100+ datasets found
  1. Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS...

    • verifiedmarketresearch.com
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS And Positioning), Component (Hardware, Software), Application (Planning And Analysis, Asset Management), End-User (Transportation, Defense And Intelligence), & Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/geospatial-solutions-market/
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Geospatial Solutions Market size was valued at USD 282.75 Billion in 2024 and is projected to reach USD 650.14 Billion by 2032, growing at a CAGR of 12.10% during the forecast period 2026-2032.

    Geospatial Solutions Market: Definition/ Overview

    Geospatial solutions are applications and technologies that use spatial data to address geography, location, and Earth's surface problems. They use tools like GIS, remote sensing, GPS, satellite imagery analysis, and spatial modelling. These solutions enable informed decision-making, resource allocation optimization, asset management, environmental monitoring, infrastructure planning, and addressing challenges in sectors like urban planning, agriculture, transportation, disaster management, and natural resource management. They empower users to harness spatial information for better understanding and decision-making in various contexts.

    Geospatial solutions are technologies and methodologies used to analyze and visualize spatial data, ranging from urban planning to agriculture. They use GIS, remote sensing, and GNSS to gather, process, and interpret data. These solutions help users make informed decisions, solve complex problems, optimize resource allocation, and enhance situational awareness. They are crucial in addressing challenges and unlocking opportunities in today's interconnected world, such as mapping land use patterns, monitoring ecosystem changes, and real-time asset tracking.

  2. G

    GIS Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). GIS Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/gis-industry-14668
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) industry is experiencing robust growth, projected to maintain a Compound Annual Growth Rate (CAGR) of 10.80% from 2025 to 2033. This expansion is driven by increasing adoption across diverse sectors, including agriculture, utilities, mining, construction, transportation, and oil and gas. The rising need for precise location-based data for efficient operations, optimized resource management, and informed decision-making fuels this market growth. Advancements in hardware, such as high-resolution sensors and drones, coupled with sophisticated software capabilities like advanced spatial analytics and cloud-based GIS solutions, are key contributors. Furthermore, the proliferation of location-based services (LBS) and the growing adoption of telematics and navigation systems are expanding the applications of GIS technology. While data security concerns and the need for skilled professionals present some challenges, the overall market outlook remains positive. The segmentation of the GIS market reveals a strong demand across various components (hardware and software) and functionalities (mapping, surveying, telematics and navigation, and location-based services). North America currently holds a significant market share due to early adoption and technological advancements, but regions like Asia are exhibiting rapid growth fueled by infrastructure development and increasing digitalization. Leading companies like Bentley Systems, Esri, Trimble, and Hexagon AB are at the forefront of innovation, continuously developing and implementing advanced GIS solutions to meet the evolving needs of different industries. The forecast for the next decade points to further market consolidation, with leading players investing heavily in research and development to enhance their product offerings and expand their market reach. The continued integration of GIS with other technologies such as AI and IoT will further drive market expansion and create new opportunities for growth. Comprehensive Coverage GIS Industry Report (2019-2033) This in-depth report provides a comprehensive analysis of the Geographic Information System (GIS) industry, projecting robust growth from $XXX million in 2025 to $YYY million by 2033. The study covers the historical period (2019-2024), base year (2025), and forecast period (2025-2033), offering invaluable insights for businesses, investors, and policymakers. Keywords: GIS market, GIS software, GIS hardware, GIS solutions, geospatial technology, location intelligence, mapping software, surveying equipment, spatial analysis, geospatial analytics. Recent developments include: November 2022 : The new Geodata Portal and broadband maps for the state will be accessible starting on November 18, 2022, according to a statement from the Connecticut Office of Policy and Management (OPM). This announcement was made on GIS Day 2022, which encourages people to learn about geography and the practical uses of GIS that can improve society., November 2022 : The lt. governor of the Indian state, Jammu and Kashmir, launched a GIS-based system in the region. It highlights the significance of GIS technology in addressing new challenges and exploring new opportunities and its real-world applications, accelerating growth in business, government, and society.. Key drivers for this market are: Growing role of GIS in smart cities ecosystem, Integration of location-based mapping systems with business intelligence systems. Potential restraints include: Integration issues with traditional systems, Data quality and accuracy issues. Notable trends are: The Rising Smart Cities Development and Urban Planning to Drive the Market Growth.

  3. U

    GIS Features of the Geospatial Fabric for National Hydrologic Modeling

    • data.usgs.gov
    • s.cnmilf.com
    • +3more
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Bock; Roland Viger (2025). GIS Features of the Geospatial Fabric for National Hydrologic Modeling [Dataset]. http://doi.org/10.5066/F7542KMD
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Andy Bock; Roland Viger
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Apr 28, 2014
    Description

    The Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature c ...

  4. f

    Means and standard deviations () of overall classification accuracies based...

    • plos.figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaomei Zhong; Jianping Li; Huacheng Dou; Shijun Deng; Guofei Wang; Yu Jiang; Yongjie Wang; Zebing Zhou; Li Wang; Fei Yan (2023). Means and standard deviations () of overall classification accuracies based on various samples and features using ETM+ image. [Dataset]. http://doi.org/10.1371/journal.pone.0069434.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Xiaomei Zhong; Jianping Li; Huacheng Dou; Shijun Deng; Guofei Wang; Yu Jiang; Yongjie Wang; Zebing Zhou; Li Wang; Fei Yan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Means and standard deviations () of overall classification accuracies based on various samples and features using ETM+ image.

  5. d

    CoC GIS Tools (GIS Tool).

    • datadiscoverystudio.org
    • data.wu.ac.at
    Updated Mar 15, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). CoC GIS Tools (GIS Tool). [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/654871605908414e8925b5d44771ba4f/html
    Explore at:
    Dataset updated
    Mar 15, 2015
    Description

    description: This tool provides a no-cost downloadable software tool that allows users to interact with professional quality GIS maps. Users access pre-compiled projects through a free software product called ArcReader, and are able to open and explore HUD-specific project data as well as design and print custom maps. No special software/map skills beyond basic computer skills are required, meaning users can quickly get started working with maps of their communities.; abstract: This tool provides a no-cost downloadable software tool that allows users to interact with professional quality GIS maps. Users access pre-compiled projects through a free software product called ArcReader, and are able to open and explore HUD-specific project data as well as design and print custom maps. No special software/map skills beyond basic computer skills are required, meaning users can quickly get started working with maps of their communities.

  6. d

    Data from: Data and Results for GIS-Based Identification of Areas that have...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Data and Results for GIS-Based Identification of Areas that have Resource Potential for Lode Gold in Alaska [Dataset]. https://catalog.data.gov/dataset/data-and-results-for-gis-based-identification-of-areas-that-have-resource-potential-for-lo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.

  7. f

    CONCOR group level attribute data.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wei Luo; Peifeng Yin; Qian Di; Frank Hardisty; Alan M. MacEachren (2023). CONCOR group level attribute data. [Dataset]. http://doi.org/10.1371/journal.pone.0088666.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Wei Luo; Peifeng Yin; Qian Di; Frank Hardisty; Alan M. MacEachren
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    *Mean GDP in 2005 for 4 groups identified at the second level of the CONCOR, mean GDP in 2005, mean distance, weighted distance by population for 7 groups at the third level of the CONCOR.

  8. Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. http://doi.org/10.5281/zenodo.6432940
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  9. f

    Summary statistics of sonar and ponar results for each geologic unit at...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erik R. Venteris; Cassandra J. May (2023). Summary statistics of sonar and ponar results for each geologic unit at Hoover Reservoir in Columbus, Ohio.a [Dataset]. http://doi.org/10.1371/journal.pone.0095940.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Erik R. Venteris; Cassandra J. May
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hoover Reservoir, Ohio, Columbus
    Description

    aUnits are arranged in order of increasing bottom sediment hardness. Columns N, Median Hardness, and Mean ln (E1:E2)/T-K group refer to the full mapping sonar data set; the remaining columns refer to the ponar data set. A significance level of 0.05 was used for the Tukey-Kramer test.

  10. r

    GIS-based Time model. Gothenburg, 1960-2016_2

    • researchdata.se
    • datacatalogue.cessda.eu
    • +3more
    Updated May 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ioanna Stavroulaki; Lars Marcus; Meta Berghauser Pont; Ehsan Abshirini; Jan Sahlberg; Alice Örnö Ax (2022). GIS-based Time model. Gothenburg, 1960-2016_2 [Dataset]. http://doi.org/10.5878/ke11-je22
    Explore at:
    (104074198), (861571)Available download formats
    Dataset updated
    May 16, 2022
    Dataset provided by
    Chalmers University of Technology
    Authors
    Ioanna Stavroulaki; Lars Marcus; Meta Berghauser Pont; Ehsan Abshirini; Jan Sahlberg; Alice Örnö Ax
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1960 - Dec 31, 2015
    Area covered
    Gothenburg, Sweden, Västra Götaland County
    Description

    The GIS-based Time model of Gothenburg aims to map the process of urban development in Gothenburg since 1960 and in particular to document the changes in the spatial form of the city - streets, buildings and plots - through time. Major steps have in recent decades been taken when it comes to understanding how cities work. Essential is the change from understanding cities as locations to understanding them as flows (Batty 2013)1. In principle this means that we need to understand locations (or places) as defined by flows (or different forms of traffic), rather than locations only served by flows. This implies that we need to understand the built form and spatial structure of cities as a system, that by shaping flows creates a series of places with very specific relations to all other places in the city, which also give them very specific performative potentials. It also implies the rather fascinating notion that what happens in one place is dependent on its relation to all other places (Hillier 1996)2. Hence, to understand the individual place, we need a model of the city as a whole.

    Extensive research in this direction has taken place in recent years, that has also spilled over to urban design practice, not least in Sweden, where the idea that to understand the part you need to understand the whole is starting to be established. With the GIS-based Time model for Gothenburg that we present here, we address the next challenge. Place is not only something defined by its spatial relation to all other places in its system, but also by its history, or its evolution over time. Since the built form of the city changes over time, often by cities growing but at times also by cities shrinking, the spatial relation between places changes over time. If cities tend to grow, and most often by extending their periphery, it means that most places get a more central location over time. If this is a general tendency, it does not mean that all places increase their centrality to an equal degree. Depending on the structure of the individual city’s spatial form, different places become more centrally located to different degrees as well as their relative distance to other places changes to different degrees. The even more fascinating notion then becomes apparent; places move over time! To capture, study and understand this, we need a "time model".

    The GIS-based time model of Gothenburg consists of: • 12 GIS-layers of the street network, from 1960 to 2015, in 5-year intervals • 12 GIS-layers of the buildings from 1960 to 2015, in 5-year intervals - Please note that this dataset has been moved to a separate catalog post (https://doi.org/10.5878/t8s9-6y15) and unpublished due to licensing restrictions on its source dataset. • 12 GIS- layers of the plots from1960 to 2015, in 5-year intervals

    In the GIS-based Time model, for every time-frame, the combination of the three fundamental components of spatial form, that is streets, plots and buildings, provides a consistent description of the built environment at that particular time. The evolution of three components can be studied individually, where one could for example analyze the changing patterns of street centrality over time by focusing on the street network; or, the densification processes by focusing on the buildings; or, the expansion of the city by way of occupying more buildable land, by focusing on plots. The combined snapshots of street centrality, density and land division can provide insightful observations about the spatial form of the city at each time-frame; for example, the patterns of spatial segregation, the distribution of urban density or the patterns of sprawl. The observation of how the interrelated layers of spatial form together evolved and transformed through time can provide a more complete image of the patterns of urban growth in the city.

    The Time model was created following the principles of the model of spatial form of the city, as developed by the Spatial Morphology Group (SMoG) at Chalmers University of Technology, within the three-year research project ‘International Spatial Morphology Lab (SMoL)’.

    The project is funded by Älvstranden Utveckling AB in the framework of a larger cooperation project called Fusion Point Gothenburg. The data is shared via SND to create a research infrastructure that is open to new study initiatives.

    1. Batty, M. (2013), The New Science of Cities, Cambridge: MIT Press.
    2. Hillier, B., (1996), Space Is the Machine. Cambridge: University of Cambridge

    12 GIS-layers of plots in Gothenburg, from 1960 to 2015, in 5-year intervals. Only built upon plots (plots with buildings) are included. File format: shapefile (.shp), MapinfoTAB (.TAB). The coordinate system used is SWEREF 99TM, EPSG:3006.

    See the attached Technical Documentation for the description and further details on the production of the datasets. See the attached Report for the description of the related research project.

  11. Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida...

    • catalog.data.gov
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida (NPS, GRD, GRI, EVER, EVER digital map) adapted from Florida Geological Survey Open File Map Series maps by Green, Campbell, Scott, Means and Arthur (1995, 1996, 1997, 1998 and 1999), and Open-File Report map by Scott (2001), and U.S. Geological Survey Bulletin map by Bergendahl (1956), Open-File Report map by McCartan and Moy (1995), and Water-Resources maps by Causaras, Reese and Cunningham (1985, 1986 and 2000) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-everglades-national-park-and-vicinity-florida-nps-grd-gri-ever
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Florida
    Description

    The Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_geology_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_geology_metadata.txt or ever_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:675,000 and United States National Map Accuracy Standards features are within (horizontally) 342.9 meters or 1125 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  12. a

    eBook: Lindsey the GIS Specialist

    • edu.hub.arcgis.com
    Updated Mar 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2019). eBook: Lindsey the GIS Specialist [Dataset]. https://edu.hub.arcgis.com/documents/4915f2532b1144089914b04dc544800a
    Explore at:
    Dataset updated
    Mar 26, 2019
    Dataset authored and provided by
    Education and Research
    Area covered
    Description

    Bolton & Menk, an engineering planning and consulting firm from the Midwestern United States has released a series of illustrated children’s books as a way of helping young people discover several different professions that typically do not get as much attention as other more traditional ones do.Topics of the award winning book series include landscape architecture, civil engineering, water resource engineering, urban planning and now Geographic Information Systems (GIS). The books are available free online in digital format, and easily accessed via a laptop, smart phone or tablet.The book Lindsey the GIS Specialist – A GIS Mapping Story Tyler Danielson, covers some the basics of what geographic information is and the type of work that a GIS Specialist does. It explains what the acronym GIS means, the different types of geospatial data, how we collect data, and what some of the maps a GIS Specialist creates would be used for.Click here to check out the GIS Specialist – A GIS Mapping Story e-book

  13. d

    SafeGraph GIS Data | Global Coverage | 52M+ Places

    • datarade.ai
    .csv
    Updated Mar 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SafeGraph (2023). SafeGraph GIS Data | Global Coverage | 52M+ Places [Dataset]. https://datarade.ai/data-products/safegraph-gis-data-global-coverage-41m-places-safegraph
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Mar 23, 2023
    Dataset authored and provided by
    SafeGraph
    Area covered
    United Kingdom, Canada, United States of America
    Description

    SafeGraph Places provides baseline information for every record in the SafeGraph product suite via the Places schema and polygon information when applicable via the Geometry schema. The current scope of a place is defined as any location humans can visit with the exception of single-family homes. This definition encompasses a diverse set of places ranging from restaurants, grocery stores, and malls; to parks, hospitals, museums, offices, and industrial parks. Premium sets of Places include apartment buildings, Parking Lots, and Point POIs (such as ATMs or transit stations).

    SafeGraph Places is a point of interest (POI) data offering with varying coverage depending on the country. Note that address conventions and formatting vary across countries. SafeGraph has coalesced these fields into the Places schema.

    SafeGraph provides clean and accurate geospatial datasets on 51M+ physical places/points of interest (POI) globally. Hundreds of industry leaders like Mapbox, Verizon, Clear Channel, and Esri already rely on SafeGraph POI data to unlock business insights and drive innovation.

  14. d

    Tucker - EXPLORING EARTH'S SURFACE WITH COMMUNITY MODELS: THE CSDMS PYTHON...

    • dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greg Tucker (2022). Tucker - EXPLORING EARTH'S SURFACE WITH COMMUNITY MODELS: THE CSDMS PYTHON MODELING TOOL [Dataset]. https://dataone.org/datasets/sha256%3A2a8162ea45ab0c71f9e9befd0896e31ebc6b52e6ec41203f969e0c46fee9088c
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Greg Tucker
    Area covered
    Earth
    Description

    TUCKER, Gregory E., CIRES & Department of Geological Sciences, University of Colorado, 2200 Colorado Ave, Boulder, CO 80309-0399; Community Surface Dynamics Modeling System (CSDMS), University of Colorado, Campus Box 399, Boulder, CO 80309, HUTTON, Eric, Community Surface Dynamics Modeling System (CSDMS), University of Colorado, Cam, Boulder, CO 80309 and PIPER, Mark, Community Surface Dynamics Modeling System (CSDMS), University of Colorado, Campus Box 399, Boulder, CO 80309; Instaar, University of Colorado, campus Box 450, 1560 30th St, Boulder, CO 80303

    Our planet’s surface is a restless place. Understanding the processes of weathering, erosion, and deposition that shape it is critical for applications ranging from short-term hazard analysis to long-term sedimentary stratigraphy and landscape/seascape evolution. Improved understanding requires computational models, which link process mechanics and chemistry to the observable geologic and geomorphic record. Historically, earth-surface process models have often been complex and difficult to work with. To help improve this situation and make the discovery process more efficient, the CSDMS Python Modeling Tool (PyMT) provides an environment in which community-built numerical models and tools can be initialized and run directly from a Python command line or Jupyter notebook. By equipping each model with a standardized set of command functions, known collectively as the Basic Model Interface (BMI), the task of learning and applying models becomes much easier. Using BMI functions, models can also be coupled together to explore dynamic feedbacks among different earth systems. To illustrate how PyMT works and the advantages it provides, we present an example that couples a terrestrial landscape evolution model (CHILD) with a marine sediment transport and stratigraphy model (SedFlux3D). Experiments with the resulting coupled model provide insights into how terrestrial “signals,” such as variations in mean precipitation, are recorded in deltaic stratigraphy. The example also illustrates the utility of PyMT’s tools, such as the ability to map variables between a regular rectilinear grid and an irregular triangulated grid. By simplifying the process of learning, operating, and coupling models, PyMT frees researchers to focus on exploring ideas, testing hypotheses, and comparing models with data.

  15. H

    Hartwell China Historical GIS

    • dataverse.harvard.edu
    • dataone.org
    Updated Sep 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Hartwell (2016). Hartwell China Historical GIS [Dataset]. http://doi.org/10.7910/DVN/29302
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 1, 2016
    Dataset provided by
    Harvard Dataverse
    Authors
    Robert Hartwell
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    0741 - 1391
    Area covered
    China
    Description

    Prof. Robert Hartwell (1932 - 1996) created his China Historical GIS under the auspices of his company Chinese Historical Studies. His estate left the data to Harvard University. These materials include functional GIS datasets for the Chinese Dynasties, from Tang to Ming, which were based on the concept of "co-location," or the use of GIS representations of modern county-level administrative units as building blocks to depict the approximate shapes of historical areas. Making use of county boundary data for 1992, (obtained from Crissman's ACASIAN data), Hartwell represented historical units that occupied roughly the same areas by merging or splitting the 1992 counties. Where the contemporary boundaries could not be "co-located" in this fashion, Hartwell drew in approximate line boundaries to divide the contemporary units to fit the historical situations and therefore provide an approximation of the historical unit's area. Although the resulting boundaries are, in many cases, problematic representations, the GIS remains an interesting hueristic GIS tool for sorting, querying, and creating digital maps for selected areas within the major dynasties up to the Ming. Harvard University released the original Hartwell datasets on April 2nd, 2001, in conjunction with the CHGIS project, as a useful means of generating approximate spatial entities correlating to historical administrative units. For Version 5, the Hartwell Datasets were renamed according to a filenaming convention (described above) and projected to match the CHGIS V5 standard (2014).

  16. GIS In Telecom Sector Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). GIS In Telecom Sector Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), APAC (China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/gis-market-in-telecom-sector-industry-analysis
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Canada, United States, United Kingdom, Global
    Description

    Snapshot img

    GIS In Telecom Sector Market Size 2025-2029

    The GIS in telecom sector market size is forecast to increase by USD 2.35 billion at a CAGR of 15.7% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of Geographic Information Systems (GIS) for capacity planning in the telecommunications industry. GIS technology enables telecom companies to optimize network infrastructure, manage resources efficiently, and improve service delivery. Telecommunication assets and network management systems require GIS integration for efficient asset management and network slicing. However, challenges persist in this market. A communication gap between developers and end-users poses a significant obstacle.
    Companies seeking to capitalize on opportunities in the market must focus on addressing these challenges, while also staying abreast of technological advancements and market trends. Effective collaboration between developers and end-users, coupled with strategic investments, will be essential for success in this dynamic market. Telecom companies must bridge this divide to ensure the development of user-friendly and effective GIS solutions. Network densification and virtualization platforms are key trends, allowing for efficient spectrum management and data monetization. Additionally, the implementation of GIS in the telecom sector requires substantial investment in technology and infrastructure, which may deter smaller players from entering the market.
    

    What will be the Size of the GIS In Telecom Sector Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic telecom sector, GIS technology plays a pivotal role in customer analysis, network planning, and infrastructure development. Customer experiences are enhanced through location-based services and real-time data analysis, enabling telecom companies to tailor offerings and improve service quality. Network simulation and capacity planning are crucial for network evolution, with machine learning and AI integration facilitating network optimization and compliance with industry standards.
    IOT connectivity and network analytics platforms offer valuable insights for smart city infrastructure development, with 3D data analysis and network outage analysis ensuring network resilience. Telecom industry partnerships foster innovation and collaboration, driving the continuous evolution of the sector. Consulting firms offer expertise in network compliance and network management, ensuring regulatory adherence and optimal network performance.
    

    How is this GIS In Telecom Sector Industry segmented?

    The gis in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Deployment
    
      On-premises
      Cloud
    
    
    Application
    
      Mapping
      Telematics and navigation
      Surveying
      Location based services
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period. In the telecom sector, the deployment of 5G networks is driving the need for advanced Geographic Information Systems (GIS) to optimize network performance and efficiency. GIS technology enables spatial analysis, network automation, capacity analysis, and bandwidth management, all crucial elements in the rollout of 5G networks. Large enterprises and telecom consulting firms are integrating GIS data into their operations for network planning, optimization, and troubleshooting. Machine learning and artificial intelligence are transforming GIS applications, offering predictive analytics and real-time network performance monitoring. Network virtualization and software-defined networking are also gaining traction, enhancing network capacity and improving network reliability and maintenance.

    GIS software companies provide solutions for desktops, mobiles, cloud, and servers, catering to various industry needs. Smart city initiatives and location-based services are expanding the use cases for GIS in telecom, offering new opportunities for growth. Infrastructure deployment and population density analysis are critical factors in network rollout and capacity enhancement. Network security and performance monitoring are essential components of GIS applications, ensuring network resilience and customer experience management. Edge computing and network latency reduction are also signi

  17. a

    NGGS Schema for GIS as-built submissions

    • ocd-hub-nm-emnrd.hub.arcgis.com
    Updated Aug 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jlivengood_EMNRD (2021). NGGS Schema for GIS as-built submissions [Dataset]. https://ocd-hub-nm-emnrd.hub.arcgis.com/maps/8647a25ac577430987fb8795d34b74d5
    Explore at:
    Dataset updated
    Aug 12, 2021
    Dataset authored and provided by
    jlivengood_EMNRD
    Area covered
    Description

    Empty geodatabase schema for GIS as-built submissions of new gathering pipeline or natural gas gathering system as defined in 19.15.28.9 NMAC.“Natural gas gathering system” means the gathering pipelines and associated facilities that compress, dehydrate, or treat natural gas after the custody transfer point and ending at the connection point with a natural gas processing plant or transmission or distribution system. 19.15.28.7 NMAC.“Gathering pipeline” means a pipeline that gathers natural gas within a natural gas gathering system. 19.15.28.7 NMAC.“Release” No later than July 1st of each year, the operator shall also file with the division an updated system map GIS digitally formatted as-built map of its gathering pipeline or natural gas gathering system, which shall include a GIS layer that identifies the date, location and volume of vented or flared natural gas of each emergency, malfunction and release reported to the division since 19.15.28 NMAC became applicable to the pipeline or system. System Maps will be submitted to OCD in the Esri file geodatabase format.Do not submit Esri shapefile, personal geodatabase, or other raw formats. Do not submit GIS files that were converted to a file geodatabase format without following the required database template.File Geodatabase and feature layers must use an underscore, rather than a period or space, when naming files. (ex. FacID_Date_NGGS)

  18. I

    State of Illinois - Common Spatial Geodatabase for the Social Sciences

    • databank.illinois.edu
    Updated Aug 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Lotspeich-Yadao (2021). State of Illinois - Common Spatial Geodatabase for the Social Sciences [Dataset]. http://doi.org/10.13012/B2IDB-4857915_V1
    Explore at:
    Dataset updated
    Aug 5, 2021
    Authors
    Michael Lotspeich-Yadao
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Illinois
    Dataset funded by
    Illinois Department of Children and Family Serviceshttp://www.dcfs.illinois.gov/
    Description

    This geodatabase serves two purposes: 1) to provide State of Illinois agencies with a fast resource for the preparation of maps and figures that require the use of shape or line files from federal agencies, the State of Illinois, or the City of Chicago, and 2) as a start for social scientists interested in exploring how geographic information systems (whether this is data visualization or geographically weighted regression) can bring new meaning to the interpretation of their data. All layer files included are relevant to the State of Illinois. Sources for this geodatabase include the U.S. Census Bureau, U.S. Geological Survey, City of Chicago, Chicago Public Schools, Chicago Transit Authority, Regional Transportation Authority, and Bureau of Transportation Statistics.

  19. f

    Comparison between the means and standard deviations of the urban perception...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philip Salesses; Katja Schechtner; César A. Hidalgo (2023). Comparison between the means and standard deviations of the urban perception recorded for each city and question. [Dataset]. http://doi.org/10.1371/journal.pone.0068400.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Philip Salesses; Katja Schechtner; César A. Hidalgo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison between the means and standard deviations of the urban perception recorded for each city and question.

  20. Geographic Information System Software Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Geographic Information System Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-software-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System Software Market Outlook



    The global Geographic Information System (GIS) Software market size was valued at approximately USD 7.8 billion in 2023 and is projected to reach USD 15.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.3% during the forecast period. This impressive growth can be attributed to the increasing demand for efficient data management tools across various industries, which rely on spatial data for decision-making and strategic planning. The rapid advancements in technology, such as the integration of AI and IoT with GIS software, have further propelled the market, enabling organizations to harness the full potential of geographic data in innovative ways.



    One of the primary growth drivers of the GIS Software market is the burgeoning need for urban planning and smart city initiatives worldwide. As urbanization trends escalate, cities are increasingly relying on GIS technology to manage resources more effectively, optimize transportation networks, and enhance public safety. The ability of GIS software to provide real-time data and spatial analysis is vital for city planners and administrators faced with the challenges of modern urban environments. Furthermore, the trend towards digital transformation in governmental organizations is boosting the adoption of GIS solutions, as they seek to improve operational efficiency and service delivery.



    The agricultural sector is also experiencing significant transformations due to the integration of GIS software, which is another pivotal growth factor for the market. Precision agriculture, which involves the use of GIS technologies to monitor and manage farming practices, is enabling farmers to increase crop yields while reducing resource consumption. By leveraging spatial data, farmers can make informed decisions about planting, irrigation, and harvesting, ultimately leading to more sustainable agricultural practices. This trend is particularly prominent in regions where agriculture forms a substantial portion of the economy, encouraging the adoption of advanced GIS tools to maintain competitive advantage.



    Another influential factor contributing to the growth of the GIS Software market is the increasing importance of environmental management and disaster response. GIS technology plays a crucial role in assessing environmental changes, managing natural resources, and planning responses to natural disasters. The ability to overlay various data sets onto geographic maps allows for better analysis and understanding of environmental phenomena, making GIS indispensable in tackling issues such as climate change and resource depletion. Moreover, governments and organizations are investing heavily in GIS tools that aid in disaster preparedness and response, ensuring timely and effective action during emergencies.



    The evolution of GIS Mapping Software has been instrumental in transforming how spatial data is utilized across various sectors. These software solutions offer robust tools for visualizing, analyzing, and interpreting geographic data, enabling users to make informed decisions based on spatial insights. With the ability to integrate multiple data sources, GIS Mapping Software provides a comprehensive platform for conducting spatial analysis, which is crucial for applications ranging from urban planning to environmental management. As technology continues to advance, the capabilities of GIS Mapping Software are expanding, offering more sophisticated features such as 3D visualization and real-time data processing. These advancements are not only enhancing the utility of GIS tools but also making them more accessible to a wider range of users, thereby driving their adoption across different industries.



    Regionally, North America and Europe have traditionally dominated the GIS Software market, thanks to their robust technological infrastructure and higher adoption rates of advanced technologies. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid urbanization, increased government spending on infrastructure development, and the expanding telecommunications sector. The growing awareness and adoption of GIS solutions in countries like China and India are significant contributors to this regional growth. Furthermore, Latin America and the Middle East & Africa regions are slowly catching up, with ongoing investments in smart city projects and infrastructure development driving the demand for GIS software.



    Component Analysis</h2&

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
VERIFIED MARKET RESEARCH (2024). Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS And Positioning), Component (Hardware, Software), Application (Planning And Analysis, Asset Management), End-User (Transportation, Defense And Intelligence), & Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/geospatial-solutions-market/
Organization logo

Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS And Positioning), Component (Hardware, Software), Application (Planning And Analysis, Asset Management), End-User (Transportation, Defense And Intelligence), & Region for 2026-2032

Explore at:
Dataset updated
Oct 21, 2024
Dataset provided by
Verified Market Researchhttps://www.verifiedmarketresearch.com/
Authors
VERIFIED MARKET RESEARCH
License

https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

Time period covered
2026 - 2032
Area covered
Global
Description

Geospatial Solutions Market size was valued at USD 282.75 Billion in 2024 and is projected to reach USD 650.14 Billion by 2032, growing at a CAGR of 12.10% during the forecast period 2026-2032.

Geospatial Solutions Market: Definition/ Overview

Geospatial solutions are applications and technologies that use spatial data to address geography, location, and Earth's surface problems. They use tools like GIS, remote sensing, GPS, satellite imagery analysis, and spatial modelling. These solutions enable informed decision-making, resource allocation optimization, asset management, environmental monitoring, infrastructure planning, and addressing challenges in sectors like urban planning, agriculture, transportation, disaster management, and natural resource management. They empower users to harness spatial information for better understanding and decision-making in various contexts.

Geospatial solutions are technologies and methodologies used to analyze and visualize spatial data, ranging from urban planning to agriculture. They use GIS, remote sensing, and GNSS to gather, process, and interpret data. These solutions help users make informed decisions, solve complex problems, optimize resource allocation, and enhance situational awareness. They are crucial in addressing challenges and unlocking opportunities in today's interconnected world, such as mapping land use patterns, monitoring ecosystem changes, and real-time asset tracking.

Search
Clear search
Close search
Google apps
Main menu