Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
The thesis the data comes from analyses patterns of growth, decline, clustering and dispersal of live music in Sydney and Melbourne between the 1980s and 2000s. It demonstrates the use of historical Geographic Information Systems, combined with interviews, as a methodological approach for understanding the impacts of restructuring in cultural industries. It offers a practical example of applied social research with GIS.
The project developed a novel methodology combining GIS with interviews with music scene participants. A substantial part of the research project comprised the development of a historical geodatabase, leveraging the spatial and temporal data embedded in historical live music performance listings (‘gig listings’) sourced from archived publications in Sydney and Melbourne. This geodatabase ultimately incorporates over 20,000 live music listings and over 2500 geocoded venues.
The historical geodatabase was built incrementally to adapt to the format of the historical data. The structure maintains a one-to-one relationship to primary sources from different publications, allowing for quality checks, but can produce normalised outputs that allow live music venues, performances, and bands to be analysed separately. Outputs from the geodatabase have facilitated the quantitative analysis and geovisualisation of live music data over the study time frame in Sydney and Melbourne.
https://www.icpsr.umich.edu/web/ICPSR/studies/8374/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8374/terms
The Geographic Names Information System (GNIS) was developed by the United States Geological Survey (USGS) to meet major national needs regarding geographic names and their standardization and dissemination. This dataset consists of standard report files written from the National Geographic Names Data Base, one of five data bases maintained in the GNIS. A standard format data file containing Michigan place names and geographic features such as towns, schools, reservoirs, parks, streams, valleys, springs and ridges is accompanied by a file that provides a Cross-Reference to USGS 7.5 x 7.5 minute quadrangle maps for each feature. The records in the data files are organized alphabetically by place or feature name. The other variables available in the dataset include: Federal Information Processing Standard (FIPS) state/county codes, Geographic Coordinates -- latitude and longitude to degrees, minutes, and seconds followed by a single digit alpha directional character, and a GNIS Map Code that can be used with the Cross-Reference file to provide the name of the 7.5 x 7.5 minute quadrangle map that contains that geographic feature.
The Geographic Management Information System (GeoMIS) is a FISMA Moderate minor application built using ArcGIS Server and portal, Microsoft SQL, and a web-facing front-end. The system can be accessed over the internet via https://www.usaidgiswbg.com using a web browser. GeoMIS is based on a commercial off-the-shelf product developed by Esri. Esri is creates geographic information system (GIS) software, web GIS and geodatabase management applications and is based in California. GeoMISIt is maintained by an Israeli company, Systematics (see Attachment 3) which is EsriI's agent in Israel. The mission has an annual maintenance contract with Systematics for GeoMIS. GeoMIS has 100 users from USAID staff (USA Direct Hire and Foreign Service Nationals) and 200 users from USAID contractors and grantees. The system is installed at USAID WBG office in Tel Aviv/Israel inside the computer room in the DMZ. It has no interconnections with any other system.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
These data sets were created as part of The Center for International Development’s ongoing research into the role of geography in economic development (see www.cid.harvard.edu/economic.htm). They have been created between 1998 and 1999.
As per our latest research, the global Geographic Information System (GIS) market size reached USD 12.3 billion in 2024. The industry is experiencing robust expansion, driven by a surging demand for spatial data analytics across diverse sectors. The market is projected to grow at a CAGR of 11.2% from 2025 to 2033, reaching an estimated USD 31.9 billion by 2033. This accelerated growth is primarily attributed to the integration of advanced technologies such as artificial intelligence, IoT, and cloud computing with GIS solutions, as well as the increasing adoption of location-based services and smart city initiatives worldwide.
One of the primary growth factors fueling the GIS market is the rapid adoption of geospatial analytics in urban planning and infrastructure development. Governments and private enterprises are leveraging GIS to optimize land use, manage resources efficiently, and enhance public services. Urban planners utilize GIS to analyze demographic trends, plan transportation networks, and ensure sustainable development. The integration of GIS with Building Information Modeling (BIM) and real-time data feeds has further amplified its utility in smart city projects, driving demand for sophisticated GIS platforms. The proliferation of IoT devices and sensors has also enabled the collection of high-resolution geospatial data, which is instrumental in developing predictive models for urban growth and disaster management.
Another significant driver of the GIS market is the increasing need for disaster management and risk mitigation. GIS technology plays a pivotal role in monitoring natural disasters such as floods, earthquakes, and wildfires. By providing real-time spatial data, GIS enables authorities to make informed decisions, coordinate response efforts, and allocate resources effectively. The growing frequency and intensity of natural disasters, coupled with heightened awareness about climate change, have compelled governments and humanitarian organizations to invest heavily in advanced GIS solutions. These investments are not only aimed at disaster response but also at long-term resilience planning, thereby expanding the scope and scale of GIS applications.
The expanding application of GIS in the agriculture and utilities sectors is another crucial growth factor. Precision agriculture relies on GIS to analyze soil conditions, monitor crop health, and optimize irrigation practices, ultimately boosting productivity and sustainability. In the utilities sector, GIS is indispensable for asset management, network optimization, and outage response. The integration of GIS with remote sensing technologies and drones has revolutionized data collection and analysis, enabling more accurate and timely decision-making. Moreover, the emergence of cloud-based GIS platforms has democratized access to geospatial data and analytics, empowering small and medium enterprises to harness the power of GIS for operational efficiency and strategic planning.
From a regional perspective, North America continues to dominate the GIS market, supported by substantial investments in smart infrastructure, advanced research capabilities, and a strong presence of leading technology providers. However, Asia Pacific is emerging as the fastest-growing region, driven by rapid urbanization, government initiatives for digital transformation, and increasing adoption of GIS in agriculture and disaster management. Europe is also witnessing significant growth, particularly in transportation, environmental monitoring, and public safety applications. The Middle East & Africa and Latin America are gradually catching up, with growing investments in infrastructure development and resource management. This regional diversification is expected to drive innovation and competition in the global GIS market over the forecast period.
The Geographic Information System market is segmented by component into hardware, software, and services, each playing a unique role
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Market Analysis for Geographic Information Systems (GIS) The global Geographic Information Systems (GIS) market is projected to reach a value of USD 2890.3 million by 2033, expanding at a CAGR of 5.3% during the forecast period (2025-2033). This growth is driven by increasing adoption of GIS in various industries, such as utilities, transportation, government, and defense. Additionally, the rising demand for real-time data visualization, spatial analysis, and decision-making is fueling the market expansion. The GIS market is segmented based on type (hardware, software, service) and application (public, private). Public sector applications, such as urban planning, land management, and emergency response, are expected to witness significant growth. Private sector applications, including asset management, supply chain optimization, and environmental conservation, are also gaining traction. Key players in the market include Pasco, Ubisense Group, Beijing SuperMap Software, Hexagon, and Schneider Electric. The market is highly competitive, with established players and emerging startups vying for market share. North America and Europe are the largest markets for GIS, with Asia Pacific expected to exhibit the highest growth potential in the coming years.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
GIS Market is Segmented by Component (Hardware and Software), by Function (Mapping, Surveying, Telematics and Navigation, Location-Based Services), by End User (Agriculture, Utilities, and Mining, Among Others), and by Geography (North America, Europe, Asia Pacific, and Rest of the World). The Report Offers Market Forecasts and Size in Value (USD) for all the Above Segments.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.
One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.
Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.
The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.
Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.
The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.
Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.
The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information Systems (GIS) Platform Market size is projected to reach remarkable heights with an estimated value of USD 12 billion in 2023 and is expected to balloon to over USD 25 billion by 2032, reflecting a robust Compound Annual Growth Rate (CAGR) of 8%. This impressive growth trajectory is largely driven by the increasing demand for location-based services across various industries, including urban planning, transportation, and agriculture. As the world becomes increasingly interconnected, the necessity for real-time location data and advanced mapping solutions has never been more crucial, thereby fuelling the expansion of the GIS platform market.
One significant growth factor for the GIS platform market is the rapid urbanization occurring on a global scale. With more than half of the world's population now living in urban areas, cities are becoming larger and more complex. This trend necessitates sophisticated urban planning solutions that can effectively map, analyze, and visualize urban growth patterns. GIS platforms provide critical tools that enable urban planners to make informed decisions about land use, transportation networks, and infrastructure development. By integrating geographic data with socio-economic data, GIS applications help cities manage resources more efficiently and sustainably, thus driving the market forward.
Another driver of growth in the GIS platform market is the escalating need for effective disaster management solutions. Natural disasters such as hurricanes, earthquakes, and floods are becoming more frequent and severe, posing significant challenges for governments and emergency services worldwide. GIS platforms enable authorities to predict, prepare for, and respond to these disasters more effectively by providing detailed maps and models that can simulate potential scenarios and outcomes. The ability to integrate real-time data with historical records allows emergency response teams to optimize resource allocation and logistics, minimizing the impact of disasters on human lives and infrastructure.
The transportation and logistics sector is also a significant contributor to the growth of the GIS platform market. As global trade and e-commerce continue to grow, the demand for efficient and reliable transportation networks is increasing. GIS platforms provide valuable insights into route optimization, traffic management, and supply chain logistics. By enabling companies to analyze geographic data, GIS applications help to reduce transportation costs, improve delivery times, and enhance overall supply chain efficiency. As businesses increasingly look to leverage location-based data to gain a competitive advantage, the GIS platform market is set to experience sustained growth.
The role of a GIS Controller is becoming increasingly vital as the GIS platform market expands. A GIS Controller is responsible for overseeing the integration and management of geographic data within an organization, ensuring that the data is accurate, up-to-date, and accessible. This role involves coordinating with various departments to implement GIS solutions that align with organizational goals and enhance decision-making processes. As organizations across industries recognize the value of geographic data, the demand for skilled GIS Controllers is on the rise. These professionals play a crucial role in optimizing the use of GIS technology, enabling organizations to leverage location-based insights for strategic advantage.
Regionally, North America is anticipated to dominate the GIS platform market due to its advanced technological infrastructure and high adoption rates among various industries. The presence of leading GIS service providers in this region further bolsters its market position. Additionally, Asia Pacific is projected to witness the fastest growth over the forecast period, driven by rapid urbanization and increasing government initiatives to integrate GIS technology into urban planning and disaster management. The Middle East & Africa and Latin America are also expected to emerge as lucrative markets, as these regions look to harness the potential of GIS platforms to address their unique geographic challenges and drive economic development.
The GIS platform market can be divided into three primary components: software, hardware, and services. Each of these segments plays a vital role in the overall functionality and adap
This dataset contains the files used to run the trfgis Stata package, which gives an integrated access to data of the TRF-GIS Dataverse. This is the alpha version of the trfgis Stata package.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Identified daily cluster attributes derived via space-time scan statistics.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
As of 2023, the Software Geographic Information Systems (GIS) market size was valued at approximately USD 9.1 billion and is projected to reach around USD 18.6 billion by 2032, reflecting a robust Compound Annual Growth Rate (CAGR) of 8.5%. This remarkable growth is primarily driven by the increasing demand for spatial data across various industries, coupled with the advancement in geospatial technologies. The growing integration of GIS with mainstream business operations for better decision-making and the surge in urbanization and smart city initiatives are significant factors propelling the market forward. The continuous evolution in software capabilities, including enhanced data visualization and integration capabilities, further contributes to the rising adoption of GIS solutions worldwide.
One of the pivotal growth drivers of the Software GIS market is the expanding requirement for spatial data and analytics to enhance operational efficiency across multiple industry verticals. Industries such as urban planning, transportation, agriculture, and natural resources management are increasingly relying on GIS solutions for data-driven decision-making. The ability of GIS to provide real-time, location-based insights is revolutionizing how businesses plan, manage resources, and optimize their operations. Moreover, the rapid digitization and adoption of IoT (Internet of Things) technologies are also bolstering the demand for GIS software, as businesses seek to leverage interconnected devices for better data collection and analysis. The integration of GIS with IoT platforms allows for more comprehensive and precise spatial insights, thus driving market growth.
Another significant factor contributing to the growth of the Software GIS market is the advancement in cloud computing technologies. The shift from traditional on-premises deployment to cloud-based GIS solutions is gaining traction due to the numerous advantages offered by the cloud. Cloud-based GIS provides enhanced scalability, flexibility, and cost-effectiveness, making it an attractive option for businesses of all sizes. Additionally, cloud solutions facilitate easier collaboration and data sharing among different stakeholders, fostering a more integrated approach to spatial data management. The growing investment in cloud infrastructure by major players in the technology sector further supports the widespread adoption of cloud-based GIS solutions, enabling businesses to harness the power of spatial data in a more efficient and streamlined manner.
Furthermore, the increasing emphasis on environmental conservation and sustainable development is driving the demand for GIS applications in environmental monitoring and management. GIS software is extensively used for mapping and analyzing environmental data, helping organizations to monitor changes in land use, assess natural resource availability, and evaluate the impact of human activities on the environment. As governments and organizations worldwide strive to meet sustainability goals and address climate change challenges, GIS solutions are becoming indispensable tools for informed decision-making and strategic planning. The integration of GIS with emerging technologies such as AI and machine learning is also enhancing the capabilities of these systems, enabling more sophisticated analysis and predictive modeling.
The application of GIS in Transportation is becoming increasingly significant as the demand for efficient and sustainable transport systems grows. GIS technology enables transportation planners and operators to analyze spatial data in real-time, optimizing route planning and improving logistics operations. By integrating GIS with technologies like GPS and telematics, transportation systems can provide more accurate and timely information, enhancing decision-making processes. This integration is crucial for managing transportation networks effectively, reducing costs, and improving service delivery. As urban areas continue to expand and the need for smart transportation solutions rises, GIS in Transportation is expected to play a pivotal role in shaping the future of mobility.
The Software segment of the GIS market is experiencing significant growth, driven by the continuous innovation and development of advanced GIS software solutions. Software providers are focusing on enhancing the functionality and usability of their products, incorporating features such as 3D visualization, real-time data process
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Geographic Information System market size will be USD 10215.6 million in 2024. It will expand at a compound annual growth rate (CAGR) of 9.20% from 2024 to 2031.
North America held the major market share for more than 40% of the global revenue with a market size of USD 4086.24 million in 2024 and will grow at a compound annual growth rate (CAGR) of 7.4% from 2024 to 2031.
Europe accounted for a market share of over 30% of the global revenue with a market size of USD 3064.68 million.
Asia Pacific held a market share of around 23% of the global revenue with a market size of USD 2349.59 million in 2024 and will grow at a compound annual growth rate (CAGR) of 11.2% from 2024 to 2031.
Latin America had a market share of more than 5% of the global revenue with a market size of USD 510.78 million in 2024 and will grow at a compound annual growth rate (CAGR) of 8.6% from 2024 to 2031.
Middle East and Africa had a market share of around 2% of the global revenue and was estimated at a market size of USD 204.31 million in 2024 and will grow at a compound annual growth rate (CAGR) of 8.9% from 2024 to 2031.
The government category is the fastest growing segment of the Geographic Information System industry
Market Dynamics of Geographic Information System Market
Key Drivers for Geographic Information System Market
Increased Demand for Location-Based Services to Boost Market Growth
The market for geographic information systems (GIS) is expanding due in large part to the growing demand for location-based services (LBS). Retail, transportation, and logistics are just a few of the businesses that are adopting LBS applications like navigation, geotagging, and real-time tracking. Businesses use GIS-enabled LBS to improve operational efficiency, optimize delivery routes, and monitor customer behavior. Furthermore, GIS-powered LBS is now more widely available because of developments in smartphone technology and the growth of IoT devices. As a result of urbanization and smart city projects, governments and organizations are using GIS to manage resources and build cities based on location. In the upcoming years, the GIS market is expected to develop dramatically due to this increased reliance on LBS.
Advancements in Geospatial Technology to Drive Market Growth
The Geographic Information System (GIS) industry is expanding significantly due to advancements in geospatial technologies. Technologies like LiDAR, remote sensing, and 3D mapping have completely changed how spatial data is collected, processed, and shown. More accurate and useful insights are made possible by improved real-time data processing and AI integration capabilities, which help sectors including disaster relief, agriculture, and urban planning. GIS applications are being further transformed by emerging technologies like virtual reality (VR) and augmented reality (AR), which enable immersive data visualization and better decision-making. These developments in technology, along with the falling prices of geospatial tools, are increasing the use of GIS in various industries and driving global market expansion.
Restraint Factor for the Geographic Information System Market
Data Privacy and Security Concerns Will Limit Market Growth
Data security and privacy issues are major barriers to the Geographic Information System (GIS) market's expansion. GIS applications frequently incorporate sensitive location-based data, including information on natural resources, infrastructure design, and human movements. Potential data breaches, illegal access, and abuse present serious privacy and cybersecurity issues. When strong data protection measures are not in place, governments and organizations are reluctant to employ GIS systems. Variable international data privacy laws, like the GDPR in Europe, also make the implementation of GIS systems more challenging. For these issues to be resolved and for GIS technologies to be widely adopted, it is imperative that geographical data be processed, stored, and shared securely.
Impact of Covid-19 on the Geographic Information System Market
The Geographic Information System (GIS) business was greatly impacted by the COVID-19 epidemic, which led to a rise in adoption across a number of industries. Governments and medical institutions use GIS to plan vaccination campaigns, allocate resources, and follow the spread of viruses in real-time. GIS...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
How to cite
When you use the datasets or maps, please also cite to the following paper introducing the whole of process from data collection, harmonization and visualization until releasing the data:
Rantanen, T., Tolvanen, H., Roose, M., Ylikoski, J. & Vesakoski, O. (2022) “Best practices for spatial language data harmonization, sharing and map creation - A case study of Uralic” PLoS ONE 17(6): e0269648. https://doi.org/10.1371/journal.pone.0269648.
Overview
The Geographical database of the Uralic languages consists of past and current distributions of the Uralic languages both as the original digital spatial datasets and as finalized maps. The database has been collected by the interdisciplinary BEDLAN (Biological Evolution and Diversification of LANguages) research team in collaboration with experts of Uralic languages. The work has been financed by the University of Turku (UTU–BGG), Kone Foundation (UraLex, AikaSyyni), the Academy of Finland (URKO), UiT – The Arctic University of Norway and the University of Oulu, as well as the Finno-Ugrian Society. The data have been compiled for the purposes of doing spatial linguistic and multidisciplinary research, and to visually present the state-of-the-art knowledge of the Uralic languages and their dialects. Geographic distributions are visualized as vector data primarily by using polygon objects (speaker areas or language areas), and in some rare cases, by using points. Based on the language distributions, coordinates for the languages and their dialects (point locations) have also been defined.
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
What will be the Size of the GIS Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.
The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.
How is this GIS Industry segmented?
The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.
The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.
Request Free Sample
The Software segment was valued at USD 5.06 billion in 2019
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Identified hourly cluster attributes derived via space-time scan statistics.
The Geographic Names Information System (GNIS) actively seeks data from and partnerships with Government agencies at all levels and other interested organizations. The GNIS is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
A list of Place Names extracted from the ǂKhomani San | Hugh Brody Collection held by the University of Cape Town (UCT) Library.Effort has been made to geocode as many place names as possible with their geographic coordinates (Latitude & Longitude).The data set is available in three formats:• a comma separated values table (CSV); • a KMZ spatial data layer, compatible with Google Maps, Google Earth and most GIS packages; • a ZIP archive of an ESRI shapefile, compatible with most GIS packagesThis data set is incomplete. Not all resources in the collection have been processed, additional place names may be missing from the list. Geocoding was performed as accurately as our reference resources allowed, but some locations may have been misplaced.We would like to thank African Tongue and the communities of the region for their assistance with the creation of this data set.The ǂKhomani San are the first people of the southern Kalahari. They lived as hunters and gatherers in the immense desert in the northwest corner of South Africa. For them, it is a land rich in wildlife, plants, trees, great sand dunes and dry riverbeds. When the ǂKhomani San share their history, they tell a story of dispossession from their lands, erasure of their way of life, and disappearance of their language. To speak of their past is to search in memory for all that was taken from them in the colonial, apartheid and post-apartheid era. They also tell a story of reclamation and recovery of lands, language, and even of memory itself. Coordinate Reference System: Geographic Coordinate System WGS1984 (GCS WGS84)Fields - Due to software limitations diacritics were not used in field names:Place_Name: Name of placeLatitude: Latitude Ordinate GCS WGS84Longitude: Longitude Ordinate GCS WGS84Notes_Loc: Any extra information about the place name location, either from the collection or discovered by the authors.Source: The source of the geographic coordinatesLocal Name: This is the name as it may have changed locallyEng: English nameAfr: Afrikaans namekqz_Kora: Kora namenaq_Nama: Nama namengh_Nuu: Nuu nametsn_Tswana: Tswana namegla_Scottish_Gaelic: Gaelic namefra_French: French nameNotes_ling: notes of linguistic interest
https://www.icpsr.umich.edu/web/ICPSR/studies/3372/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3372/terms
The Regional Crime Analysis GIS (RCAGIS) is an Environmental Systems Research Institute (ESRI) MapObjects-based system that was developed by the United States Department of Justice Criminal Division Geographic Information Systems (GIS) Staff, in conjunction with the Baltimore County Police Department and the Regional Crime Analysis System (RCAS) group, to facilitate the analysis of crime on a regional basis. The RCAGIS system was designed specifically to assist in the analysis of crime incident data across jurisdictional boundaries. Features of the system include: (1) three modes, each designed for a specific level of analysis (simple queries, crime analysis, or reports), (2) wizard-driven (guided) incident database queries, (3) graphical tools for the creation, saving, and printing of map layout files, (4) an interface with CrimeStat spatial statistics software developed by Ned Levine and Associates for advanced analysis tools such as hot spot surfaces and ellipses, (5) tools for graphically viewing and analyzing historical crime trends in specific areas, and (6) linkage tools for drawing connections between vehicle theft and recovery locations, incident locations and suspects' homes, and between attributes in any two loaded shapefiles. RCAGIS also supports digital imagery, such as orthophotos and other raster data sources, and geographic source data in multiple projections. RCAGIS can be configured to support multiple incident database backends and varying database schemas using a field mapping utility.
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,