https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
Global Geographic Information System Software Market was valued at USD 8.5 billion in 2022 and will reach USD 21.0 billion by 2030, registering a CAGR of 12.1% for the forecast period 2023-2030. Factor Impacting the Geographic Information System Software Market:
The development of smart cities and Modern urban Planning is expected to drive the Geographic Information System Software Market
The process of site selection, land acquisition, planning, designing, visualizing, building, project management, operations, and reporting are all aided by geographic information system (GIS) software for smart cities. Moreover, geographic information system (GIS) solutions are used in urban planning by experts to better properly analyze, model, and visualize places. By processing geospatial data from satellite imaging, aerial photography, and remote sensors, geographic information system (GIS) software systems offer a comprehensive perspective of the land and infrastructure. Additionally, the industry for geographic information system software is growing over the forecast period as a result of such geographic information system (GIS) software applications.
Restraining factor for Geographic Information System Software Market
The high cost of the system has impacted the Geographic Information System Software Market
The pricey geographic information system will further derail the overall market’s growth. The geographic information system (GIS) is expensive because, in addition to the technology and software, it is necessary to have a properly qualified human workforce. Moreover, Specialized knowledge is needed to comprehend and interpret the information gathered by a geographic information system (GIS) system, which is expensive to hire and train. This factor will therefore obstruct market growth over the forecast period. What is Geographic Information System Software?
Geographic Information System Software is used to develop, hold, retrieve, organize, display, and perform analyses on many kinds of spatial and geographic data. The geographic information system (GIS) Industry is majorly driven by infrastructural developments, such as smart cities, water and land management, utility, and urban planning. The services segment provides various applications such as location-based services and, thus, is one of the prominent contributors to the market share. Advancements in GIS technologies, such as geo-analytics and integrated location-based data services, are also boosting the adoption of GIS in various regional markets, thereby driving the market demand over the forecast period.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
GIS Market is Segmented by Component (Hardware and Software), by Function (Mapping, Surveying, Telematics and Navigation, Location-Based Services), by End User (Agriculture, Utilities, and Mining, Among Others), and by Geography (North America, Europe, Asia Pacific, and Rest of the World). The Report Offers Market Forecasts and Size in Value (USD) for all the Above Segments.
The Geographic Management Information System (GeoMIS) is a FISMA Moderate minor application built using ArcGIS Server and portal, Microsoft SQL, and a web-facing front-end. The system can be accessed over the internet via https://www.usaidgiswbg.com using a web browser. GeoMIS is based on a commercial off-the-shelf product developed by Esri. Esri is creates geographic information system (GIS) software, web GIS and geodatabase management applications and is based in California. GeoMISIt is maintained by an Israeli company, Systematics (see Attachment 3) which is EsriI's agent in Israel. The mission has an annual maintenance contract with Systematics for GeoMIS. GeoMIS has 100 users from USAID staff (USA Direct Hire and Foreign Service Nationals) and 200 users from USAID contractors and grantees. The system is installed at USAID WBG office in Tel Aviv/Israel inside the computer room in the DMZ. It has no interconnections with any other system.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) software market is projected to expand significantly, with a market size of XXX million in 2025 and a CAGR of XX% during the forecast period of 2025-2033. The growing adoption of GIS technology across various industries, including urban planning, environmental management, and transportation, is driving market growth. Additionally, the increasing availability of spatial data and the advancements in cloud computing and mobile GIS are further fueling market expansion. Key trends in the GIS software market include the rise of web-based GIS platforms, the integration of artificial intelligence (AI) and machine learning (ML) capabilities, and the growing popularity of open-source GIS solutions. North America and Europe are the major markets for GIS software, while the Asia Pacific region is expected to witness significant growth in the coming years. Major players in the GIS software market include Esri, Hexagon, Pitney Bowes, SuperMap, Bentley Systems, GE, GeoStar, and Zondy Cyber Group. These companies offer a wide range of GIS software products and services to meet the varying needs of different industries and organizations.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Software Geographic Information Systems (GIS) market is thriving, with a market size of XXX million in 2025 and a CAGR of XX% projected for the period of 2025-2033. Digitalization, increasing demand for spatial data and analytics, and advancements in cloud computing and data storage are the primary drivers of this growth. Furthermore, the incorporation of GIS in various sectors such as disaster management, land information management, and infrastructure management is contributing to the market's expansion. Key trends shaping the market include the rise of mobile and cloud-based GIS, the integration of artificial intelligence and machine learning for enhanced data analysis, and the adoption of open-source GIS platforms. Despite these growth factors, challenges such as data privacy concerns, a lack of skilled GIS professionals, and budgetary constraints for implementing GIS solutions may hinder market expansion. Key players in the market include Pasco Corporation, Ubisense Group, Beijing SuperMap Software, Hexagon, and Schneider Electric, among others. North America holds a significant market share, followed by Europe and Asia Pacific.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Geographic Information System (GIS) software market is experiencing robust growth, driven by increasing adoption across various sectors like government, utilities, and transportation. The market, currently valued at approximately $15 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This significant expansion is fueled by several key trends, including the rising demand for location-based services, the proliferation of geospatial data, and the increasing use of cloud-based GIS solutions. The cloud-based segment is rapidly gaining traction due to its scalability, cost-effectiveness, and accessibility. Furthermore, the enterprise application segment dominates the market share, reflecting the widespread adoption of GIS for complex spatial analysis and decision-making in large organizations. While the market faces some restraints, such as the high initial investment costs for some advanced systems and the need for specialized expertise, the overall growth trajectory remains positive. The increasing integration of GIS with other technologies like AI and IoT further enhances its capabilities, opening new avenues for market expansion. Major players like Esri, Google, and Pitney Bowes are leading the market, constantly innovating and expanding their product offerings to meet evolving customer needs. The regional distribution of the market shows strong performance in North America and Europe, driven by advanced technological infrastructure and high adoption rates. However, the Asia-Pacific region is emerging as a significant growth area, propelled by rapid urbanization and infrastructure development. The competitive landscape is marked by both established players and emerging startups, fostering innovation and competition. The ongoing advancements in GIS technology, including improvements in data visualization, analytics, and mobile accessibility, are expected to further propel market growth in the coming years. The integration of GIS with other technologies will lead to new applications and expanded opportunities, ultimately driving the market towards sustained expansion throughout the forecast period.
https://www.marknteladvisors.com/privacy-policyhttps://www.marknteladvisors.com/privacy-policy
The Asia-Pacific Geographic Information System (GIS) Software for Agriculture Market is expected to grow at a CAGR of around 14% during the forecast period, i.e., 2022-27 says MarkNtel Advisors.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Geographic Information System (GIS) market is experiencing robust growth, projected to reach $5.15 billion in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 20.55% from 2025 to 2033. This expansion is fueled by several key drivers. Increasing urbanization and the need for efficient urban planning are creating significant demand for GIS solutions. Furthermore, advancements in technology, particularly in cloud computing and artificial intelligence (AI), are enhancing GIS capabilities, leading to wider adoption across various sectors. The integration of GIS with other technologies like IoT (Internet of Things) and big data analytics is enabling more sophisticated spatial analysis and decision-making. Industries like transportation, utilities, and agriculture are leveraging GIS for improved asset management, infrastructure planning, and precision farming. The market is segmented by component (software, data, services) and deployment (on-premise, cloud), with the cloud-based deployment model experiencing faster growth due to its scalability and cost-effectiveness. The competitive landscape is characterized by a mix of established players like Esri, Autodesk, and Trimble, and emerging technology providers, creating a dynamic market with significant innovation. However, factors like high initial investment costs and the need for skilled professionals to implement and manage GIS systems pose challenges to market growth. Despite these restraints, the long-term outlook for the GIS market remains positive. The increasing availability of geospatial data, coupled with declining hardware costs and improvements in user interfaces, is making GIS technology more accessible to a wider range of users. The integration of GIS into mobile applications and the rise of location-based services further broaden the market's potential. Government initiatives promoting smart cities and digital infrastructure development are also contributing to market growth. The North American region, particularly the United States, currently holds a significant market share due to early adoption and a robust technology ecosystem. However, other regions, especially in Asia-Pacific and Europe, are experiencing rapid growth, driven by increasing infrastructure investments and the adoption of advanced technologies. Future growth will be influenced by continued technological innovation, the availability of skilled workforce, and government regulations related to geospatial data management.
https://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy
The United States geographic information system (GIS) market size reached USD 4.3 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 10.1 Billion by 2033, exhibiting a growth rate (CAGR) of 9.9% during 2025-2033.
Report Attribute
|
Key Statistics
|
---|---|
Base Year
|
2024
|
Forecast Years
| 2025-2033 |
Historical Years
| 2019-2024 |
Market Size in 2024
| USD 4.3 Billion |
Market Forecast in 2033
| USD 10.1 Billion |
Market Growth Rate (2025-2033) | 9.9% |
IMARC Group provides an analysis of the key trends in each segment of the United States geographic information system (GIS) market report, along with forecasts at the regional and country level from 2025-2033. Our report has categorized the market based on component, function, device and end use industry.
GIS In Telecom Sector Market Size 2024-2028
The GIS in telecom sector market size is forecast to increase by USD 1.91 billion at a CAGR of 14.68% between 2023 and 2028.
Geographic Information Systems (GIS) have gained significant traction In the telecom sector due to the increasing adoption of advanced technologies such as big data, sensors, drones, and LiDAR. The use of GIS enables telecom companies to effectively manage and analyze large volumes of digital data, including satellite and GPS information, to optimize infrastructure monitoring and antenna placement. In the context of smart cities, GIS plays a crucial role in enabling efficient communication between developers and end-users by providing real-time data on construction progress and infrastructure status. Moreover, the integration of LiDAR technology with drones offers enhanced capabilities for surveying and mapping telecom infrastructure, leading to improved accuracy and efficiency.
However, the implementation of GIS In the telecom sector also presents challenges, including data security concerns and the need for servers and computers to handle the large volumes of data generated by these technologies. In summary, the telecom sector's growing reliance on digital technologies such as GIS, big data, sensors, drones, and LiDAR is driving market growth, while the need for effective data management and security solutions presents challenges that must be addressed.
What will be the Size of the GIS In Telecom Sector Market During the Forecast Period?
Request Free Sample
The Geographic Information System (GIS) market In the telecom sector is experiencing significant growth due to the increasing demand for electronic information and visual representation of data in various industries. This market encompasses a range of hardware and software solutions, including GNSS/GPS antennas, Lidar, GIS collectors, total stations, imaging sensors, and more. Major industries such as agriculture, oil & gas, architecture, and infrastructure monitoring are leveraging GIS technology for data analysis and decision-making. The adoption rate of GIS In the telecom sector is driven by the need for efficient data management and analysis, as well as the integration of real-time data from various sources.
Data formats and sources vary widely, from satellite and aerial imagery to ground-based sensors and IoT devices. The market is also witnessing innovation from startups and established players, leading to advancements in data processing capabilities and integration with other technologies like 5G networks and AI. Applications of GIS In the telecom sector include smart urban planning, smart utilities, and smart public works, among others.
How is this GIS In Telecom Sector Industry segmented and which is the largest segment?
The GIS in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Geography
APAC
China
North America
Canada
US
Europe
UK
Italy
South America
Middle East and Africa
By Product Insights
The software segment is estimated to witness significant growth during the forecast period. The telecom sector's Global GIS market encompasses software solutions for desktops, mobiles, cloud, and servers, along with developers' platforms. companies provide industry-specific GIS software, expanding the growth potential of this segment. Telecom companies heavily utilize intelligent maps generated by GIS for informed decisions on capacity planning and enhancements, such as improved service and next-generation networks. This drives significant growth In the software segment. Commercial entities offer open-source GIS software to counteract the threat of counterfeit products.
GIS technologies are integral to telecom network management, spatial data analysis, infrastructure planning, location-based services, network coverage mapping, data visualization, asset management, real-time network monitoring, design, wireless network mapping, integration, maintenance, optimization, and geospatial intelligence. Key applications include 5G network planning, network visualization, outage management, geolocation, mobile network optimization, and smart infrastructure planning. The GIS industry caters to major industries, including agriculture, oil & gas, architecture, engineering, construction, mining, utilities, retail, healthcare, government, and smart city planning. GIS solutions facilitate real-time data management, spatial information, and non-spatial information, offering enterprise solutions and transportation applications.
Get a glance at the market report of share of variou
https://www.marknteladvisors.com/privacy-policyhttps://www.marknteladvisors.com/privacy-policy
Geographic Information Software (GIS) in Agriculture market is anticipated to grow at a CAGR of 10% during 2020-25 forecast says MarkNtel Advisors.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
Global Geographic Information System GIS Software market size 2025 was XX Million. Geographic Information System GIS Software Industry compound annual growth rate (CAGR) will be XX% from 2025 till 2033.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data provides a summary of the state of development practice for Geographic Information Systems (GIS) software (as of August 2017). The summary is based on grading a set of 30 GIS products using a template of 56 questions based on 13 software qualities. The products range in scope and purpose from a complete desktop GIS systems, to stand-alone tools, to programming libraries/packages.
The template used to grade the software is found in the TabularSummaries.zip file. Each quality is measured with a series of questions. For unambiguity the responses are quantified wherever possible (e.g.~yes/no answers). The goal is for measures that are visible, measurable and feasible in a short time with limited domain knowledge. Unlike a comprehensive software review, this template does not grade on functionality and features. Therefore, it is possible that a relatively featureless product can outscore a feature-rich product.
A virtual machine is used to provide an optimal testing environments for each software product. During the process of grading the 30 software products, it is much easier to create a new virtual machine to test the software on, rather than using the host operating system and file system.
The raw data obtained by measuring each software product is in SoftwareGrading-GIS.xlsx. Each line in this file corresponds to between 2 and 4 hours of measurement time by a software engineer. The results are summarized for each quality in the TabularSummaries.zip file, as a tex file and compiled pdf file.
What is the GIS In Utility Industry Market Size?
The GIS market in the utility industry size is forecast to increase by USD 3.55 billion at a CAGR of 19.8% between 2023 and 2028. Market expansion hinges on various factors, such as the rising adoption of Geographic Information System (GIS) solutions in the utility sector, the convergence of GIS with Building Information Modeling, and the fusion of Augmented Reality with GIS technology. These elements collectively drive market growth, reflecting advancements in spatial data analytics and technological convergence. The increased adoption of GIS solutions in the utility industry underscores the importance of geospatial data in optimizing infrastructure management. Simultaneously, the integration of GIS with BIM signifies the synergy between spatial and building information for enhanced project planning and management. Additionally, the integration of AR with GIS technology highlights the potential for interactive and interactive visualization experiences in spatial data analysis. Thus, the interplay of these factors delineates the landscape for the anticipated expansion of the market catering to GIS and related technologies.
What will be the size of Market during the forecast period?
Request Free GIS In Utility Industry Market Sample
Market Segmentation
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019 - 2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Geography
North America
Canada
US
Europe
Germany
France
APAC
China
India
Japan
Middle East and Africa
South America
Brazil
Which is the largest segment driving market growth?
The software segment is estimated to witness significant growth during the forecast period. In the utility industry, the spatial context of geographic information systems (GIS) plays a pivotal role in site selection, land acquisition, planning, designing, visualizing, building, and project management. Utilities, including electricity, gas, water, and telecommunications providers, leverage GIS software to efficiently manage their assets and infrastructure. This technology enables the collection, management, analysis, and visualization of geospatial data, derived from satellite imaging, aerial photography, remote sensors, and artificial intelligence. Geospatial AI, sensor technology, and digital reality solutions are integral components of GIS, enhancing capabilities for smart city planning, urban planning, water management, mapping systems, grid modernization, transportation, and green buildings.
Get a glance at the market share of various regions. Download the PDF Sample
The software segment was valued at USD 541.50 million in 2018. Moreover, the geospatial industry continues to evolve, with startups and software solutions driving innovation in hardware, smart city planning, land use management, smart infrastructure planning, and smart utilities. GIS solutions facilitate 4D visualization, enabling stakeholders to overcome geospatial data barriers and make informed decisions. The utility industry's reliance on GIS extends to building information modeling, augmented reality, and smart urban planning, ultimately contributing to the growth of the geospatial technology market.
Which region is leading the market?
For more insights on the market share of various regions, Request Free Sample
North America is estimated to contribute 37% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
How do company ranking index and market positioning come to your aid?
Companies are implementing various strategies, such as strategic alliances, partnerships, mergers and acquisitions, geographical expansion, and product/service launches, to enhance their presence in the market.
AABSyS IT Pvt. Ltd. - The company offers GIS solutions such as remote sensing and computer aided design and drafting solutions for electric and gas utility.
Technavio provides the ranking index for the top 20 companies along with insights on the market positioning of:
AABSyS IT Pvt. Ltd.
Autodesk Inc.
Avineon Inc.
Bentley Systems Inc.
Blue Marble Geographics
Cadcorp Ltd.
Caliper Corp.
Environmental Systems Research Institute Inc.
General Electric Co.
Hexagon AB
Mapbox Inc.
Maxar Technologies Inc.
Mobile GIS Services Ltd.
NV5 Global Inc.
Orbital Insight Inc.
Pitney Bowes Inc.
Schneider Electric SE
SuperMap Software Co. Ltd.
Trimble Inc.
VertiGIS Ltd.
Explore our company rankings and market positioning. Request Free Sample
How can Technavio assist you in ma
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Geographic Information System (GIS) Analytics market is experiencing robust growth, projected to reach $15.10 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 12.41% from 2025 to 2033. This expansion is fueled by several key drivers. Increasing adoption of cloud-based GIS solutions enhances accessibility and scalability for diverse industries. The growing need for data-driven decision-making across sectors like retail, real estate, government, and telecommunications is a significant catalyst. Furthermore, advancements in artificial intelligence (AI) and machine learning (ML) integrated with GIS analytics are revolutionizing spatial data analysis, enabling more sophisticated predictive modeling and insightful interpretations. The market's segmentation reflects this broad adoption, with retail and real estate, government and utilities, and telecommunications representing key end-user segments, each leveraging GIS analytics for distinct applications such as location optimization, infrastructure management, and network planning. Competitive pressures are shaping the market landscape, with established players like Esri, Trimble, and Autodesk innovating alongside emerging tech companies focusing on AI and specialized solutions. The North American market currently holds a significant share, driven by early adoption and technological advancements. However, Asia-Pacific is expected to witness substantial growth due to rapid urbanization and increasing investment in infrastructure projects. Market restraints primarily involve the high cost of implementation and maintenance of advanced GIS analytics solutions and the need for skilled professionals to effectively utilize these technologies. However, the overall outlook remains extremely positive, driven by continuous technological innovation and escalating demand across multiple sectors. The future trajectory of the GIS analytics market hinges on several factors. Continued investment in research and development, especially in AI and ML integration, will be crucial for unlocking new possibilities. Furthermore, the simplification of GIS analytics software and the development of user-friendly interfaces will broaden accessibility beyond specialized technical experts. Growing data volumes from various sources (IoT, remote sensing) present both opportunities and challenges; efficient data management and analytics techniques will be paramount. The market's success also depends on addressing cybersecurity concerns related to sensitive geospatial data. Strong partnerships between technology providers and end-users will be vital in optimizing solution implementation and maximizing return on investment. Government initiatives promoting the use of GIS technology for smart city development and infrastructure planning will also play a significant role in market expansion. Overall, the GIS analytics market is poised for sustained growth, driven by technological advancements, increasing data availability, and heightened demand for location-based intelligence across a wide range of industries.
https://www.emergenresearch.com/purpose-of-privacy-policyhttps://www.emergenresearch.com/purpose-of-privacy-policy
Analyze the market segmentation of the Geographic Information System Software in Agriculture industry. Gain insights into market share distribution with a detailed breakdown of key segments and their growth.
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth due to the integration of Building Information Modeling (BIM) software and GIS, enabling more accurate and efficient construction projects. The increasing adoption of GIS solutions in precision farming for soil and water management is another key trend, with farmers utilizing sensors, GPS, and satellite data to optimize fertilizer usage and crop yields. However, challenges persist, such as the lack of proper planning leading to implementation failures of GIS solutions. In the realm of smart cities, GIS plays a crucial role in managing data from various sources, including LIDAR, computer-aided design, and digital twin technologies. Additionally, public safety and insurance industries are leveraging GIS for server-based data analysis, while smartphones and antennas facilitate real-time data collection. Amidst this digital transformation, ensuring data security and privacy becomes paramount, making it a critical consideration for market participants.
What will be the Size of the GIS Market During the Forecast Period?
Request Free Sample
The Global Geographic Information System (GIS) market encompasses a range of software solutions and hardware components used to capture, manage, analyze, and visualize geospatial data. Key industries driving market growth include transportation, smart city planning, green buildings, architecture and construction, utilities, oil and gas, agriculture, and urbanization. GIS technology plays a pivotal role in various applications such as 4D GIS software for infrastructure project management, augmented reality platforms for enhanced visualization, and LIDAR and GNSS/GPS antenna for accurate location data collection. Cloud technology is transforming the GIS landscape by enabling real-time data access and collaboration. The transportation sector is leveraging GIS for route optimization, asset management, and predictive maintenance.
Urbanization and population growth are fueling the demand for GIS in city planning and disaster management. Additionally, GIS is increasingly being adopted in sectors like agriculture for precision farming and soil mapping, and in the construction industry for Building Information Modeling (BIM). The market is also witnessing the emergence of innovative applications in areas such as video games and natural disasters risk assessment. Mobile devices are further expanding the reach of GIS, making it accessible to a wider audience. Overall, the market is poised for significant growth, driven by the increasing need for data-driven decision-making and the integration of geospatial technology into various industries.
How is this GIS Industry segmented and which is the largest segment?
The gis industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
Canada
US
Europe
Germany
UK
France
APAC
China
Japan
South Korea
South America
Brazil
Middle East and Africa
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The market encompasses desktop, mobile, cloud, and server software solutions, catering to various industries. Open-source software with limited features poses a challenge due to the prevalence of counterfeit products. Yet, the market witnesses an emerging trend toward cloud-based GIS software adoption. However, standardization and interoperability concerns hinder widespread adoption. Geospatial technology is utilized extensively in sectors such as Transportation, Utilities, Oil and Gas, Agriculture, and Urbanization, driven by population growth, urban planning, and sustainable development. Key applications include smart city planning, green buildings, BIM, 4D GIS software, augmented reality platforms, GIS collectors, LIDAR, and GNSS/GPS antennas. Cloud technology, mobile devices, and satellite imaging are critical enablers.
Get a glance at the GIS Industry report of share of various segments Request Free Sample
The software segment was valued at USD 5.06 billion in 2019 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 38% to the growth of the global market during the forecast period.
Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during th
This 1m Digital Terrain Model (DTM) is derived from bare-ground Light Detection and Ranging (LiDAR) point cloud data from September 2005 for the Green Lakes Valley, near Boulder Colorado. This dataset is better suited for derived layers such as slope angle, aspect, and contours. The DTM was created from LiDAR point cloud tiles subsampled to 1-meter postings, acquired by the National Center for Airborne Laser Mapping (NCALM) project. This data was collected in collaboration between the University of Colorado, Institute of Arctic and Alpine Research (INSTAAR) and NCALM, which is funded by the National Science Foundation (NSF). The DTM has the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. Total area imaged is 35 km^2. The LiDAR point cloud data was acquired with an Optech 1233 Airborne Laser Terrain Mapper (ALTM) and mounted in a twin engine Piper Chieftain (N931SA) with Inertial Measurement Unit (IMU) at a flying height of 600 m. Data from two GPS (Global Positioning System) ground stations were used for aircraft trajectory determination. The continuous DTM surface was created by mosaicing and then kriging 1 km2 LiDAR point cloud LAS-formated tiles using Golden Software's Surfer 8 Kriging algorithm. Horizontal accuracy and vertical accuracy is unknown. The layer is available in GEOTIF format approx. 265 MB of data. It has a UTM zone 13 projection, with a NAD83 horizonal datum and a NAVD88 vertical datum computed using NGS GEOID03 model, with FGDC-compliant metadata. A shaded relief model was also generated. A similar layer, the Digital Surface Model (DSM), is a first-stop elevation layer. A processing report and readme file are included with this data release. The DTM is available through an unrestricted public license. The LiDAR DEMs will be of interest to land managers, scientists, and others for study of topography, ecosystems, and environmental change. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.
The Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National Park and Preserve (Sangre de Cristo Mountains and part of the Dunes), Colorado is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gsam_geology.gdb), a 10.1 ArcMap (.mxd) map document (gsam_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (grsa_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (grsa_geology_gis_readme.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gsam_geology_metadata.txt or gsam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Great Sand Dunes National Park and Preserve.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
Global Geographic Information System Software Market was valued at USD 8.5 billion in 2022 and will reach USD 21.0 billion by 2030, registering a CAGR of 12.1% for the forecast period 2023-2030. Factor Impacting the Geographic Information System Software Market:
The development of smart cities and Modern urban Planning is expected to drive the Geographic Information System Software Market
The process of site selection, land acquisition, planning, designing, visualizing, building, project management, operations, and reporting are all aided by geographic information system (GIS) software for smart cities. Moreover, geographic information system (GIS) solutions are used in urban planning by experts to better properly analyze, model, and visualize places. By processing geospatial data from satellite imaging, aerial photography, and remote sensors, geographic information system (GIS) software systems offer a comprehensive perspective of the land and infrastructure. Additionally, the industry for geographic information system software is growing over the forecast period as a result of such geographic information system (GIS) software applications.
Restraining factor for Geographic Information System Software Market
The high cost of the system has impacted the Geographic Information System Software Market
The pricey geographic information system will further derail the overall market’s growth. The geographic information system (GIS) is expensive because, in addition to the technology and software, it is necessary to have a properly qualified human workforce. Moreover, Specialized knowledge is needed to comprehend and interpret the information gathered by a geographic information system (GIS) system, which is expensive to hire and train. This factor will therefore obstruct market growth over the forecast period. What is Geographic Information System Software?
Geographic Information System Software is used to develop, hold, retrieve, organize, display, and perform analyses on many kinds of spatial and geographic data. The geographic information system (GIS) Industry is majorly driven by infrastructural developments, such as smart cities, water and land management, utility, and urban planning. The services segment provides various applications such as location-based services and, thus, is one of the prominent contributors to the market share. Advancements in GIS technologies, such as geo-analytics and integrated location-based data services, are also boosting the adoption of GIS in various regional markets, thereby driving the market demand over the forecast period.