51 datasets found
  1. d

    GIS2DJI: GIS file to DJI Pilot kml conversion tool

    • search.dataone.org
    • borealisdata.ca
    Updated Feb 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cadieux, Nicolas (2024). GIS2DJI: GIS file to DJI Pilot kml conversion tool [Dataset]. https://search.dataone.org/view/sha256%3Ad201e0d38014f27dece7af97f02f913e6873df90ffad67aceea4a221ef02d76f
    Explore at:
    Dataset updated
    Feb 24, 2024
    Dataset provided by
    Borealis
    Authors
    Cadieux, Nicolas
    Description

    GIS2DJI is a Python 3 program created to exports GIS files to a simple kml compatible with DJI pilot. The software is provided with a GUI. GIS2DJI has been tested with the following file formats: gpkg, shp, mif, tab, geojson, gml, kml and kmz. GIS_2_DJI will scan every file, every layer and every geometry collection (ie: MultiPoints) and create one output kml or kmz for each object found. It will import points, lines and polygons, and converted each object into a compatible DJI kml file. Lines and polygons will be exported as kml files. Points will be converted as PseudoPoints.kml. A PseudoPoints fools DJI to import a point as it thinks it's a line with 0 length. This allows you to import points in mapping missions. Points will also be exported as Point.kmz because PseudoPoints are not visible in a GIS or in Google Earth. The .kmz file format should make points compatible with some DJI mission software.

  2. G

    Hydroclimatic atlas 2022

    • ouvert.canada.ca
    • catalogue.arctic-sdi.org
    • +2more
    csv, geojson, html +3
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Municipalities of Québec (2025). Hydroclimatic atlas 2022 [Dataset]. https://ouvert.canada.ca/data/dataset/8bc217ff-d25d-4f55-a9a7-ada3df4b29a7
    Explore at:
    csv, geojson, zip, pdf, html, shpAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Government and Municipalities of Québec
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 1970 - Dec 31, 2100
    Description

    #Données of the 2022 Hydroclimatic Atlas ## #Description The Hydroclimatic Atlas describes the current and future water regime of southern Quebec in order to support the implementation of water management practices that are resilient to climate change. These data are from the most recent version of the Hydroclimatic Atlas. ## #Nouveautés * Improvement of the spatial resolution of the hydrographic network; * Greater spatial coverage; * Addition of the CliMEX and CORDEX-NA sets, in addition to the scenarios in the CMIP5 set; * Use of six hydrological platforms; * * Addition of indicators, especially annual ones. * Etc. ## #Liste data available * Link to the new Hydroclimatic Atlas website. * Map of the 24,604 river sections of the Hydroclimatic Atlas with their attributes, available in GeoJSON and shapefile format. To facilitate download and display, the map is divided into 11 GeoJSON files: ABIT (Abitibi and Lac Abitibi region), CND west (North Shore A and B regions), CND east (North Shore regions C, D and E), GASP (North Shore regions C, D and E), GASP (Gaspésie), MONT (Gaspesie), MONT (Montégérie), OUTM (Outaouais Upstream), OUTV (Outaouais Downstream), OUTV (Outaouais Downstream), SAGU (Saguenay), SLNO (St-Laurent Nord-Ouest), SLSO (St-Laurent Sud-Ouest), and VAUD (Vaudreuil). * The CSV tables (“Magnitude...”) for each of the 76 hydrological indicators describing the amplement, the direction and the dispersion for RCP 4.5 and RCP8.5, for the three future horizons (see the documentation for details). * The CSV tables (“Projected indicator...”) for each of the 76 hydrological indicators detailing the flow values with their uncertainty for the historical period and the three future horizons (RCP4.5 and 8.5). See the documentation for more details. * A PDF with the metadata and a more detailed description of the data. ## #Note The 2018 version data is archived on Data Quebec for reference, for example for old reports or analyses referring to this version of the data. Any new study or analysis should use the most recent data available below or on the Atlas website.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  3. d

    Carte des départements

    • data.gouv.fr
    • data.europa.eu
    • +1more
    bin, zip
    Updated Oct 3, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandre Lexman (2021). Carte des départements [Dataset]. https://www.data.gouv.fr/en/datasets/carte-des-departements-2-1/
    Explore at:
    zip, bin(3427910)Available download formats
    Dataset updated
    Oct 3, 2021
    Authors
    Alexandre Lexman
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Contenu Carte de chaque département extrait d'Open Street Map, mise à jour chaque semaine. NB : Les régions sont également disponibles. Chaque département est livré sous forme d'une archive ZIP qui contient plusieurs couches cartographiques au fomat shapefile (le .doc de la cartographie) : places.shp : noms des villes ou des quartiers roads.shp : toutes les voies de passage de l'autoroute au chemin piéton buildings.shp : l'espace bâti raillways.shp : les voies ferrées waterways.shp :le réseau hydrolique points.shp : une liste de point d’intérêt natural.shp : zones vertes landuse.shp : occupation des sol admin-departement.shp : le département Par ailleurs, un fichier projet QGis très sommaire est fourni dans l'archive, afin de visualiser la superposition des couches dans un outil libre. Origine Les données proviennent de la base de données cartographique communautaire et libre OpenStreetMap. Le découpage par département provient du Contours des départements français issus d'OpenStreetMap. Les shapefile sont extraits selon la méthode exposée par l'excellent article de Maxime Résibois sur PortailSIG : http://www.portailsig.org/content/recuperer-des-donnees-openstreetmap-gdalogr Les sources du traitement automatique d'extraction sont disponibles sur github. Elles s'appuyent sur tuttle, un système de build pour les données. Licence Ces données sont issues du crowdsourcing effectué par les contributeurs au projet OpenStreetMap et sont sous licence ODbL qui impose un partage à l'identique et la mention obligatoire d'attribution doit être "© les contributeurs d'OpenStreetMap sous licence ODbL" conformément à http://osm.org/copyright Historique des modifications 7 avril 2018 correction d'un bug qui pouvait retirer une partie de la donnée sur les départements côtiers mise à jour du fichier QGis pour que la carte soit plus jolie de près Départements et covid Si votre département est soumis au pass sanitaire, commandez le vôtre au format carte bancaire sur carte-sanitaire.fr

  4. B

    UNI-CEN Boundaries (CBF-Original Shorelines) - Province/Territory (PR) -...

    • borealisdata.ca
    • search.dataone.org
    Updated Apr 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNI-CEN Project (2023). UNI-CEN Boundaries (CBF-Original Shorelines) - Province/Territory (PR) - 1861 - Esri Shapefile format (NAD83 CSRS / EPSG:3348) [Dataset]. http://doi.org/10.5683/SP3/LE9WWE
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 4, 2023
    Dataset provided by
    Borealis
    Authors
    UNI-CEN Project
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/LE9WWEhttps://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/LE9WWE

    Time period covered
    Jan 1, 1861
    Area covered
    Canada
    Description

    The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.

  5. Healthcare Data

    • caliper.com
    cdf, dwg, dxf, gdb +9
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caliper Corporation (2024). Healthcare Data [Dataset]. https://www.caliper.com/mapping-software-data/maptitude-healthcare-data.htm
    Explore at:
    sql server mssql, ntf, postgis, cdf, kmz, shp, kml, geojson, dwg, sdo, dxf, gdb, postgresqlAvailable download formats
    Dataset updated
    Jul 25, 2024
    Dataset authored and provided by
    Caliper Corporationhttp://www.caliper.com/
    License

    https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm

    Time period covered
    2024
    Area covered
    United States
    Description

    Healthcare Data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain point geographic files of healthcare organizations, providers, and hospitals and an boundary file of Primary Care Service Areas.

  6. d

    UNI-CEN Boundaries (DBF-Original Shorelines) - Census Division (CD) - 2006 -...

    • search.dataone.org
    Updated Dec 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNI-CEN Project (2023). UNI-CEN Boundaries (DBF-Original Shorelines) - Census Division (CD) - 2006 - Esri Shapefile format (WGS84 / EPSG:4326) [Dataset]. http://doi.org/10.5683/SP3/BPVOYR
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    UNI-CEN Project
    Time period covered
    Jan 1, 2006
    Description

    The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.

  7. BELGIUM - Municipalities

    • hub.arcgis.com
    • open-data-esri-belux-esribeluxdata.hub.arcgis.com
    • +1more
    Updated Nov 20, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri BeLux Online Public Data (2013). BELGIUM - Municipalities [Dataset]. https://hub.arcgis.com/datasets/esribeluxdata::belgium-municipalities-1
    Explore at:
    Dataset updated
    Nov 20, 2013
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri BeLux Online Public Data
    Area covered
    Description

    This dataset contains all the boundaries of all the Belgian municipalities. It also contains the INS code and the French and Dutch name of each municipality.

  8. d

    European NUTS boundaries as GeoJSON at 1:60m

    • datahub.io
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European NUTS boundaries as GeoJSON at 1:60m [Dataset]. https://datahub.io/core/geo-nuts-administrative-boundaries
    Explore at:
    Dataset updated
    Dec 12, 2024
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    geodata data package providing geojson polygons and shp for administratives European NUTS levels 1, 2 and 3

  9. d

    UNI-CEN Boundaries (CBF-Harmonized Shorelines) - Federal Electoral District...

    • search.dataone.org
    Updated Dec 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNI-CEN Project (2023). UNI-CEN Boundaries (CBF-Harmonized Shorelines) - Federal Electoral District (FED) - 2013 - geojson format (WGS84 / EPSG:4326) [Dataset]. https://search.dataone.org/view/sha256%3Aedda89b13ff3e5d91469b696313f98646637c5732861bc1f628333a7bab32615
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    UNI-CEN Project
    Time period covered
    Jan 1, 2013
    Description

    The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.

  10. Monaco Country (Pays) Administrative Boundaries Dataset

    • geolocet.com
    Updated Nov 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geolocet (2023). Monaco Country (Pays) Administrative Boundaries Dataset [Dataset]. https://geolocet.com/products/monaco-admin-level-2-country
    Explore at:
    Dataset updated
    Nov 26, 2023
    Dataset authored and provided by
    Geolocet
    License

    https://geolocet.com/pages/terms-of-usehttps://geolocet.com/pages/terms-of-use

    Area covered
    Monaco
    Description

    This dataset provides the Country (Pays) level administrative boundaries for Monaco in GeoJSON and Shape file formats. Rendered in the industry-standard coordinate reference system, EPSG:4326 (WGS84), this dataset ensures precision and compatibility.

  11. USA Parks

    • hub.arcgis.com
    • colorado-river-portal.usgs.gov
    • +2more
    Updated Mar 13, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). USA Parks [Dataset]. https://hub.arcgis.com/datasets/esri::usa-parks/about
    Explore at:
    Dataset updated
    Mar 13, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of October 2024 and will retire in December 2026. A new version of this item is available for your use.This layer presents National and State parks and forests, along with County, Regional and Local parks within the United States. It provides thousands of named parks and forests at many levels.This layer uses TomTom source from March 2023.

  12. B

    UNI-CEN Boundaries (CBF-Harmonized Shorelines) - Census Tract (CT) - 1961 -...

    • borealisdata.ca
    Updated Feb 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNI-CEN Project (2023). UNI-CEN Boundaries (CBF-Harmonized Shorelines) - Census Tract (CT) - 1961 - geojson format (WGS84 / EPSG:4326) [Dataset]. http://doi.org/10.5683/SP3/WSPYVM
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 4, 2023
    Dataset provided by
    Borealis
    Authors
    UNI-CEN Project
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.5683/SP3/WSPYVMhttps://borealisdata.ca/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.5683/SP3/WSPYVM

    Time period covered
    Jan 1, 1961
    Area covered
    Canada
    Description

    The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.

  13. d

    Geospatial Data | Global Map data | Administrative boundaries | Global...

    • datarade.ai
    .json, .xml
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Geospatial Data | Global Map data | Administrative boundaries | Global coverage | 245k Polygons [Dataset]. https://datarade.ai/data-products/geopostcodes-geospatial-data-global-map-data-administrati-geopostcodes-a4bf
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  14. d

    Carte des circonscriptions législatives 2012 et 2017

    • data.gouv.fr
    json, zip
    Updated Jul 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sciences Po (2017). Carte des circonscriptions législatives 2012 et 2017 [Dataset]. https://www.data.gouv.fr/en/datasets/carte-des-circonscriptions-legislatives-2012-et-2017/
    Explore at:
    json(689263), zip(250932)Available download formats
    Dataset updated
    Jul 21, 2017
    Dataset authored and provided by
    Sciences Po
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Ce fond de carte au format shapefile et geojson est une reprise du travail de Toxicode. L'Atelier de cartographie de Sciences Po à ensuite vérifié, nettoyé et généralisé le fond. Couverture : France métropolitaine, départements d'outre-mer (DOM) et collectivités d'outre-mer (COM) Format des données ID : code du département et numéro de la circonscription, ex : 69002 num_circ : numéro de circonscription, ex : 2 code_dpt : code du département, ex : 69 nom_dpt : nom du département code_reg : code du département nom_reg : nom de la région Historique 20/04/2017 - première version avec France métropolitaine + département d'outre-mer (DOM) 15/05/2017 - corrections multiples d'attributs et de géométries (merci à F. Rodrigo et Th. Gratier) + ajout des collectivités d'outre-mer (COM) après nettoyage et simplification du fond de mapotempo 21/07/2017 - corrections des tracés (géométries invalides, superposition de points...) grâce à la contribution d'Arthur Cheysson (merci!)

  15. d

    GIS Data | Global Geospatial data | Postal/Administrative boundaries |...

    • datarade.ai
    .json, .xml
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). GIS Data | Global Geospatial data | Postal/Administrative boundaries | Countries, Regions, Cities, Suburbs, and more [Dataset]. https://datarade.ai/data-products/geopostcodes-gis-data-gesopatial-data-postal-administrati-geopostcodes
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (GIS data, Geospatial data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the GIS data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  16. Tectonic Plate Boundaries

    • hub.arcgis.com
    • amerigeo.org
    • +3more
    Updated Sep 29, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tectonic Plate Boundaries [Dataset]. https://hub.arcgis.com/datasets/5f01bc7f78d74498aa942455fcd0dc10
    Explore at:
    Dataset updated
    Sep 29, 2014
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Area covered
    South Pacific Ocean, Pacific Ocean
    Description

    117 original plate boundaries from Esri Data and Maps (2007) edited to better match 10 years of earthquakes, land forms and bathymetry from Mapping Our World's WSI_Earth image from module 2. Esri Canada's education layer of plate boundaries and the Smithsonian's ascii file from the download section of the 'This Dynamic Planet' site plate boundaries were used to compare the resulting final plate boundaries for significant differences.

  17. a

    TIGER Line 2018 Tennessee Counties

    • hub.arcgis.com
    • tndata-myutk.opendata.arcgis.com
    Updated Nov 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Tennessee (2018). TIGER Line 2018 Tennessee Counties [Dataset]. https://hub.arcgis.com/datasets/myUTK::tiger-line-2018-tennessee-counties/about
    Explore at:
    Dataset updated
    Nov 27, 2018
    Dataset authored and provided by
    University of Tennessee
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    Each county or statistically equivalent entity is assigned a 3-character FIPS code that is unique within a state, as well as an 8-character National Standard (GNIS) code.The 2018 TIGER/Line Shapefiles reflect available governmental unit boundaries of the counties and equivalent entities as of January 1, 2018.Core-based Statistical Area (CBSA) Codes – The 2018 county and equivalent entity shapefiles also contain fields with codes for combined statistical area, metropolitan or micropolitan statistical area, and metropolitan division. Counties form the building blocks for CBSAs, and a user can merge county records to form these areas without having to acquire the individual CBSA shapefiles.

  18. Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • zenodo.org
    • explore.openaire.eu
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. http://doi.org/10.5281/zenodo.6432940
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  19. d

    Bicycle Maintenance Stands DLR

    • haleandhearty.staging.derilinx.com
    Updated Mar 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Bicycle Maintenance Stands DLR [Dataset]. https://haleandhearty.staging.derilinx.com/dataset/bicycle-maintenance-stands-dlr
    Explore at:
    Dataset updated
    Mar 8, 2022
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Locations of bicycle maintenance stands within the Dún Laoghaire-Rathdown County Council administrative area. Data provided by Dún Laoghaire-Rathdown County Council in June 2021. CSV, GeoJSON and Shapefile datasets of Dún Laoghaire-Rathdown's Bicycle bicycle maintenance stands. Fields include: ITM coordinates, covered, number of stands, owner and confirmed.

  20. B

    UNI-CEN Boundaries (CBF-Harmonized Shorelines) - Federal Electoral District...

    • borealisdata.ca
    Updated Jan 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNI-CEN Project (2023). UNI-CEN Boundaries (CBF-Harmonized Shorelines) - Federal Electoral District (FED) - 2003 - geojson format (WGS84 / EPSG:4326) [Dataset]. http://doi.org/10.5683/SP3/OJCVK7
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 16, 2023
    Dataset provided by
    Borealis
    Authors
    UNI-CEN Project
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/OJCVK7https://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/OJCVK7

    Time period covered
    Jan 1, 2003
    Area covered
    Canada
    Description

    The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cadieux, Nicolas (2024). GIS2DJI: GIS file to DJI Pilot kml conversion tool [Dataset]. https://search.dataone.org/view/sha256%3Ad201e0d38014f27dece7af97f02f913e6873df90ffad67aceea4a221ef02d76f

GIS2DJI: GIS file to DJI Pilot kml conversion tool

Explore at:
Dataset updated
Feb 24, 2024
Dataset provided by
Borealis
Authors
Cadieux, Nicolas
Description

GIS2DJI is a Python 3 program created to exports GIS files to a simple kml compatible with DJI pilot. The software is provided with a GUI. GIS2DJI has been tested with the following file formats: gpkg, shp, mif, tab, geojson, gml, kml and kmz. GIS_2_DJI will scan every file, every layer and every geometry collection (ie: MultiPoints) and create one output kml or kmz for each object found. It will import points, lines and polygons, and converted each object into a compatible DJI kml file. Lines and polygons will be exported as kml files. Points will be converted as PseudoPoints.kml. A PseudoPoints fools DJI to import a point as it thinks it's a line with 0 length. This allows you to import points in mapping missions. Points will also be exported as Point.kmz because PseudoPoints are not visible in a GIS or in Google Earth. The .kmz file format should make points compatible with some DJI mission software.

Search
Clear search
Close search
Google apps
Main menu