Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming GIS mapping tools market! This in-depth analysis reveals a $15B market in 2025 projected to reach $39B by 2033, driven by cloud adoption, AI integration, and surging demand across sectors. Explore key trends, leading companies (Esri, ArcGIS, QGIS, etc.), and regional growth forecasts.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The booming GIS Mapping Tools market is projected to reach $45 billion by 2033, driven by cloud adoption and AI. Explore market trends, key players (Esri, Autodesk, Hexagon), and regional growth in this comprehensive analysis.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The geographical mapping software market is experiencing robust growth, driven by increasing demand across diverse sectors. The market's expansion is fueled by several key factors, including the rising adoption of cloud-based solutions for enhanced accessibility and collaboration, the growing need for precise location data in various applications, and the increasing integration of GIS technology with other analytical tools. Applications such as geological exploration, water conservancy projects, and urban planning are major contributors to market growth, benefiting from the ability to visualize and analyze spatial data efficiently. While the market faces certain restraints, such as the high initial investment costs associated with some software solutions and the need for specialized expertise, these are being mitigated by the emergence of more affordable and user-friendly options, as well as increased training and educational resources. The market is segmented by application (Geological Exploration, Water Conservancy Project, Urban Plan, Others) and type (Cloud Based, Web Based), with cloud-based solutions gaining significant traction due to their scalability and cost-effectiveness. Major players in the market, including Esri, Autodesk, Mapbox, and others, are continuously innovating and introducing new features to cater to the evolving needs of their customers. This competitive landscape ensures continuous improvement in software capabilities and affordability, further propelling market expansion. The geographical distribution of this market is broad, with North America and Europe currently holding significant market shares due to established infrastructure and high adoption rates. However, the Asia-Pacific region is exhibiting particularly rapid growth, driven by increasing urbanization, infrastructure development, and government initiatives promoting the use of GIS technologies. This regional shift indicates significant future growth potential in emerging markets. The forecast period of 2025-2033 suggests continued expansion, with a projected CAGR reflecting the sustained demand across different geographical regions and application areas. While precise figures are unavailable, based on industry trends and available data, a conservative estimate for the current market size would place it in the high hundreds of millions of dollars, with steady and significant growth anticipated.
Facebook
Twitterhttps://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Market Research Intellect's GIS Mapping Software Market Report highlights a valuation of USD 3.2 billion in 2024 and anticipates growth to USD 6.5 billion by 2033, with a CAGR of 8.5% from 2026-2033.Explore insights on demand dynamics, innovation pipelines, and competitive landscapes.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming geographical mapping software market! This in-depth analysis reveals key trends, growth drivers, regional insights, and leading companies shaping the future of geospatial technology. Learn about market size, CAGR, and top applications in urban planning, geological exploration, and more.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The size of the GIS Mapping Software market was valued at USD XXX million in 2024 and is projected to reach USD XXX million by 2033, with an expected CAGR of XX % during the forecast period.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The size of the GIS Mapping Tools market was valued at USD XXX million in 2024 and is projected to reach USD XXX million by 2033, with an expected CAGR of XX % during the forecast period.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming GIS Mapping Tools market! This in-depth analysis reveals key trends, growth drivers, and leading companies shaping the future of spatial data. Explore market size, CAGR, regional insights, and application segments (Geological Exploration, Urban Planning, etc.). Learn how cloud-based solutions are revolutionizing GIS.
Facebook
Twitterhttps://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
Discover the booming interactive map creation tools market! This in-depth analysis reveals a $2.5 billion market in 2025, projected to reach $8 billion by 2033, driven by cloud-based solutions and growing data visualization needs. Learn about key players, market segmentation, and regional trends shaping this exciting sector.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Global GIS Mapping Tools Market is poised for significant expansion, projected to reach a substantial market size of $10 billion by 2025, with an anticipated Compound Annual Growth Rate (CAGR) of 12.5% through 2033. This robust growth trajectory is fueled by the increasing demand for advanced spatial analysis and visualization capabilities across a multitude of sectors. Key drivers include the escalating need for accurate geological exploration to identify and manage natural resources, the critical role of GIS in planning and executing complex water conservancy projects for sustainable water management, and the indispensable application of GIS in urban planning for efficient city development and infrastructure management. Furthermore, the burgeoning adoption of cloud-based and web-based GIS solutions is democratizing access to powerful mapping tools, enabling broader use by organizations of all sizes. The market is also benefiting from advancements in data processing, artificial intelligence integration, and the growing availability of open-source GIS platforms. Despite the optimistic outlook, certain restraints could temper the market's full potential. High initial investment costs for sophisticated GIS software and hardware, coupled with a shortage of skilled GIS professionals in certain regions, may pose challenges. However, the overwhelming benefits of enhanced decision-making, improved operational efficiency, and the ability to gain deep insights from spatial data are compelling organizations to overcome these hurdles. The competitive landscape is dynamic, featuring established players like Esri and Autodesk alongside innovative providers such as Mapbox and CARTO, all vying for market share by offering specialized features, user-friendly interfaces, and integrated solutions. The continuous evolution of GIS technology, driven by the integration of remote sensing data, big data analytics, and real-time information, will continue to shape the market's future. Here's a comprehensive report description on GIS Mapping Tools, incorporating your specified requirements:
This in-depth report provides a panoramic view of the global GIS Mapping Tools market, meticulously analyzing its landscape from the Historical Period (2019-2024) through to the Forecast Period (2025-2033), with 2025 serving as both the Base Year and the Estimated Year. The study period encompasses 2019-2033, offering a robust historical context and forward-looking projections. The market is valued in the millions of US dollars, with detailed segment-specific valuations and growth trajectories. The report is structured to deliver actionable intelligence to stakeholders, covering market concentration, key trends, regional dominance, product insights, and critical industry dynamics. It delves into the intricate interplay of companies such as Esri, Hexagon, Autodesk, CARTO, and Mapbox, alongside emerging players like Geoway and Shenzhen Edraw Software, across diverse applications including Geological Exploration, Water Conservancy Projects, and Urban Planning. The analysis also differentiates between Cloud Based and Web Based GIS solutions, providing a granular understanding of market segmentation.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global mapping software market is experiencing robust growth, driven by increasing demand across various sectors. While precise figures for market size and CAGR are absent from the provided data, a reasonable estimation can be made based on industry trends. Considering the presence of major players like Adobe, Autodesk, and Microsoft, and the consistent advancements in GIS technology and location-based services, a conservative estimate places the 2025 market size at approximately $15 billion USD. Assuming a steady growth trajectory influenced by factors like increasing adoption of cloud-based solutions, the integration of AI and machine learning for enhanced mapping capabilities, and the growing need for precise location data in logistics, urban planning, and environmental monitoring, a Compound Annual Growth Rate (CAGR) of 8-10% over the forecast period (2025-2033) seems plausible. This would project market values significantly higher by 2033. This growth is fueled by several key trends. The increasing availability of high-resolution satellite imagery and other geospatial data provides richer inputs for mapping applications. Furthermore, the rising adoption of mobile devices equipped with GPS technology and the proliferation of location-based services (LBS) are expanding the market's addressable user base. However, challenges remain, such as the high cost of advanced mapping software and the complexities associated with data integration and management. Nevertheless, the overall market outlook remains positive, with continued expansion anticipated across various segments and geographic regions. The competitive landscape is marked by a mix of established players and emerging startups, leading to innovation and the continuous improvement of mapping technologies.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming GIS Mapping Tools market! Explore key trends, growth drivers, and leading companies in this $15 billion industry projected to reach $28 billion by 2033. Learn about cloud-based solutions, regional market shares, and the future of geographic information systems.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 6.57(USD Billion) |
| MARKET SIZE 2025 | 6.93(USD Billion) |
| MARKET SIZE 2035 | 12.0(USD Billion) |
| SEGMENTS COVERED | Application, Deployment Type, End Use, User Type, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | technological advancements, increased demand for data analytics, growing urbanization, rising adoption of IoT, government investments in infrastructure |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | IBM, GRASS GIS, Autodesk, Oracle, QGIS, Safe Software, Hexagon, MDA, HERE Technologies, Pitney Bowes, Esri, Trimble, Mapbox, Google, Bentley Systems, Carbonite |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Integration with AI technologies, Expansion in emerging markets, Increased demand for real-time data, Growing geospatial analytics adoption, Enhanced mobile mapping solutions |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 5.6% (2025 - 2035) |
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
Global GIS Mapping Software market size 2025 was XX Million. GIS Mapping Software Industry compound annual growth rate (CAGR) will be XX% from 2025 till 2033.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Professional Map Services market is experiencing robust growth, projected to reach $1003.7 million in 2025. While the exact CAGR isn't provided, considering the rapid technological advancements in GIS, AI-powered mapping, and the increasing reliance on location-based services across various sectors, a conservative estimate of the CAGR for the forecast period (2025-2033) would be between 8% and 12%. This growth is fueled by several key drivers. The burgeoning adoption of smart city initiatives necessitates detailed and accurate mapping solutions. Furthermore, the increasing demand for precise navigation systems in the transportation and logistics industries, coupled with the rising popularity of location-based marketing and advertising, significantly contribute to market expansion. The integration of advanced technologies like AI and machine learning into mapping solutions is further enhancing accuracy, efficiency, and functionality, driving market growth. The market is segmented by service type (consulting and advisory, deployment and integration, support and maintenance) and application (utilities, construction, transportation, government, automotive, others), reflecting the diverse needs of various industries. The competitive landscape is characterized by a mix of established players like Esri, Google, TomTom, and Mapbox, alongside emerging innovative companies. Geographic expansion, particularly in developing economies with rapidly urbanizing populations, presents a significant opportunity for growth. However, challenges such as data security concerns and the high cost of advanced mapping technologies could act as potential restraints. The market's future growth hinges on continuous technological advancements and the expansion of data accessibility. The increasing adoption of cloud-based mapping solutions is streamlining data management and improving collaboration. Furthermore, the growing integration of map data into various applications, such as autonomous vehicles and augmented reality experiences, is creating new market avenues. Regulatory changes and data privacy regulations will play a crucial role in shaping the market landscape in the coming years. The diverse application segments ensure market resilience, as growth in one sector can offset potential slowdowns in another. The ongoing expansion into new geographical territories, particularly in Asia-Pacific and other developing regions, presents substantial growth opportunities for market participants.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming Sales Mapping System market! Explore key trends, growth drivers, and leading companies shaping this $2.5 billion (2025) industry. Learn how GIS integration, CRM compatibility, and advanced analytics are transforming sales strategies. Get the data-driven insights you need to succeed.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global Geographic Information System (GIS) market is booming, projected to reach $17.5 billion by 2033 with a 5.8% CAGR. Discover key trends, drivers, and regional insights in this comprehensive market analysis, covering major players and applications.
Facebook
TwitterThis is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming GIS mapping tools market! This in-depth analysis reveals a $15B market in 2025 projected to reach $39B by 2033, driven by cloud adoption, AI integration, and surging demand across sectors. Explore key trends, leading companies (Esri, ArcGIS, QGIS, etc.), and regional growth forecasts.