such as orthophotos and other raster data sources, and geographic source data in multiple projections. RCAGIS can be configured to support multiple incident database backends and varying database schemas using a field mapping utility.

  9. Epidemiological geography at work. An exploratory review about the overall...

    • zenodo.org
    • data.niaid.nih.gov
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrea Marco Raffaele Pranzo; Andrea Marco Raffaele Pranzo (2024). Epidemiological geography at work. An exploratory review about the overall findings of spatial analysis applied to the study of CoViD-19 propagation along the first pandemic year (DATASET) [Dataset]. http://doi.org/10.5281/zenodo.4685964
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrea Marco Raffaele Pranzo; Andrea Marco Raffaele Pranzo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Literature review dataset

    This table lists the surveyed papers concerning the application of spatial analysis, GIS (Geographic Information Systems) as well as general geographic approaches and geostatistics, to the assessment of CoViD-19 dynamics. The period of survey is from January 1st, 2020 to December 15th, 2020. The first column lists the reference. The second lists the date of publication (preferably, the date of online publication). The third column lists the Country or the Countries and/or the subnational entities investigated. The fourth column lists the epidemiological data utilized in each paper. The fifth column lists other types of data utilized for the analysis. The sixth column lists the more traditionally statistically-based methods, if utilized. The seventh column lists the geo-statistical, GIS or geographic methods, if utilized. The eight column sums up the findings of each paper. The papers are also classified within seven thematic categories. The full references are available at the end of the table in alphabetical order.

    This table was the basis for the realization of a comprehensive geographic literature review. It aims to be a useful tool to ease the "due-diligence" activity of all the researchers interested in the spatial analysis of the pandemic.

    The reference to cite the related paper is the following:

    Pranzo, A.M.R., Dai Prà, E. & Besana, A. Epidemiological geography at work: An exploratory review about the overall findings of spatial analysis applied to the study of CoViD-19 propagation along the first pandemic year. GeoJournal (2022). https://doi.org/10.1007/s10708-022-10601-y

    To read the manuscript please follow this link: https://doi.org/10.1007/s10708-022-10601-y

  10. n

    Data from: A new digital method of data collection for spatial point pattern...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    zip
    Updated Jul 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chao Jiang; Xinting Wang (2021). A new digital method of data collection for spatial point pattern analysis in grassland communities [Dataset]. http://doi.org/10.5061/dryad.brv15dv70
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 6, 2021
    Dataset provided by
    Chinese Academy of Agricultural Sciences
    Inner Mongolia University of Technology
    Authors
    Chao Jiang; Xinting Wang
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    A major objective of plant ecology research is to determine the underlying processes responsible for the observed spatial distribution patterns of plant species. Plants can be approximated as points in space for this purpose, and thus, spatial point pattern analysis has become increasingly popular in ecological research. The basic piece of data for point pattern analysis is a point location of an ecological object in some study region. Therefore, point pattern analysis can only be performed if data can be collected. However, due to the lack of a convenient sampling method, a few previous studies have used point pattern analysis to examine the spatial patterns of grassland species. This is unfortunate because being able to explore point patterns in grassland systems has widespread implications for population dynamics, community-level patterns and ecological processes. In this study, we develop a new method to measure individual coordinates of species in grassland communities. This method records plant growing positions via digital picture samples that have been sub-blocked within a geographical information system (GIS). Here, we tested out the new method by measuring the individual coordinates of Stipa grandis in grazed and ungrazed S. grandis communities in a temperate steppe ecosystem in China. Furthermore, we analyzed the pattern of S. grandis by using the pair correlation function g(r) with both a homogeneous Poisson process and a heterogeneous Poisson process. Our results showed that individuals of S. grandis were overdispersed according to the homogeneous Poisson process at 0-0.16 m in the ungrazed community, while they were clustered at 0.19 m according to the homogeneous and heterogeneous Poisson processes in the grazed community. These results suggest that competitive interactions dominated the ungrazed community, while facilitative interactions dominated the grazed community. In sum, we successfully executed a new sampling method, using digital photography and a Geographical Information System, to collect experimental data on the spatial point patterns for the populations in this grassland community.

    Methods 1. Data collection using digital photographs and GIS

    A flat 5 m x 5 m sampling block was chosen in a study grassland community and divided with bamboo chopsticks into 100 sub-blocks of 50 cm x 50 cm (Fig. 1). A digital camera was then mounted to a telescoping stake and positioned in the center of each sub-block to photograph vegetation within a 0.25 m2 area. Pictures were taken 1.75 m above the ground at an approximate downward angle of 90° (Fig. 2). Automatic camera settings were used for focus, lighting and shutter speed. After photographing the plot as a whole, photographs were taken of each individual plant in each sub-block. In order to identify each individual plant from the digital images, each plant was uniquely marked before the pictures were taken (Fig. 2 B).

    Digital images were imported into a computer as JPEG files, and the position of each plant in the pictures was determined using GIS. This involved four steps: 1) A reference frame (Fig. 3) was established using R2V software to designate control points, or the four vertexes of each sub-block (Appendix S1), so that all plants in each sub-block were within the same reference frame. The parallax and optical distortion in the raster images was then geometrically corrected based on these selected control points; 2) Maps, or layers in GIS terminology, were set up for each species as PROJECT files (Appendix S2), and all individuals in each sub-block were digitized using R2V software (Appendix S3). For accuracy, the digitization of plant individual locations was performed manually; 3) Each plant species layer was exported from a PROJECT file to a SHAPE file in R2V software (Appendix S4); 4) Finally each species layer was opened in Arc GIS software in the SHAPE file format, and attribute data from each species layer was exported into Arc GIS to obtain the precise coordinates for each species. This last phase involved four steps of its own, from adding the data (Appendix S5), to opening the attribute table (Appendix S6), to adding new x and y coordinate fields (Appendix S7) and to obtaining the x and y coordinates and filling in the new fields (Appendix S8).

    1. Data reliability assessment

    To determine the accuracy of our new method, we measured the individual locations of Leymus chinensis, a perennial rhizome grass, in representative community blocks 5 m x 5 m in size in typical steppe habitat in the Inner Mongolia Autonomous Region of China in July 2010 (Fig. 4 A). As our standard for comparison, we used a ruler to measure the individual coordinates of L. chinensis. We tested for significant differences between (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler (see section 3.2 Data Analysis). If (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler, did not differ significantly, then we could conclude that our new method of measuring the coordinates of L. chinensis was reliable.

    We compared the results using a t-test (Table 1). We found no significant differences in either (1) the coordinates of L. chinensis or (2) the pair correlation function g of L. chinensis. Further, we compared the pattern characteristics of L. chinensis when measured by our new method against the ruler measurements using a null model. We found that the two pattern characteristics of L. chinensis did not differ significantly based on the homogenous Poisson process or complete spatial randomness (Fig. 4 B). Thus, we concluded that the data obtained using our new method was reliable enough to perform point pattern analysis with a null model in grassland communities.

  11. GIS Data Management Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). GIS Data Management Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-gis-data-management-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Data Management Market Outlook



    The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.



    One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.



    Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.



    The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.



    Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.



    Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.



    Component Analysis



    The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio

  12. G

    GIS Mapping Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). GIS Mapping Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/gis-mapping-tools-533095
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 10% from 2025 to 2033, reaching approximately $39 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of cloud-based GIS solutions offers enhanced accessibility, scalability, and cost-effectiveness, particularly appealing to smaller organizations. Secondly, the burgeoning need for precise spatial data analysis in various applications, including urban planning, geological exploration, and water resource management, significantly contributes to market growth. Thirdly, advancements in technologies such as AI and machine learning are integrating into GIS tools, leading to more sophisticated analytical capabilities and improved decision-making. Finally, the increasing availability of high-resolution satellite imagery and other geospatial data further fuels market expansion. However, market growth is not without challenges. High initial investment costs associated with implementing and maintaining sophisticated GIS systems can pose a barrier to entry for smaller businesses. Furthermore, the complexity of GIS software and the need for specialized skills to operate and interpret data effectively can limit widespread adoption. Despite these restraints, the market’s overall trajectory remains positive, with the cloud-based segment projected to maintain a dominant market share due to its inherent advantages. Growth will be geographically diverse, with North America and Europe continuing to be significant markets, while Asia-Pacific is expected to experience the fastest growth due to rapid urbanization and infrastructure development. The continued development of user-friendly interfaces and increased integration with other business intelligence tools will further accelerate market expansion in the coming years.

  13. G

    Geospatial Imagery Analytics Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Dec 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2024). Geospatial Imagery Analytics Market Report [Dataset]. https://www.marketresearchforecast.com/reports/geospatial-imagery-analytics-market-1816
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Dec 24, 2024
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geospatial Imagery Analytics Marketsize was valued at USD 11.88 USD Billion in 2023 and is projected to reach USD 83.39 USD Billion by 2032, exhibiting a CAGR of 32.1 % during the forecast period.Geospatial analytics gathers, manipulates, and displays geographic information system (GIS) data and imagery including GPS and satellite photographs. Geospatial data analytics rely on geographic coordinates and specific identifiers such as street address and zip code. geospatial visualization enables businesses to better understand complex information and make informed decisions. They can quickly see patterns and trends and assess the impact of different variables by visualizing data in a spatial context. The field encompasses several techniques and algorithms, such as spatial interpolation, spatial regression, spatial clustering, and spatial autocorrelation analysis, which help extract insights from various geospatial data sources. The growing adoption of location-based services in various industries, including agriculture, defense, and urban planning, is driving the demand for geospatial imagery analytics. Recent developments include: August 2023: onX, a digital navigation company, partnered with Planet Labs PBC, a satellite imagery provider, to introduce a new feature called ‘Recent Imagery’. This feature offers onX app users updated satellite imagery maps every two weeks, enhancing the user experience across onX Hunt, onX Offroad, and onX Backcountry apps. This frequent data update helps outdoor enthusiasts access real-time information for safer and more informed outdoor activities., August 2023: Quant Data & Analytics, a provider of data products and enterprise solutions for real estate and retail, partnered with Satellogic Inc. to utilize Satellogic’s high-resolution satellite imagery to enhance property technology in Saudi Arabia and the Gulf region., April 2023: Astraea, a spatiotemporal data and analytics platform, introduced a new ordering service that grants customers scalable access to top-tier commercial satellite imagery from providers such as Planet Labs PBC and others., May 2022: Satellogic Inc. established a partnership with UP42. This geospatial developer platform enables direct access to Satellogic’s satellite tasking capabilities, including high-resolution multispectral and wide-area hyperspectral imagery, through the UP42 API-based platform., April 2022: TomTom International BV, a geolocation tech company, broadened its partnership with Maxar Technologies, a space solution provider. This expansion involves integrating high-resolution global satellite imagery from Maxar’s Vivid imagery base maps into TomTom’s product lineup, enhancing their visualization solutions for customers.. Key drivers for this market are: Growing Demand for Location-based Insights across Diverse Industries to Fuel Market Growth. Potential restraints include: Complexity and Cost Associated with Data Acquisition and Processing May Hamper Market Growth. Notable trends are: Growing Implementation of Touch-based and Voice-based Infotainment Systems to Increase Adoption of Intelligent Cars.

  14. G

    Geographic Information System (GIS) Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Geographic Information System (GIS) Report [Dataset]. https://www.archivemarketresearch.com/reports/geographic-information-system-gis-49382
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 19, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Geographic Information System (GIS) market is projected to reach a valuation of $10,270 million by the end of 2033, expanding at a CAGR of 5.6% during the forecast period of 2025-2033. The market growth is primarily driven by increasing adoption of GIS technology in various industries including oil and gas, construction, mining, transport, public utilities, and others. Moreover, the rising demand for accurate and timely geospatial data for decision-making and planning purposes is further contributing to the market growth. Key trends in the GIS market include the adoption of cloud-based GIS solutions, the integration of artificial intelligence (AI) and machine learning (ML) for advanced data analysis, and the development of real-time GIS applications. The market is highly competitive, with established players such as Hexagon, Topcon, Trimble, and Autodesk holding significant market share. However, smaller companies and startups are also entering the market with innovative GIS solutions, creating opportunities for market disruption and growth. Overall, the GIS market is expected to witness significant growth in the coming years, driven by advancements in technology and increasing demand for geospatial information.

  15. G

    GIS Mapping Tools Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Mapping Tools Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-mapping-tools-55097
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $28 billion by 2033. This growth is fueled by several key factors. Firstly, the burgeoning adoption of cloud-based solutions offers scalability, cost-effectiveness, and enhanced accessibility to a wider user base, including small and medium-sized enterprises (SMEs). Secondly, the escalating need for precise spatial data analysis in various applications, such as urban planning, geological exploration, and water resource management, is significantly boosting market demand. The increasing integration of GIS with other technologies like AI and IoT further amplifies its capabilities, leading to more sophisticated applications and increased market penetration. Finally, government initiatives promoting digitalization and smart city development across the globe are indirectly fueling this market expansion. However, certain restraints limit market growth. The high initial investment cost for advanced GIS software and the requirement for skilled professionals to operate these systems can be a barrier, especially for smaller organizations. Additionally, data security and privacy concerns related to the handling of sensitive geographical information pose challenges to wider adoption. Market segmentation reveals strong growth in the cloud-based GIS segment, driven by its inherent advantages, while applications in urban planning and geological exploration lead the application-based segmentation. North America and Europe currently hold significant market shares, with strong growth potential in the Asia-Pacific region due to increasing infrastructure development and government investments. Leading companies like Esri, Hexagon, and Autodesk are shaping the market landscape through continuous innovation and competitive pricing strategies, while the emergence of open-source options like QGIS and GRASS GIS provides alternative, cost-effective solutions.

  16. Geographic Data Science with R

    • figshare.com
    zip
    Updated Mar 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Wimberly (2023). Geographic Data Science with R [Dataset]. http://doi.org/10.6084/m9.figshare.21301212.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 24, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Michael Wimberly
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data files for the examples in the book Geographic Data Science in R: Visualizing and Analyzing Environmental Change by Michael C. Wimberly.

  17. S

    Spatial Information Service Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Spatial Information Service Report [Dataset]. https://www.marketreportanalytics.com/reports/spatial-information-service-72363
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global spatial information service market, valued at $3,360 million in 2025, is projected to experience robust growth, driven by increasing demand for location-based services across diverse sectors. The Compound Annual Growth Rate (CAGR) of 12.8% from 2025 to 2033 indicates significant expansion potential. Key drivers include the rising adoption of cloud-based solutions offering scalability and cost-effectiveness, the proliferation of smart city initiatives relying heavily on spatial data for efficient urban planning and management, and the increasing use of geospatial analytics for informed decision-making in areas such as precision agriculture, logistics, and disaster response. Market segmentation reveals strong growth in both city and rural applications, with cloud-based solutions gaining wider acceptance over on-premise deployments. Leading companies like Esri, Hexagon AB, and Trimble are shaping the market landscape through continuous innovation and strategic partnerships, while emerging players like Planet Labs are contributing to increased data availability and analytical capabilities. Regional analysis suggests North America and Europe will maintain a significant market share, but Asia-Pacific is poised for substantial growth fueled by rapid urbanization and technological advancements. The market’s continued expansion will be influenced by factors such as advancements in sensor technologies, improving data processing capabilities, and increasing government investments in geospatial infrastructure. The restraints on market growth are primarily related to data security and privacy concerns surrounding the use of sensitive location data. High initial investment costs for implementing complex spatial information systems, especially for smaller organizations, also present a barrier. Furthermore, the interoperability challenges between different spatial data formats and systems require addressing to ensure seamless data sharing and integration. However, these challenges are being actively addressed through the development of industry standards and robust security protocols. Ongoing advancements in artificial intelligence and machine learning are expected to further enhance the analytical capabilities of spatial information services, leading to more sophisticated applications and expanded market opportunities. The forecast period of 2025-2033 suggests a substantial market expansion, exceeding $10 billion, driven by the continuous integration of spatial data into various applications and the increasing need for precise location intelligence.

  18. d

    Global Point of Interest (POI) Data | 230M+ Locations, 5000 Categories,...

    • datarade.ai
    .json
    Updated Sep 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum (2024). Global Point of Interest (POI) Data | 230M+ Locations, 5000 Categories, Geographic & Location Intelligence, Regular Updates [Dataset]. https://datarade.ai/data-products/global-point-of-interest-poi-data-230m-locations-5000-c-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Sep 7, 2024
    Dataset authored and provided by
    Xverum
    Area covered
    French Polynesia, Andorra, Mauritania, Northern Mariana Islands, Costa Rica, Kyrgyzstan, Vietnam, Antarctica, Guatemala, Bahamas
    Description

    Xverum’s Point of Interest (POI) Data is a comprehensive dataset containing 230M+ verified locations across 5000 business categories. Our dataset delivers structured geographic data, business attributes, location intelligence, and mapping insights, making it an essential tool for GIS applications, market research, urban planning, and competitive analysis.

    With regular updates and continuous POI discovery, Xverum ensures accurate, up-to-date information on businesses, landmarks, retail stores, and more. Delivered in bulk to S3 Bucket and cloud storage, our dataset integrates seamlessly into mapping, geographic information systems, and analytics platforms.

    🔥 Key Features:

    Extensive POI Coverage: ✅ 230M+ Points of Interest worldwide, covering 5000 business categories. ✅ Includes retail stores, restaurants, corporate offices, landmarks, and service providers.

    Geographic & Location Intelligence Data: ✅ Latitude & longitude coordinates for mapping and navigation applications. ✅ Geographic classification, including country, state, city, and postal code. ✅ Business status tracking – Open, temporarily closed, or permanently closed.

    Continuous Discovery & Regular Updates: ✅ New POIs continuously added through discovery processes. ✅ Regular updates ensure data accuracy, reflecting new openings and closures.

    Rich Business Insights: ✅ Detailed business attributes, including company name, category, and subcategories. ✅ Contact details, including phone number and website (if available). ✅ Consumer review insights, including rating distribution and total number of reviews (additional feature). ✅ Operating hours where available.

    Ideal for Mapping & Location Analytics: ✅ Supports geospatial analysis & GIS applications. ✅ Enhances mapping & navigation solutions with structured POI data. ✅ Provides location intelligence for site selection & business expansion strategies.

    Bulk Data Delivery (NO API): ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured format (.json) for seamless integration.

    🏆Primary Use Cases:

    Mapping & Geographic Analysis: 🔹 Power GIS platforms & navigation systems with precise POI data. 🔹 Enhance digital maps with accurate business locations & categories.

    Retail Expansion & Market Research: 🔹 Identify key business locations & competitors for market analysis. 🔹 Assess brand presence across different industries & geographies.

    Business Intelligence & Competitive Analysis: 🔹 Benchmark competitor locations & regional business density. 🔹 Analyze market trends through POI growth & closure tracking.

    Smart City & Urban Planning: 🔹 Support public infrastructure projects with accurate POI data. 🔹 Improve accessibility & zoning decisions for government & businesses.

    💡 Why Choose Xverum’s POI Data?

    • 230M+ Verified POI Records – One of the largest & most detailed location datasets available.
    • Global Coverage – POI data from 249+ countries, covering all major business sectors.
    • Regular Updates – Ensuring accurate tracking of business openings & closures.
    • Comprehensive Geographic & Business Data – Coordinates, addresses, categories, and more.
    • Bulk Dataset Delivery – S3 Bucket & cloud storage delivery for full dataset access.
    • 100% Compliant – Ethically sourced, privacy-compliant data.

    Access Xverum’s 230M+ POI dataset for mapping, geographic analysis, and location intelligence. Request a free sample or contact us to customize your dataset today!

  19. S

    Spatial Analysis Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Spatial Analysis Software Report [Dataset]. https://www.datainsightsmarket.com/reports/spatial-analysis-software-529883
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 11, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Spatial Analysis Software market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions, the expanding use of drones and other data acquisition technologies for precise geographic data collection, and the rising demand for advanced analytics across diverse sectors. The market's expansion is fueled by the need for efficient geospatial data processing and interpretation in applications such as urban planning, infrastructure development, environmental monitoring, and precision agriculture. Key trends include the integration of Artificial Intelligence (AI) and Machine Learning (ML) for automating analysis and improving accuracy, the proliferation of readily available satellite imagery and sensor data, and the growing adoption of 3D modeling and visualization techniques. While data security concerns and the high initial investment costs for advanced software solutions pose some restraints, the overall market outlook remains positive, with a projected compound annual growth rate (CAGR) exceeding 10% (a reasonable estimate based on the rapid technological advancements and market penetration observed in related sectors). This growth is expected to be particularly strong in the North American and Asia-Pacific regions, driven by substantial government investments in infrastructure projects and burgeoning private sector adoption. The segmentation by application (architecture, engineering, and other sectors) reflects the versatility of spatial analysis software, enabling its use across various industries. Similarly, the choice between cloud-based and locally deployed solutions caters to specific organizational needs and technical capabilities. The competitive landscape is characterized by both established players and emerging technology companies, showcasing the dynamic nature of the market. Major players like Autodesk, Bentley Systems, and Trimble are leveraging their existing portfolios to integrate advanced spatial analysis capabilities, while smaller companies are focusing on niche applications and innovative analytical techniques. The ongoing advancements in both hardware and software, coupled with increasing data availability and affordability, are set to further fuel the market's growth in the coming years. The historical period (2019-2024) likely witnessed moderate growth as the market matured, laying the foundation for the accelerated expansion expected during the forecast period (2025-2033). Continued innovation and industry convergence will be key drivers shaping the future trajectory of the Spatial Analysis Software market.

  20. m

    Data Normalization Method for Geo-Spatial Analysis on Ports

    • data.mendeley.com
    Updated Jun 11, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nazmus Sakib (2020). Data Normalization Method for Geo-Spatial Analysis on Ports [Dataset]. http://doi.org/10.17632/skn24jntn3.2
    Explore at:
    Dataset updated
    Jun 11, 2020
    Authors
    Nazmus Sakib
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Based on open access data, 79 Mediterranean passenger ports are analyzed to compare their infrastructure, hinterland accessibility and offered multi-modality categories. Comparative Geo-spatial analysis is also carried out by using the data normalization method in order to visualize the ports' performance on maps. These data driven comprehensive analytical results can bring added value to sustainable development policy and planning initiatives in the Mediterranean Region. The analyzed elements can be also contributed to the development of passenger port performance indicators. The empirical research methods used for the Mediterranean passenger ports can be replicated for transport nodes of any region around the world to determine their relative performance on selected criteria for improvement and planning.

    The Mediterranean passenger ports were initially categorized into cruise and ferry ports. The cruise ports were identified from the member list of the Association for the Mediterranean Cruise Ports (MedCruise), representing more than 80% of the cruise tourism activities per country. The identified cruise ports were mapped by selecting the corresponding geo-referenced ports from the map layer developed by the European Marine Observation and Data Network (EMODnet). The United Nations (UN) Code for Trade and Transport Locations (LOCODE) was identified for each of the cruise ports as the common criteria to carry out the selection. The identified cruise ports not listed by the EMODnet were added to the geo-database by using under license the editing function of the ArcMap (version 10.1) geographic information system software. The ferry ports were identified from the open access industry initiative data provided by the Ferrylines, and were mapped in a similar way as the cruise ports (Figure 1).

    Based on the available data from the identified cruise ports, a database (see Table A1–A3) was created for a Mediterranean scale analysis. The ferry ports were excluded due to the unavailability of relevant information on selected criteria (Table 2). However, the cruise ports serving as ferry passenger ports were identified in order to maximize the scope of the analysis. Port infrastructure and hinterland accessibility data were collected from the statistical reports published by the MedCruise, which are a compilation of data provided by its individual member port authorities and the cruise terminal operators. Other supplementary sources were the European Sea Ports Organization (ESPO) and the Global Ports Holding, a cruise terminal operator with an established presence in the Mediterranean. Additionally, open access data sources (e.g. the Google Maps and Trip Advisor) were consulted in order to identify the multi-modal transports and bridge the data gaps on hinterland accessibility by measuring the approximate distances.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Prince Ogbonna (2019). Big Data Visualization: A Game changer in GIS, Geo-analysis and Geo-demographics [Dataset]. http://doi.org/10.7910/DVN/Y5EUPG

Big Data Visualization: A Game changer in GIS, Geo-analysis and Geo-demographics

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Feb 27, 2019
Dataset provided by
Harvard Dataverse
Authors
Prince Ogbonna
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Today, everybody around the world is living and working under the coverage of Geographic Information system (GIS) application and services such as the Google Earth, GPS and much more. Big Data visualization tools are increasingly creating a wonder in the world of GIS. GIS has diverse application, from geo-positioning services to 3D demonstrations and virtual reality. Big Data and its tools of visualization has boosted the field of GIS. This article seeks to explore how Big data visualization has expanded the field of Geo- spatial analysis with the intention to present practicable GIS-based tools required to stay ahead in this field.

Search
Clear search
Close search
Google apps
Main menu