87 datasets found
  1. d

    Digital data for the Salinas Valley Geological Framework, California

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Digital data for the Salinas Valley Geological Framework, California [Dataset]. https://catalog.data.gov/dataset/digital-data-for-the-salinas-valley-geological-framework-california
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Salinas Valley, California
    Description

    This digital dataset was created as part of a U.S. Geological Survey study, done in cooperation with the Monterey County Water Resource Agency, to conduct a hydrologic resource assessment and develop an integrated numerical hydrologic model of the hydrologic system of Salinas Valley, CA. As part of this larger study, the USGS developed this digital dataset of geologic data and three-dimensional hydrogeologic framework models, referred to here as the Salinas Valley Geological Framework (SVGF), that define the elevation, thickness, extent, and lithology-based texture variations of nine hydrogeologic units in Salinas Valley, CA. The digital dataset includes a geospatial database that contains two main elements as GIS feature datasets: (1) input data to the 3D framework and textural models, within a feature dataset called “ModelInput”; and (2) interpolated elevation, thicknesses, and textural variability of the hydrogeologic units stored as arrays of polygonal cells, within a feature dataset called “ModelGrids”. The model input data in this data release include stratigraphic and lithologic information from water, monitoring, and oil and gas wells, as well as data from selected published cross sections, point data derived from geologic maps and geophysical data, and data sampled from parts of previous framework models. Input surface and subsurface data have been reduced to points that define the elevation of the top of each hydrogeologic units at x,y locations; these point data, stored in a GIS feature class named “ModelInputData”, serve as digital input to the framework models. The location of wells used a sources of subsurface stratigraphic and lithologic information are stored within the GIS feature class “ModelInputData”, but are also provided as separate point feature classes in the geospatial database. Faults that offset hydrogeologic units are provided as a separate line feature class. Borehole data are also released as a set of tables, each of which may be joined or related to well location through a unique well identifier present in each table. Tables are in Excel and ascii comma-separated value (CSV) format and include separate but related tables for well location, stratigraphic information of the depths to top and base of hydrogeologic units intercepted downhole, downhole lithologic information reported at 10-foot intervals, and information on how lithologic descriptors were classed as sediment texture. Two types of geologic frameworks were constructed and released within a GIS feature dataset called “ModelGrids”: a hydrostratigraphic framework where the elevation, thickness, and spatial extent of the nine hydrogeologic units were defined based on interpolation of the input data, and (2) a textural model for each hydrogeologic unit based on interpolation of classed downhole lithologic data. Each framework is stored as an array of polygonal cells: essentially a “flattened”, two-dimensional representation of a digital 3D geologic framework. The elevation and thickness of the hydrogeologic units are contained within a single polygon feature class SVGF_3DHFM, which contains a mesh of polygons that represent model cells that have multiple attributes including XY location, elevation and thickness of each hydrogeologic unit. Textural information for each hydrogeologic unit are stored in a second array of polygonal cells called SVGF_TextureModel. The spatial data are accompanied by non-spatial tables that describe the sources of geologic information, a glossary of terms, a description of model units that describes the nine hydrogeologic units modeled in this study. A data dictionary defines the structure of the dataset, defines all fields in all spatial data attributer tables and all columns in all nonspatial tables, and duplicates the Entity and Attribute information contained in the metadata file. Spatial data are also presented as shapefiles. Downhole data from boreholes are released as a set of tables related by a unique well identifier, tables are in Excel and ascii comma-separated value (CSV) format.

  2. COVID-19 Case Surveillance Public Use Data

    • data.cdc.gov
    • opendatalab.com
    • +5more
    csv, xlsx, xml
    Updated Jul 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Data, Analytics and Visualization Task Force (2024). COVID-19 Case Surveillance Public Use Data [Dataset]. https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Data, Analytics and Visualization Task Force
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.

    Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.

    CDC has three COVID-19 case surveillance datasets:

    The following apply to all three datasets:

    Overview

    The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.

    For more information: NNDSS Supports the COVID-19 Response | CDC.

    The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.

    COVID-19 Case Reports

    COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.

    All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.

    Data are Considered Provisional

    • The COVID-19 case surveillance data are dynamic; case reports can be modified at any time by the jurisdictions sharing COVID-19 data with CDC. CDC may update prior cases shared with CDC based on any updated information from jurisdictions. For instance, as new information is gathered about previously reported cases, health departments provide updated data to CDC. As more information and data become available, analyses might find changes in surveillance data and trends during a previously reported time window. Data may also be shared late with CDC due to the volume of COVID-19 cases.
    • Annual finalized data: To create the final NNDSS data used in the annual tables, CDC works carefully with the reporting jurisdictions to reconcile the data received during the year until each state or territorial epidemiologist confirms that the data from their area are correct.
    • Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.

    Data Limitations

    To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.

    Data Quality Assurance Procedures

    CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:

    • Questions that have been left unanswered (blank) on the case report form are reclassified to a Missing value, if applicable to the question. For example, in the question “Was the individual hospitalized?” where the possible answer choices include “Yes,” “No,” or “Unknown,” the blank value is recoded to Missing because the case report form did not include a response to the question.
    • Logic checks are performed for date data. If an illogical date has been provided, CDC reviews the data with the reporting jurisdiction. For example, if a symptom onset date in the future is reported to CDC, this value is set to null until the reporting jurisdiction updates the date appropriately.
    • Additional data quality processing to recode free text data is ongoing. Data on symptoms, race and ethnicity, and healthcare worker status have been prioritized.

    Data Suppression

    To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.

    For questions, please contact Ask SRRG (eocevent394@cdc.gov).

    Additional COVID-19 Data

    COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These

  3. Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • zenodo.org
    • data.niaid.nih.gov
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. http://doi.org/10.5281/zenodo.6432940
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  4. H

    Replication data for: The Electoral Geography of Weimar Germany: Exploratory...

    • dataverse.harvard.edu
    Updated Feb 18, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John O'Loughlin (2010). Replication data for: The Electoral Geography of Weimar Germany: Exploratory Spatial Data Analyses (ESDA) of Protestant Support for the Nazi Party [Dataset]. http://doi.org/10.7910/DVN/2JHJFF
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 18, 2010
    Dataset provided by
    Harvard Dataverse
    Authors
    John O'Loughlin
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Germany, Weimar
    Description

    For more than half a century, social scientists have probed the aggregate correlates of the vote for the Nazi party (NSDAP) in Weimar Germany. Since individual-level data are not available for this time period, aggregate census data for small geographic units have been heavily used to infer the support of the Nazi party by various compositional groups. Many of these studies hint at a complex geographic patterning. Recent developments in geographic methodologies, based on Geographic Information Science (GIS) and spatial statistics, allow a deeper probing of these regional and local contextual elements. In this paper, a suite of geographic methods—global and local measures of spatial autocorrelation, variography, distance-based correlation, directional spatial correlograms, vector mapping, and barrier definition (wombling)—are used in an exploratory spatial data analysis of the NSDAP vote. The support for the NSDAP by Protestant voters (estimated using King's ecological inference procedure) is the key correlate examined. The results from the various methods are consistent in showing a voting surface of great complexity, with many local clusters that differ from the regional trend. The Weimar German electoral map does not show much evidence of a nationalized electorate, but is better characterized as a mosaic of support for "milieu parties," mixed across class and other social lines, and defined by a strong attachment to local traditions, beliefs, and practices.

  5. 2023 Census internal migration by TALB

    • datafinder.stats.govt.nz
    csv, dbf (dbase iii) +4
    Updated Mar 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2023). 2023 Census internal migration by TALB [Dataset]. https://datafinder.stats.govt.nz/table/122425-2023-census-internal-migration-by-talb/
    Explore at:
    csv, geodatabase, mapinfo tab, mapinfo mif, geopackage / sqlite, dbf (dbase iii)Available download formats
    Dataset updated
    Mar 7, 2023
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Description

    Dataset contains counts for territorial authority local board area (TALB) of usual residence by TALB of usual residence address one year ago and five years ago, and by life cycle age group, for the census usually resident population count, 2023 Census.

    This dataset compares usual residence at the 2023 Census with usual residence one and five years earlier to show population mobility and internal migration patterns of people within New Zealand.

    ‘Usual residence address’ is the address of the dwelling where a person considers that they usually live.

    ‘Usual residence one year ago address’ identifies an individual’s usual residence on 7 March 2022, which may be different to their current usual residence on census night 2023 (7 March 2023).

    ‘Usual residence five years ago address’ identifies an individual’s usual residence on 6 March 2018, which may be different to their current usual residence on census night 2023 (7 March 2023).

    Note: This dataset only includes usual residence address information for individuals whose usual residence address one year ago and five years ago is available at TALB.

    Life cycle age groups are categorised as:

    • under 15 years
    • 15–29 years
    • 30–64 years
    • 65 years and over.

    This dataset can be used in conjunction with the following spatial files by joining on the TALB code values:

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. 

    Population counts

    Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts. 

    Rows excluded from the dataset

    Rows show TALB of usual residence by TALB of usual residence one year ago and five years ago, by life cycle age group. Cells with a number less than six have been confidentialised. Responses to categories unable to be mapped, such as response unidentifiable, not stated, and Auckland (not further defined), have also been excluded from this dataset.

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Age quality rating

    Age is rated as very high quality.

    Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Census usually resident population quality rating

    The census usually resident population count is rated as very high quality.

    Census usually resident population count – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Usual residence address quality rating

    Usual residence address is rated as high quality.

    Usual residence address – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Usual residence one year ago quality rating

    Usual residence one year ago area is rated as high quality.

    Usual residence one year ago – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Usual residence five years ago quality rating

    Usual residence five years ago area is rated as high quality.

    Usual residence five years ago – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Symbol

    -999 Confidential

    Inconsistencies in definitions

    Please note that there may be differences in definitions between census classifications and those used for other data collections.

  6. d

    Taiwan Region Place Name Data_ With Landmark Meaning Public Facilities

    • data.gov.tw
    api, csv
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Land Administration, MOI (2025). Taiwan Region Place Name Data_ With Landmark Meaning Public Facilities [Dataset]. https://data.gov.tw/en/datasets/40454
    Explore at:
    csv, apiAvailable download formats
    Dataset updated
    Jul 22, 2025
    Dataset authored and provided by
    Department of Land Administration, MOI
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Area covered
    Taiwan
    Description

    Taiwan's place names data includes landmarks and public facilities information.

  7. i07 Water Shortage Vulnerability Sections

    • data.cnra.ca.gov
    • data.ca.gov
    • +8more
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). i07 Water Shortage Vulnerability Sections [Dataset]. https://data.cnra.ca.gov/dataset/i07-water-shortage-vulnerability-sections
    Explore at:
    zip, geojson, arcgis geoservices rest api, csv, kml, htmlAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset represents a water shortage vulnerability analysis performed by DWR using modified PLSS sections pulled from the Well Completion Report PLSS Section Summaries. The attribute table includes water shortage vulnerability indicators and scores from an analysis done by CA Department of Water Resources, joined to modified PLSS sections. Several relevant summary statistics from the Well Completion Reports are included in this table as well. This data is from the 2024 analysis.

    Water Code Division 6 Part 2.55 Section 8 Chapter 10 (Assembly Bill 1668) effectively requires California Department of Water Resources (DWR), in consultation with other agencies and an advisory group, to identify small water suppliers and “rural communities” that are at risk of drought and water shortage. Following legislation passed in 2021 and signed by Governor Gavin Newsom, the Water Code Division 6, Section 10609.50 through 10609.80 (Senate Bill 552 of 2021) effectively requires the California Department of Water Resources to update the scoring and tool periodically in partnership with the State Water Board and other state agencies. This document describes the indicators, datasets, and methods used to construct this deliverable.  This is a statewide effort to systematically and holistically consider water shortage vulnerability statewide of rural communities, focusing on domestic wells and state small water systems serving between 4 and 14 connections. The indicators and scoring methodology will be revised as better data become available and stake-holders evaluate the performance of the indicators, datasets used, and aggregation and ranking method used to aggregate and rank vulnerability scores. Additionally, the scoring system should be adaptive, meaning that our understanding of what contributes to risk and vulnerability of drought and water shortage may evolve. This understanding may especially be informed by experiences gained while navigating responses to future droughts.”

    A spatial analysis was performed on the 2020 Census Block Groups, modified PLSS sections, and small water system service areas using a variety of input datasets related to drought vulnerability and water shortage risk and vulnerability. These indicator values were subsequently rescaled and summed for a final vulnerability score for the sections and small water system service areas. The 2020 Census Block Groups were joined with ACS data to represent the social vulnerability of communities, which is relevant to drought risk tolerance and resources. These three feature datasets contain the units of analysis (modified PLSS sections, block groups, small water systems service areas) with the model indicators for vulnerability in the attribute table. Model indicators are calculated for each unit of analysis according to the Vulnerability Scoring documents provided by Julia Ekstrom (Division of Regional Assistance).

    All three feature classes are DWR analysis zones that are based off existing GIS datasets. The spatial data for the sections feature class is extracted from the Well Completion Reports PLSS sections to be aligned with the work and analysis that SGMA is doing. These are not true PLSS sections, but a version of the projected section lines in areas where there are gaps in PLSS. The spatial data for the Census block group feature class is downloaded from the Census. ACS (American Communities Survey) data is joined by block group, and statistics calculated by DWR have been added to the attribute table. The spatial data for the small water systems feature class was extracted from the State Water Resources Control Board (SWRCB) SABL dataset, using a definition query to filter for active water systems with 3000 connections or less. None of these datasets are intended to be the authoritative datasets for representing PLSS sections, Census block groups, or water service areas. The spatial data of these feature classes is used as units of analysis for the spatial analysis performed by DWR.

    These datasets are intended to be authoritative datasets of the scoring tools required from DWR according to Senate Bill 552. Please refer to the Drought and Water Shortage Vulnerability Scoring: California's Domestic Wells and State Smalls Systems documentation for more information on indicators and scoring. These estimated indicator scores may sometimes be calculated in several different ways, or may have been calculated from data that has since be updated. Counts of domestic wells may be calculated in different ways. In order to align with DWR SGMO's (State Groundwater Management Office) California Groundwater Live dashboards, domestic wells were calculated using the same query. This includes all domestic wells in the Well Completion Reports dataset that are completed after 12/31/1976, and have a 'RecordType' of 'WellCompletion/New/Production or Monitoring/NA'.

    Please refer to the Well Completion Reports metadata for more information. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.4, dated September 14, 2022. DWR makes no warranties or guarantees — either expressed or implied— as to the completeness, accuracy, or correctness of the data.

    DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to GIS@water.ca.gov.

  8. Meshblock 2024

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Nov 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2023). Meshblock 2024 [Dataset]. https://datafinder.stats.govt.nz/layer/115225-meshblock-2024/
    Explore at:
    dwg, geodatabase, geopackage / sqlite, pdf, shapefile, mapinfo mif, csv, kml, mapinfo tabAvailable download formats
    Dataset updated
    Nov 27, 2023
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    This dataset is the definitive of the annually released meshblock boundaries as at 1 January 2024 as defined by Stats NZ. This version contains 57,539 meshblocks, including 16 with empty or null geometries (non-digitised meshblocks).

    Stats NZ maintains an annual meshblock pattern for collecting and producing statistical data. This allows data to be compared over time.

    A meshblock is the smallest geographic unit for which statistical data is collected and processed by Stats NZ. A meshblock is a defined geographic area, which can vary in size from part of a city block to a large area of rural land. The optimal size for a meshblock is 30–60 dwellings (containing approximately 60–120 residents).

    Each meshblock borders on another to form a network covering all of New Zealand, including coasts and inlets and extending out to the 200-mile economic zone (EEZ) and is digitised to the 12-mile (19.3km) limit. Meshblocks are added together to build up larger geographic areas such as statistical area 1 (SA1), statistical area 2 (SA2), statistical area 3 (SA3), and urban rural (UR). They are also used to define electoral districts, territorial authorities, and regional councils.

    Meshblock boundaries generally follow road centrelines, cadastral property boundaries, or topographical features such as rivers. Expanses of water in the form of lakes and inlets are defined separately from land.

    Meshblock maintenance

    Meshblock boundaries are amended by:

    1. Splitting – subdividing a meshblock into two or more meshblocks.
    2. Nudging – shifting a boundary to a more appropriate position.

    Reasons for meshblock splits and nudges can include:

    · to maintain meshblock criteria rules.

    · to improve the size balance of meshblocks in areas where there has been population growth

    · to maintain alignment to cadastre and other geographic features.

    · Stats NZ requests for boundary changes so that statistical geography boundaries can be moved

    · external requests for boundary changes so that administrative or electoral boundaries can be moved

    · to separate land and water. Mainland, inland water, islands, inlets, and oceanic are defined separately

    Meshblock changes are made throughout the year. A major release is made at 1 January each year with ad hoc releases available to users at other times.

    While meshblock boundaries are continually under review, 'freezes' on changes to the boundaries are applied periodically. Such 'freezes' are imposed at the time of population censuses and during periods of intense electoral activity, for example, prior and during general and local body elections.

    Meshblock numbering

    Meshblocks are not named and have seven-digit codes.

    When meshblocks are split, each new meshblock is given a new code. The original meshblock codes no longer exist within that version and future versions of the meshblock classification. Meshblock codes do not change when a meshblock boundary is nudged.

    Meshblocks that existed prior to 2015 and have not changed are numbered from 0000100 to 3210003. Meshblocks created from 2015 onwards are numbered from 4000000.

    Digitised and non-digitised meshblocks

    The digital geographic boundaries are defined and maintained by Stats NZ.

    Meshblocks cover the land area of New Zealand, the water area to the 12mile limit, the Chatham Islands, Kermadec Islands, sub-Antarctic islands, offshore oil rigs, and Ross Dependency. The following 16 meshblocks are not held in digitised form.

    Meshblock / Location (statistical area 2 name)

    • 0016901 / Oceanic Kermadec Islands
    • 0016902 / Kermadec Islands
    • 1588000 / Oceanic Oil Rig Taranaki
    • 3166401 / Oceanic Campbell Island
    • 3166402 / Campbell Island
    • 3166600 / Oceanic Oil Rig Southland
    • 3166710 / Oceanic Auckland Islands
    • 3166711 / Auckland Islands
    • 3195000 / Ross Dependency
    • 3196001 / New Zealand Economic Zone
    • 3196002 / Oceanic Bounty Islands
    • 3196003 / Bounty Islands
    • 3196004 / Oceanic Snares Islands
    • 3196005 / Snares Island
    • 3196006 / Oceanic Antipodes Islands
    • 3196007 / Antipodes Island

    For more information please refer to the Statistical standard for geographic areas 2023.

    High definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Digital Data

    Digital boundary data became freely available on 1 July 2007.

  9. Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS...

    • verifiedmarketresearch.com
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS And Positioning), Component (Hardware, Software), Application (Planning And Analysis, Asset Management), End-User (Transportation, Defense And Intelligence), & Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/geospatial-solutions-market/
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Geospatial Solutions Market size was valued at USD 282.75 Billion in 2024 and is projected to reach USD 650.14 Billion by 2032, growing at a CAGR of 12.10% during the forecast period 2026-2032.Geospatial Solutions Market: Definition/ OverviewGeospatial solutions are applications and technologies that use spatial data to address geography, location, and Earth's surface problems. They use tools like GIS, remote sensing, GPS, satellite imagery analysis, and spatial modelling. These solutions enable informed decision-making, resource allocation optimization, asset management, environmental monitoring, infrastructure planning, and addressing challenges in sectors like urban planning, agriculture, transportation, disaster management, and natural resource management. They empower users to harness spatial information for better understanding and decision-making in various contexts.Geospatial solutions are technologies and methodologies used to analyze and visualize spatial data, ranging from urban planning to agriculture. They use GIS, remote sensing, and GNSS to gather, process, and interpret data. These solutions help users make informed decisions, solve complex problems, optimize resource allocation, and enhance situational awareness. They are crucial in addressing challenges and unlocking opportunities in today's interconnected world, such as mapping land use patterns, monitoring ecosystem changes, and real-time asset tracking.

  10. n

    Jurisdictional Unit (Public) - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Jurisdictional Unit (Public) - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/jurisdictional-unit-public
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    Jurisdictional Unit, 2022-05-21. For use with WFDSS, IFTDSS, IRWIN, and InFORM.This is a feature service which provides Identify and Copy Feature capabilities. If fast-drawing at coarse zoom levels is a requirement, consider using the tile (map) service layer located at https://nifc.maps.arcgis.com/home/item.html?id=3b2c5daad00742cd9f9b676c09d03d13.OverviewThe Jurisdictional Agencies dataset is developed as a national land management geospatial layer, focused on representing wildland fire jurisdictional responsibility, for interagency wildland fire applications, including WFDSS (Wildland Fire Decision Support System), IFTDSS (Interagency Fuels Treatment Decision Support System), IRWIN (Interagency Reporting of Wildland Fire Information), and InFORM (Interagency Fire Occurrence Reporting Modules). It is intended to provide federal wildland fire jurisdictional boundaries on a national scale. The agency and unit names are an indication of the primary manager name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIdentifier=null,JurisdictionalUnitAgency=null, JurisdictionalUnitKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).These data are used to automatically populate fields on the WFDSS Incident Information page.This data layer implements the NWCG Jurisdictional Unit Polygon Geospatial Data Layer Standard.Relevant NWCG Definitions and StandardsUnit2. A generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Unit, Protecting; LandownerUnit IdentifierThis data standard specifies the standard format and rules for Unit Identifier, a code used within the wildland fire community to uniquely identify a particular government organizational unit.Landowner Kind & CategoryThis data standard provides a two-tier classification (kind and category) of landownership. Attribute Fields JurisdictionalAgencyKind Describes the type of unit Jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, and Other. A value may not be populated for all polygons.JurisdictionalAgencyCategoryDescribes the type of unit Jurisdiction using the NWCG Landowner Category data standard. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State. A value may not be populated for all polygons.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Standard Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available from the Unit ID standard, linked above.LandownerKindThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. There are three valid values: Federal, Private, or Other.LandownerCategoryThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State, Private.DataSourceThe database from which the polygon originated. Be as specific as possible, identify the geodatabase name and feature class in which the polygon originated.SecondaryDataSourceIf the Data Source is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if Data Source is "PAD-US 2.1", then for a USDA Forest Service polygon, the Secondary Data Source would be "USDA FS Automated Lands Program (ALP)". For a BLM polygon in the same dataset, Secondary Source would be "Surface Management Agency (SMA)."SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.MapMethod:Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality. MapMethod will be Mixed Method by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; OtherDateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using 24 hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature. GeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JoinMethodAdditional information on how the polygon was matched information in the NWCG Unit ID database.LocalNameLocalName for the polygon provided from PADUS or other source.LegendJurisdictionalAgencyJurisdictional Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.LegendLandownerAgencyLandowner Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.DataSourceYearYear that the source data for the polygon were acquired.Data InputThis dataset is based on an aggregation of 4 spatial data sources: Protected Areas Database US (PAD-US 2.1), data from Bureau of Indian Affairs regional offices, the BLM Alaska Fire Service/State of Alaska, and Census Block-Group Geometry. NWCG Unit ID and Agency Kind/Category data are tabular and sourced from UnitIDActive.txt, in the WFMI Unit ID application (https://wfmi.nifc.gov/unit_id/Publish.html). Areas of with unknown Landowner Kind/Category and Jurisdictional Agency Kind/Category are assigned LandownerKind and LandownerCategory values of "Private" by use of the non-water polygons from the Census Block-Group geometry.PAD-US 2.1:This dataset is based in large part on the USGS Protected Areas Database of the United States - PAD-US 2.`. PAD-US is a compilation of authoritative protected areas data between agencies and organizations that ultimately results in a comprehensive and accurate inventory of protected areas for the United States to meet a variety of needs (e.g. conservation, recreation, public health, transportation, energy siting, ecological, or watershed assessments and planning). Extensive documentation on PAD-US processes and data sources is available.How these data were aggregated:Boundaries, and their descriptors, available in spatial databases (i.e. shapefiles or geodatabase feature classes) from land management agencies are the desired and primary data sources in PAD-US. If these authoritative sources are unavailable, or the agency recommends another source, data may be incorporated by other aggregators such as non-governmental organizations. Data sources are tracked for each record in the PAD-US geodatabase (see below).BIA and Tribal Data:BIA and Tribal land management data are not available in PAD-US. As such, data were aggregated from BIA regional offices. These data date from 2012 and were substantially updated in 2022. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The

  11. 2023 Census totals by topic for households by statistical area 2

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2024). 2023 Census totals by topic for households by statistical area 2 [Dataset]. https://datafinder.stats.govt.nz/layer/120892-2023-census-totals-by-topic-for-households-by-statistical-area-2/attachments/25536/
    Explore at:
    shapefile, geopackage / sqlite, pdf, mapinfo mif, kml, mapinfo tab, csv, geodatabase, dwgAvailable download formats
    Dataset updated
    Dec 18, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains counts and measures for households from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 2.

    The variables included in this dataset are for households in occupied private dwellings (unless otherwise stated). All data is for level 1 of the classification (unless otherwise stated):

    • Count of households in occupied private dwellings
    • Access to telecommunication systems (total responses)
    • Household crowding index for levels 1 and 2
    • Household composition
    • Number of usual residents in household
    • Average number of usual residents in household
    • Number of motor vehicles
    • Sector of landlord for households in rented occupied private dwellings
    • Tenure of household
    • Total household income
    • Median ($) total household income
    • Weekly rent paid by household for households in rented occupied private dwellings
    • Median ($) weekly rent paid by household for households in rented occupied private dwellings.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Concept descriptions and quality ratings

    Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.

    Household crowding

    Household crowding is based on the Canadian National Occupancy Standard (CNOS). It calculates the number of bedrooms needed based on the demographic composition of the household. The household crowding index methodology for 2023 Census has been updated to use gender instead of sex. Household crowding should be used with caution for small geographical areas due to high volatility between census years as a result of population change and urban development. There may be additional volatility in areas affected by the cyclone, particularly in Gisborne and Hawke's Bay. Household crowding index – 2023 Census has details on how the methodology has changed, differences from 2018 Census, and more.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Measures

    Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures calculations. Averages and medians based on less than six units (e.g. individuals, dwellings, households, families, or extended families) are suppressed. This suppression threshold changes for other quantiles. Where the cells have been suppressed, a placeholder value has been used.

    Percentages

    To calculate percentages, divide the figure for the category of interest by the figure for 'Total stated' where this applies.

    Symbol

    -997 Not available

    -999 Confidential

    Inconsistencies in definitions

    Please note that there may be differences in definitions between census classifications and those used for other data collections.

  12. Statistical Area 3 Higher Geographies 2025

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2024). Statistical Area 3 Higher Geographies 2025 [Dataset]. https://datafinder.stats.govt.nz/layer/120974-statistical-area-3-higher-geographies-2025/
    Explore at:
    csv, mapinfo tab, mapinfo mif, geopackage / sqlite, shapefile, dwg, kml, pdf, geodatabaseAvailable download formats
    Dataset updated
    Dec 2, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Refer to the 'Current Geographic Boundaries Table' layer for a list of all current geographies and recent updates.

    This dataset is the definitive version of the annually released statistical area 3 boundaries as at 1 January 2025, defined by Stats NZ and concorded to higher geographies. This version contains 929 statistical 3 areas (925 digitised and 4 with empty or null geometries (non-digitised)).

    Statistical area 3 (SA3) is a new output geography, introduced in 2023, that allows aggregations of population data between the SA3geography and territorial authority geography.

    This dataset is the definitive version of statistical area 3 (SA3) boundaries concorded to higher geographies for 2025 as defined by Stats NZ.

    This version contains 929 SA3s. This statistical area 3 higher geographies file is a correspondence, or concordance, which relates SA3s to larger geographic areas or 'higher geographies'.

    The higher geography contained in this concordance is: territorial authority (TA).

    High-definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Macrons

    Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.

    Digital data

    Digital boundary data became freely available on 1 July 2007.

    Further information

    To download geographic classifications in table formats such as CSV please use Ariā

    For more information please refer to the Statistical standard for geographic areas 2023.

    Contact: geography@stats.govt.nz

  13. D

    Data from: Navigating meaning in the spatial layouts of comics: A...

    • dataverse.nl
    bin, pdf +1
    Updated Apr 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irmak Hacımusaoğlu; Irmak Hacımusaoğlu; Bien Klomberg; Bien Klomberg; Neil Cohn; Neil Cohn (2023). Navigating meaning in the spatial layouts of comics: A cross-cultural corpus analysis [Dataset]. http://doi.org/10.34894/DMAUD0
    Explore at:
    bin(18917153), pdf(798474), text/comma-separated-values(34357), pdf(143383), pdf(103865), text/comma-separated-values(35698)Available download formats
    Dataset updated
    Apr 13, 2023
    Dataset provided by
    DataverseNL
    Authors
    Irmak Hacımusaoğlu; Irmak Hacımusaoğlu; Bien Klomberg; Bien Klomberg; Neil Cohn; Neil Cohn
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Dataset funded by
    European Research Council
    Description

    In visual narratives like comics, not only do comprehenders need to track shifts in characters, space, and time, but they do so across a spatial layout. While many scholars and comic artists have speculated about connections between meaning and layout in comics, few empirical studies have examined this relationship. We investigated whether situational changes between time, characters, or space interacted with page layouts, by looking at across-page, across-constituent, and within-constituent transitions in a corpus of 134 annotated comics from North America, Europe, and Asia. Panels shifting within constituents (e.g., while moving within a row) changed the situation the least, while those across pages and across constituents (like in a row break) had more situational changes. The boundary of a page especially aligned with changes in spatial location of the scene. In addition, discontinuous changes primarily aligned with across-page transitions. Cross-cultural analyses indicated that Asian comics convey meaning across panels in ways that are relatively less constrained by layouts, while American and European comics use the page as a unit to group and segment spatial information. Such results indicate a partial correspondence between layout and meaning, but with different cultural constraints.

  14. n

    Data from: Bringing multivariate support to multiscale codependence...

    • data.niaid.nih.gov
    • dataone.org
    • +1more
    zip
    Updated Aug 2, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guillaume Guénard; Pierre Legendre (2018). Bringing multivariate support to multiscale codependence analysis: assessing the drivers of community structure across spatial scales [Dataset]. http://doi.org/10.5061/dryad.n4288
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 2, 2018
    Dataset provided by
    Université de Montréal
    Authors
    Guillaume Guénard; Pierre Legendre
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Doubs River basin France, Lac Geai Quebec Canada
    Description
    1. Multiscale codependence analysis (MCA) quantifies the joint spatial distribution of a pair of variables in order to provide a spatially-explicit assessment of their relationships to one another. For the sake of simplicity, the original definition of MCA only considered a single response variable (e.g. a single species). However, that definition would limit the application of MCA when many response variables are studied jointly, for example when one wants to study the effect of the environment on the spatial organisation of a multi-species community in an explicit manner.
    2. In the present paper, we generalize MCA to multiple response variables. We conducted a simulation study to assess the statistical properties (i.e. type I error rate and statistical power) of multivariate MCA (mMCA) and found that it had honest type I error rate and sufficient statistical power for practical purposes, even with modest sample sizes. We also exemplified mMCA by applying it to two ecological data sets.
    3. The simulation study confirmed the adequacy of mMCA from a statistical standpoint: it has honest type I error rates and sufficient power to be useful in practice. Using mMCA, we were able to detect variation in fish community structure along the Doubs River (in France), which was associated with large spatial structures in the variation of physical and chemical variables related to water quality. Also, mMCA usefully described the spatial variation of an Oribatid mite community structure associated with a gradient of water content superimposed on various smaller-scale spatial features associated with vegetation cover in the peat blanket surrounding Lac Geai (in Québec, Canada).
    4. In addition to demonstrating the soundness of mMCA in theory and practice, we further discuss the strengths and assumptions of mMCA and describe other potential scenarios where it would be helpful to biologists interested in assessing influence of environmental conditions on community structure in a spatially-explicit way.
  15. D

    NSW Foundation Spatial Data Framework - Place Names - Geographical Names...

    • data.nsw.gov.au
    pdf
    Updated Oct 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Customer Service (2018). NSW Foundation Spatial Data Framework - Place Names - Geographical Names Register Place Names [Dataset]. https://data.nsw.gov.au/data/dataset/nsw-foundation-spatial-data-framework-place-names-geographical-names-register-place-names
    Explore at:
    pdf(196477)Available download formats
    Dataset updated
    Oct 19, 2018
    Dataset provided by
    Department of Customer Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New South Wales
    Description

    The Geographical Names Register (GNR) is a database of the authoritative place names in NSW. Since its inception in 1966 the Geographical Names Board has recorded information in relation to NSW geographical names within the GNR. There are currently over eighty thousand place names recorded in the GNR. On average, 200 new place names are assigned and added to this database every year.

    Every record in this database has the provision for over thirty attributes ranging from spatial location information in respect to co-ordinate, map tile, parish etc. to cultural information on history, meaning and origin. The GNR also holds official information such as the name’s status and feature type, and temporal information dealing with the gazettal date of the name.

  16. US Waterway Locks

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Aug 28, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Bureau of Transportation Statistics (BTS) (2018). US Waterway Locks [Dataset]. https://koordinates.com/layer/22712-us-waterway-locks/
    Explore at:
    geopackage / sqlite, dwg, kml, geodatabase, mapinfo mif, pdf, mapinfo tab, csv, shapefileAvailable download formats
    Dataset updated
    Aug 28, 2018
    Dataset provided by
    Bureau of Transportation Statisticshttp://www.rita.dot.gov/bts
    Authors
    US Bureau of Transportation Statistics (BTS)
    Area covered
    Description

    The Navigation Data Center had several objectives in developing the U.S. Waterway Data. These objectives support the concept of a National Spatial Data Provide public access to national waterway data. Foster interagency and intra-agency cooperation through data sharing. Provide a mechanism to integrate waterway data (U.S. Army Corps of Engineers Port/Facility and U.S. Coast Guard Accident Data, for example) Provide a basis for intermodal analysis. Assist standardization of waterway entity definitions (Ports/Facilities, Locks, etc.). Provide public access to the National Waterway Network, which can be used as a basemap to support graphical overlays and analysis with other spatial data (waterway and modal network/facility databases, for example). Provide reliable data to support future waterway and intermodal applications. Source of Data The data included in these files are based upon the Annual Summary of Lock Statistics published by the U.S. Army Corps of Engineers/CEIWR, Navigation Data Center. The data are collected at each Corps owned and/or operated Lock by Corps personnel and towing industry vessel operators. This data was collected from the US Army Corps of Engineers and distributed on the National Transportation Atlas Database (NTAD).

    © The U.S. Army Corps of Engineers/CEIWR, Navigation Data Center This layer is sourced from maps.bts.dot.gov.

    Monthly summary statistics are based on data from the Lock Performance Monitoring System (LPMS). The LPMS was developed to collect a 100% sample of data on the locks that are owned and/or operated by the US Army Corps of Engineers. Each record contains data summarized monthly by lock chamber, and direction (upbound and number and types of vessels and lockages (recreation, commercial, tows, other), cuts, hardware operations, delay and processing times, number of tows and all vessels delayed, total tons, commodity tonnages, and number of barges. The data are by waterway and by calendar year. The waterway files contain 5 years of data for one waterway. The calendar year files contain 1 year of data for all waterways.

    The Navigation Data Center had several objectives in developing the U.S. Waterway Data. These objectives support the concept of a National Spatial Data Provide public access to national waterway data. Foster interagency and intra-agency cooperation through data sharing. Provide a mechanism to integrate waterway data (U.S. Army Corps of Engineers Port/Facility and U.S. Coast Guard Accident Data, for example) Provide a basis for intermodal analysis. Assist standardization of waterway entity definitions (Ports/Facilities, Locks, etc.). Provide public access to the National Waterway Network, which can be used as a basemap to support graphical overlays and analysis with other spatial data (waterway and modal network/facility databases, for example). Provide reliable data to support future waterway and intermodal applications. Source of Data The data included in these files are based upon the Annual Summary of Lock Statistics published by the U.S. Army Corps of Engineers/CEIWR, Navigation Data Center. The data are collected at each Corps owned and/or operated Lock by Corps personnel and towing industry vessel operators. This data was collected from the US Army Corps of Engineers and distributed on the National Transportation Atlas Database (NTAD).

    © The U.S. Army Corps of Engineers/CEIWR, Navigation Data Center

  17. Meshblock 2025 version 2

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Aug 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2025). Meshblock 2025 version 2 [Dataset]. https://datafinder.stats.govt.nz/layer/122771-meshblock-2025-version-2/
    Explore at:
    mapinfo mif, shapefile, geopackage / sqlite, geodatabase, csv, kml, pdf, mapinfo tab, dwgAvailable download formats
    Dataset updated
    Aug 8, 2025
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Refer to the 'Current Geographic Boundaries Table' layer for a list of all current geographies and recent updates.

    This dataset contains meshblock 2025 (version 2), a major released version of meshblock boundaries as at 8 August 2025. This version contains 57,569 meshblocks, including 16 with empty or null geometries (non-digitised meshblocks). This version reflects a small number of changes made to meshblocks for the 2025 Representation Commission to define the 2025 general and Māori electorate boundaries that will be used for the 2026 general election.

    Stats NZ maintains an annual meshblock pattern for collecting and producing statistical data. This allows data to be compared over time.

    A meshblock is the smallest geographic unit for which statistical data is collected and processed by Stats NZ. A meshblock is a defined geographic area, which can vary in size from part of a city block to a large area of rural land. The optimal size for a meshblock is 30–60 dwellings (containing approximately 60–120 residents).

    Each meshblock borders on another to form a network covering all of New Zealand, including coasts and inlets and extending out to the 200-mile economic zone (EEZ) and is digitised to the 12-mile limit. Meshblocks are added together to build up larger geographic areas such as statistical area 1 (SA1), statistical area 2 (SA2), statistical area 3 (SA3), and urban rural (UR). They are also used to define electoral districts, territorial authorities, and regional councils.

    Meshblock boundaries generally follow road centrelines, cadastral property boundaries, or topographical features such as rivers. Expanses of water in the form of lakes and inlets are defined separately from land.

    Meshblock maintenance

    Meshblock boundaries are amended by:

    1. Splitting – subdividing a meshblock into two or more meshblocks.
    2. Nudging – shifting a boundary to a more appropriate position.

    Reasons for meshblock splits and nudges can include:

    • to maintain meshblock criteria rules.
    • to improve the size balance of meshblocks in areas where there has been population growth
    • to maintain alignment to cadastre and other geographic features.
    • Stats NZ requests for boundary changes so that statistical geography boundaries can be moved external requests for boundary changes so that administrative or electoral boundaries can be moved
    • to separate land and water. Mainland, inland water, islands, inlets, and oceanic are defined separately

    Meshblock changes are made throughout the year. A major release is made at 1 January each year with ad hoc releases available to users at other times.

    While meshblock boundaries are continually under review, 'freezes' on changes to the boundaries are applied periodically. Such 'freezes' are imposed at the time of population censuses and during periods of intense electoral activity, for example, prior and during general and local body elections.

    Meshblock numbering

    Meshblocks are not named and have seven-digit codes.

    When meshblocks are split, each new meshblock is given a new code. The original meshblock codes no longer exist within that version and future versions of the meshblock classification. Meshblock codes do not change when a meshblock boundary is nudged.

    Meshblocks that existed prior to 2015 and have not changed are numbered from 0000100 to 3210003. Meshblocks created from 2015 onwards are numbered from 4000000.

    Digitised and non-digitised meshblocks

    The digital geographic boundaries are defined and maintained by Stats NZ.

    Meshblocks cover the land area of New Zealand, the water area to the 12mile limit, the Chatham Islands, Kermadec Islands, sub-Antarctic islands, offshore oil rigs, and Ross Dependency. The following 16 meshblocks are not held in digitised form.

    Meshblock / Location (statistical area 2 name)

    • 0016901 Oceanic Kermadec Islands
    • 0016902 Kermadec Islands
    • 1588000 Oceanic Oil Rig Taranaki
    • 3166401 Oceanic Campbell Island
    • 3166402 Campbell Island
    • 3166600 Oceanic Oil Rig Southland
    • 3166710 Oceanic Auckland Islands
    • 3166711 Auckland Islands
    • 3195000 Ross Dependency
    • 3196001 New Zealand Economic Zone
    • 3196002 Oceanic Bounty Islands
    • 3196003 Bounty Islands
    • 3196004 Oceanic Snares Islands
    • 3196005 Snares Island
    • 3196006 Oceanic Antipodes Islands
    • 3196007 Antipodes Islands

    High-definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Macrons

    Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.

    Digital data

    Digital boundary data became freely available on 1 July 2007

    Further information

    To download geographic classifications in table formats such as CSV please use Ariā

    For more information please refer to the Statistical standard for geographic areas 2023.

    Contact: geography@stats.govt.nz

  18. Statistical Area 2 Higher Geographies 2025

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2024). Statistical Area 2 Higher Geographies 2025 [Dataset]. https://datafinder.stats.govt.nz/layer/120973-statistical-area-2-higher-geographies-2025/
    Explore at:
    mapinfo mif, dwg, pdf, kml, geopackage / sqlite, mapinfo tab, shapefile, csv, geodatabaseAvailable download formats
    Dataset updated
    Dec 2, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Refer to the current geographies boundaries table for a list of all current geographies and recent updates.

    This dataset is the definitive set of statistical area 2 (SA2) boundaries concorded to higher geographies as at 1 January 2025. This version contains 2,395 SA2s, (2,379 digitised and 16 with empty or null geometries (non-digitised)). This statistical area 2 higher geographies file is a correspondence, or concordance, which relates SA2s to larger geographic areas or 'higher geographies'.

    The higher geographies contained in this concordance are: statistical area 3 (SA3), territorial authority (TA) and regional council (REGC). Statistical area 2 is an output geography that provides higher aggregations of population data than can be provided at the statistical area 1 (SA1) level. The SA2 geography aims to reflect communities that interact together socially and economically. In populated areas, SA2s generally contain similar sized populations.

    High-definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Macrons

    Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.

    Digital data

    Digital boundary data became freely available on 1 July 2007.

    Further information

    To download geographic classifications in table formats such as CSV please use Ariā

    For more information please refer to the Statistical standard for geographic areas 2023.

    Contact: geography@stats.govt.nz

  19. Synthetic Smart Card Data for the Analysis of Temporal and Spatial Patterns

    • zenodo.org
    • data.niaid.nih.gov
    bin, tsv, xml
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Bouman; Paul Bouman (2025). Synthetic Smart Card Data for the Analysis of Temporal and Spatial Patterns [Dataset]. http://doi.org/10.5281/zenodo.321686
    Explore at:
    xml, bin, tsvAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Paul Bouman; Paul Bouman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a synthetic smart card data set that can be used to test pattern detection methods for the extraction of temporal and spatial data. The data set is tab seperated and based on a stylized travel pattern description for city of Utrecht in The Netherlands and is developed and used in Chapter 6 of the PhD Thesis of Paul Bouman.

    This dataset contains the following files:

    • journeys.tsv : the actual data set of synthetic smart card data
    • utrecht.xml : the activity pattern definition that was used to randomly generate the synthethic smart card data
    • validate.ref : a file derived from the activity pattern definition that can be used for validation purposes. It specifies which activity types occur at each location in the smart card data set.
  20. Meshblock 2018 (high definition)

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ, Meshblock 2018 (high definition) [Dataset]. https://datafinder.stats.govt.nz/layer/92199-meshblock-2018-high-definition/
    Explore at:
    geodatabase, csv, mapinfo tab, dwg, mapinfo mif, shapefile, geopackage / sqlite, kml, pdfAvailable download formats
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    This dataset is a high definition (HD) version of the annually released meshblock boundaries at 1 January 2018. This HD version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre. Stats NZ maintains an annual meshblock geography for collecting and producing statistical data. This allows data to be compared over time. A meshblock is the smallest geographic unit for which statistical data is collected and processed by Stats NZ. A meshblock is defined by a geographic area, which can vary in size from part of a city block to a large area of rural land. Each meshblock borders on another to form a network covering all of New Zealand, including coasts and inlets and extending out to the 200-mile economic zone. Meshblocks are added together to build up larger geographic areas such as statistical area 1 (SA1), statistical area 2 (SA2), and urban rural. They are also used to define electoral districts, territorial authorities, and regional councils. The digital geographic boundaries are defined and maintained by Stats NZ. Meshblocks cover the land area of New Zealand, the water area to the 12-mile limit, the Chatham Islands, Kermadec Islands, sub-Antarctic islands, off-shore oil rigs, and Ross Dependency.

    Digital boundary data became freely available on 1 July 2007.

    There are 16 meshblocks not held in digitised form.

    For further information see ANZLIC Metadata 2018 Meshblock attachment below.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Digital data for the Salinas Valley Geological Framework, California [Dataset]. https://catalog.data.gov/dataset/digital-data-for-the-salinas-valley-geological-framework-california

Digital data for the Salinas Valley Geological Framework, California

Explore at:
Dataset updated
Jul 6, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Area covered
Salinas Valley, California
Description

This digital dataset was created as part of a U.S. Geological Survey study, done in cooperation with the Monterey County Water Resource Agency, to conduct a hydrologic resource assessment and develop an integrated numerical hydrologic model of the hydrologic system of Salinas Valley, CA. As part of this larger study, the USGS developed this digital dataset of geologic data and three-dimensional hydrogeologic framework models, referred to here as the Salinas Valley Geological Framework (SVGF), that define the elevation, thickness, extent, and lithology-based texture variations of nine hydrogeologic units in Salinas Valley, CA. The digital dataset includes a geospatial database that contains two main elements as GIS feature datasets: (1) input data to the 3D framework and textural models, within a feature dataset called “ModelInput”; and (2) interpolated elevation, thicknesses, and textural variability of the hydrogeologic units stored as arrays of polygonal cells, within a feature dataset called “ModelGrids”. The model input data in this data release include stratigraphic and lithologic information from water, monitoring, and oil and gas wells, as well as data from selected published cross sections, point data derived from geologic maps and geophysical data, and data sampled from parts of previous framework models. Input surface and subsurface data have been reduced to points that define the elevation of the top of each hydrogeologic units at x,y locations; these point data, stored in a GIS feature class named “ModelInputData”, serve as digital input to the framework models. The location of wells used a sources of subsurface stratigraphic and lithologic information are stored within the GIS feature class “ModelInputData”, but are also provided as separate point feature classes in the geospatial database. Faults that offset hydrogeologic units are provided as a separate line feature class. Borehole data are also released as a set of tables, each of which may be joined or related to well location through a unique well identifier present in each table. Tables are in Excel and ascii comma-separated value (CSV) format and include separate but related tables for well location, stratigraphic information of the depths to top and base of hydrogeologic units intercepted downhole, downhole lithologic information reported at 10-foot intervals, and information on how lithologic descriptors were classed as sediment texture. Two types of geologic frameworks were constructed and released within a GIS feature dataset called “ModelGrids”: a hydrostratigraphic framework where the elevation, thickness, and spatial extent of the nine hydrogeologic units were defined based on interpolation of the input data, and (2) a textural model for each hydrogeologic unit based on interpolation of classed downhole lithologic data. Each framework is stored as an array of polygonal cells: essentially a “flattened”, two-dimensional representation of a digital 3D geologic framework. The elevation and thickness of the hydrogeologic units are contained within a single polygon feature class SVGF_3DHFM, which contains a mesh of polygons that represent model cells that have multiple attributes including XY location, elevation and thickness of each hydrogeologic unit. Textural information for each hydrogeologic unit are stored in a second array of polygonal cells called SVGF_TextureModel. The spatial data are accompanied by non-spatial tables that describe the sources of geologic information, a glossary of terms, a description of model units that describes the nine hydrogeologic units modeled in this study. A data dictionary defines the structure of the dataset, defines all fields in all spatial data attributer tables and all columns in all nonspatial tables, and duplicates the Entity and Attribute information contained in the metadata file. Spatial data are also presented as shapefiles. Downhole data from boreholes are released as a set of tables related by a unique well identifier, tables are in Excel and ascii comma-separated value (CSV) format.

Search
Clear search
Close search
Google apps
Main menu