Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary
Geojson files used to visualize geospatial layers relevant to identifying and assessing trucking fleet decarbonization opportunities with the MIT Climate & Sustainability Consortium's Geospatial Trucking Industry Decarbonization Explorer (Geo-TIDE) tool.
Relevant Links
Link to the online version of the tool (requires creation of a free user account).
Link to GitHub repo with source code to produce this dataset and deploy the Geo-TIDE tool locally.
Funding
This dataset was produced with support from the MIT Climate & Sustainability Consortium.
Original Data Sources
These geojson files draw from and synthesize a number of different datasets and tools. The original data sources and tools are described below:
Filename(s) Description of Original Data Source(s) Link(s) to Download Original Data License and Attribution for Original Data Source(s)
faf5_freight_flows/*.geojson
trucking_energy_demand.geojson
highway_assignment_links_*.geojson
infrastructure_pooling_thought_experiment/*.geojson
Regional and highway-level freight flow data obtained from the Freight Analysis Framework Version 5. Shapefiles for FAF5 region boundaries and highway links are obtained from the National Transportation Atlas Database. Emissions attributes are evaluated by incorporating data from the 2002 Vehicle Inventory and Use Survey and the GREET lifecycle emissions tool maintained by Argonne National Lab.
Shapefile for FAF5 Regions
Shapefile for FAF5 Highway Network Links
FAF5 2022 Origin-Destination Freight Flow database
FAF5 2022 Highway Assignment Results
Attribution for Shapefiles: United States Department of Transportation Bureau of Transportation Statistics National Transportation Atlas Database (NTAD). Available at: https://geodata.bts.gov/search?collection=Dataset.
License for Shapefiles: This NTAD dataset is a work of the United States government as defined in 17 U.S.C. § 101 and as such are not protected by any U.S. copyrights. This work is available for unrestricted public use.
Attribution for Origin-Destination Freight Flow database: National Transportation Research Center in the Oak Ridge National Laboratory with funding from the Bureau of Transportation Statistics and the Federal Highway Administration. Freight Analysis Framework Version 5: Origin-Destination Data. Available from: https://faf.ornl.gov/faf5/Default.aspx. Obtained on Aug 5, 2024. In the public domain.
Attribution for the 2022 Vehicle Inventory and Use Survey Data: United States Department of Transportation Bureau of Transportation Statistics. Vehicle Inventory and Use Survey (VIUS) 2002 [supporting datasets]. 2024. https://doi.org/10.21949/1506070
Attribution for the GREET tool (original publication): Argonne National Laboratory Energy Systems Division Center for Transportation Research. GREET Life-cycle Model. 2014. Available from this link.
Attribution for the GREET tool (2022 updates): Wang, Michael, et al. Summary of Expansions and Updates in GREET® 2022. United States. https://doi.org/10.2172/1891644
grid_emission_intensity/*.geojson
Emission intensity data is obtained from the eGRID database maintained by the United States Environmental Protection Agency.
eGRID subregion boundaries are obtained as a shapefile from the eGRID Mapping Files database.
eGRID database
Shapefile with eGRID subregion boundaries
Attribution for eGRID data: United States Environmental Protection Agency: eGRID with 2022 data. Available from https://www.epa.gov/egrid/download-data. In the public domain.
Attribution for shapefile: United States Environmental Protection Agency: eGRID Mapping Files. Available from https://www.epa.gov/egrid/egrid-mapping-files. In the public domain.
US_elec.geojson
US_hy.geojson
US_lng.geojson
US_cng.geojson
US_lpg.geojson
Locations of direct current fast chargers and refueling stations for alternative fuels along U.S. highways. Obtained directly from the Station Data for Alternative Fuel Corridors in the Alternative Fuels Data Center maintained by the United States Department of Energy Office of Energy Efficiency and Renewable Energy.
US_elec.geojson
US_hy.geojson
US_lng.geojson
US_cng.geojson
US_lpg.geojson
Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy. Alternative Fueling Station Corridors. 2024. Available from: https://afdc.energy.gov/corridors. In the public domain.
These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.
daily_grid_emission_profiles/*.geojson
Hourly emission intensity data obtained from ElectricityMaps.
Original data can be downloaded as csv files from the ElectricityMaps United States of America database
Shapefile with region boundaries used by ElectricityMaps
License: Open Database License (ODbL). Details here: https://www.electricitymaps.com/data-portal
Attribution for csv files: Electricity Maps (2024). United States of America 2022-23 Hourly Carbon Intensity Data (Version January 17, 2024). Electricity Maps Data Portal. https://www.electricitymaps.com/data-portal.
Attribution for shapefile with region boundaries: ElectricityMaps contributors (2024). electricitymaps-contrib (Version v1.155.0) [Computer software]. https://github.com/electricitymaps/electricitymaps-contrib.
gen_cap_2022_state_merged.geojson
trucking_energy_demand.geojson
Grid electricity generation and net summer power capacity data is obtained from the state-level electricity database maintained by the United States Energy Information Administration.
U.S. state boundaries obtained from this United States Department of the Interior U.S. Geological Survey ScienceBase-Catalog.
Annual electricity generation by state
Net summer capacity by state
Shapefile with U.S. state boundaries
Attribution for electricity generation and capacity data: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data/state/. In the public domain.
electricity_rates_by_state_merged.geojson
Commercial electricity prices are obtained from the Electricity database maintained by the United States Energy Information Administration.
Electricity rate by state
Attribution: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data.php. In the public domain.
demand_charges_merged.geojson
demand_charges_by_state.geojson
Maximum historical demand charges for each state and zip code are derived from a dataset compiled by the National Renewable Energy Laboratory in this this Data Catalog.
Historical demand charge dataset
The original dataset is compiled by the National Renewable Energy Laboratory (NREL), the U.S. Department of Energy (DOE), and the Alliance for Sustainable Energy, LLC ('Alliance').
Attribution: McLaren, Joyce, Pieter Gagnon, Daniel Zimny-Schmitt, Michael DeMinco, and Eric Wilson. 2017. 'Maximum demand charge rates for commercial and industrial electricity tariffs in the United States.' NREL Data Catalog. Golden, CO: National Renewable Energy Laboratory. Last updated: July 24, 2024. DOI: 10.7799/1392982.
eastcoast.geojson
midwest.geojson
la_i710.geojson
h2la.geojson
bayarea.geojson
saltlake.geojson
northeast.geojson
Highway corridors and regions targeted for heavy duty vehicle infrastructure projects are derived from a public announcement on February 15, 2023 by the United States Department of Energy.
The shapefile with Bay area boundaries is obtained from this Berkeley Library dataset.
The shapefile with Utah county boundaries is obtained from this dataset from the Utah Geospatial Resource Center.
Shapefile for Bay Area country boundaries
Shapefile for counties in Utah
Attribution for public announcement: United States Department of Energy. Biden-Harris Administration Announces Funding for Zero-Emission Medium- and Heavy-Duty Vehicle Corridors, Expansion of EV Charging in Underserved Communities (2023). Available from https://www.energy.gov/articles/biden-harris-administration-announces-funding-zero-emission-medium-and-heavy-duty-vehicle.
Attribution for Bay area boundaries: San Francisco (Calif.). Department Of Telecommunications and Information Services. Bay Area Counties. 2006. In the public domain.
Attribution for Utah boundaries: Utah Geospatial Resource Center & Lieutenant Governor's Office. Utah County Boundaries (2023). Available from https://gis.utah.gov/products/sgid/boundaries/county/.
License for Utah boundaries: Creative Commons 4.0 International License.
incentives_and_regulations/*.geojson
State-level incentives and regulations targeting heavy duty vehicles are collected from the State Laws and Incentives database maintained by the United States Department of Energy's Alternative Fuels Data Center.
Data was collected manually from the State Laws and Incentives database.
Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Alternative Fuels Data Center. State Laws and Incentives. Accessed on Aug 5, 2024 from: https://afdc.energy.gov/laws/state. In the public domain.
These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.
costs_and_emissions/*.geojson
diesel_price_by_state.geojson
trucking_energy_demand.geojson
Lifecycle costs and emissions of electric and diesel trucking are evaluated by adapting the model developed by Moreno Sader et al., and calibrated to the Run on Less dataset for the Tesla Semi collected from the 2023 PepsiCo Semi pilot by the North American Council for Freight Efficiency.
In
The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.
The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:
(1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.
(2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.
(3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.
Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.
More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.
Data processing
We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.
Version
Version 2022.1.
Acknowledgements
This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.
Citation
Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision
Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940
Contacts
Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;
Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn
Institution: Kunming Institute of Botany, Chinese Academy of Sciences
Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China
Copyright
This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).
Download high-quality, up-to-date Syria shapefile boundaries (SHP, projection system SRID 4326). Our Syria Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.
Download high-quality, up-to-date South Sudan shapefile boundaries (SHP, projection system SRID 4326). Our South Sudan Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
geodata data package providing geojson polygons for all the world's countries
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
geodata data package providing geojson polygons and shp for administratives European NUTS levels 1, 2 and 3
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Download high-quality, up-to-date Belgium shapefile boundaries (SHP, projection system SRID 4326). Our Belgium Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
Overview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.
The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the map data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
World Bank-approved boundaries (and polygons) including international boundaries, disputed areas, coastlines, lakes and a guide to help with their usage. Corresponding admin 1 and 2 level boundaries are only available internally to World Bank staff. Boundaries are available as an ESRI GeoDatabase, in GeoJSON, a shapefile and API endpoints for interactive maps. If Bank staff use this data to create a map (print, web, or presentations for external audience e.g. external web sites, on mission), staff must receive clearance for the map by submitting the created map to the World Bank Cartography Unit (please refer to contact email below).
When a natural disaster or disease outbreak occurs there is a rush to establish accurate health care location data that can be used to support people on the ground. This has been demonstrated by events such as the Haiti earthquake and the Ebola epidemic in West Africa. As a result valuable time is wasted establishing accurate and accessible baseline data. Healthsites.io establishes this data and the tools necessary to upload, manage and make the data easily accessible. Global scope The Global Healthsites Mapping Project is an initiative to create an online map of every health facility in the world and make the details of each location easily accessible. Open data collaboration Through collaborations with users, trusted partners and OpenStreetMap the Global Healthsites Mapping Project will capture and validate the location and contact details of every facility and make this data freely available under an Open Data License (ODBL). Accessible The Global Healthsites Mapping Project will make the data accessible over the Internet through an API and other formats such as GeoJSON, Shapefile, KML, CSV. Focus on health care location data The Global Healthsites Mapping Project's design philosophy is the long term curation and validation of health care location data. The healthsites.io map will enable users to discover what healthcare facilities exist at any global location and the associated services and resources.
The 119th Congressional Districts dataset reflects boundaries from January 3rd, 2025 from the United States Census Bureau (USCB), and the attributes are updated every Sunday from the United States House of Representatives and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Information for each member of Congress is appended to the Census Congressional District shapefile using information from the Office of the Clerk, U.S. House of Representatives' website https://clerk.house.gov/xml/lists/MemberData.xml and its corresponding XML file. Congressional districts are the 435 areas from which people are elected to the U.S. House of Representatives. This dataset also includes 9 geographies for non-voting at large delegate districts, resident commissioner districts, and congressional districts that are not defined. After the apportionment of congressional seats among the states based on census population counts, each state is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The 119th Congress is seated from January 3, 2025 through January 3, 2027. In Connecticut, Illinois, and New Hampshire, the Redistricting Data Program (RDP) participant did not define the CDs to cover all of the state or state equivalent area. In these areas with no CDs defined, the code "ZZ" has been assigned, which is treated as a single CD for purposes of data presentation. The TIGER/Line shapefiles for the District of Columbia, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands) each contain a single record for the non-voting delegate district in these areas. The boundaries of all other congressional districts reflect information provided to the Census Bureau by the states by May 31, 2024. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529006
Download high-quality, up-to-date Hungary shapefile boundaries (SHP, projection system SRID 4326). Our Hungary Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
The AbrirCon extension for CKAN enhances data accessibility by enabling users to seamlessly open various resource types with external online applications like Plotly, Carto, and Geojson.io. This extension adds "Abrir con" links to resource pages, providing users with a direct way to visualize and interact with data using their preferred tools. By supporting a range of file formats, AbrirCon extends CKAN's utility for data exploration and analysis. Key Features: Plotly Integration: Allows users to open CSV, TSV, XLS, and XLSX files directly in Plotly for interactive data visualization. Carto Integration: Enables opening CSV, XLS, XLSX, KML, KMZ, GeoJSON, and SHP files in Carto for geospatial analysis and mapping. Geojson.io Integration: Facilitates opening GeoJSON files in Geojson.io for quick viewing and editing of geospatial data. Easy Installation: Simple installation process involving cloning the repository, installing the extension, and adding abrircon to the ckan.plugins configuration. Configuration Parameters: Requires configuration of specific parameters (not detailed in the Readme), likely to configure the integration with Plotly, Carto and Geojson.io (e.g. API keys or URLs). Technical Integration: The AbrirCon extension integrates with CKAN by adding itself to the ckan.plugins configuration, as described in the readme. This suggests that it likely modifies the resource view templates— specifically the resourceitemexplore block of the resource_item.html file — to insert the "Abrir con" links. When installing, the readme explicitly mentions the order of plugins in ckan.plugins being important, specifically that abrircon should precede any plugins which modify the resourceitemexplore block of resource_item.html. Benefits & Impact: The AbrirCon extension simplifies the process of visualizing and working with data stored in CKAN. By allowing users to quickly open resources in external applications, it reduces the need for manual downloading and uploading of files. This streamlined workflow enhances data exploration and analysis capabilities, making CKAN a more valuable tool for data users. The fact that several city councils contributed to the extension points to its value in the open data ecosystem.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
borderscape_webgis_data_v6.0.zip
.README.md
: a formatted text document (Markdown syntax) describing the contents of this repository.sites.geojson
: a GeoJSON file with information on each archaeological site included in the webGIS.borderscape_sites.csv
: the list of archaeological sites and their attributes from which the sites.geojson
file was built for the webGIS, in the open CSV (comma separated values) format.borderscape_archaeological_sites.xlsx
: the list of archaeological sites and their attributes. It contains the same information as borderscape_sites.csv
as an Excel Workbook (Office Open XML)flooding_nile.geojson
: a GeoJSON polygon file with information on Nile flood levels at 86m and 94.5m ASL.borderscape_bibliography.bib
: A bibliography with all of the sources abbreviated in the sites.csv
file.merged_coronas_freegr.tif
: a GEOtif of the georeferenced CORONA imagery showing the Lower Nubian landscape prior to the construction of the Aswan High Dam.borderscape_data.zip
contains the following ZIP archives with the spatial (shapefiles) data:borderscape_archaeological_sites.zip
: a ZIP archive of a shapefile showing all of the archaeological sites and their attributes used in the webGIS.sites_phase1.zip
: a ZIP archive of a shapefile showing archaeological sites used in the webGIS from Phase 1.sites_phase2.zip
: a ZIP archive of a shapefile showing archaeological sites used in the webGIS from Phase 2.sites_phase3.zip
: a ZIP archive of a shapefile showing archaeological sites used in the webGIS from Phase 3.sites_phase4.zip
: a ZIP archive of a shapefile showing archaeological sites used in the webGIS from Phase 4.sites_phase5.zip
: a ZIP archive of a shapefile showing archaeological sites used in the webGIS from Phase 5.sites_phase6.zip
: a ZIP archive of a shapefile showing archaeological sites used in the webGIS from Phase 6.86m_flooding_contour.zip
: a ZIP archive of a shapefile showing flooded areas at 86m ASL.94.5m_flooding_contour.zip
: a ZIP archive of a shapefile showing flooded areas at 94.5m ASL.This data set is a conversion of Califonia building footprint file from GeoJSON format to shapefile format. The California building footprint file which contains 10,988,525 computer generated building footprints in California state is extracting from US building footprint dataset by Microsoft (2018).
Important Note: This item is in mature support as of October 2024 and will retire in December 2026. A new version of this item is available for your use.This layer presents National and State parks and forests, along with County, Regional and Local parks within the United States. It provides thousands of named parks and forests at many levels.This layer uses TomTom source from March 2023.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Virginia's 1st Congressional District GIS
original data sets in .kml (high and low resolution), now also in .geojson, .topojson, and .shp.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary
Geojson files used to visualize geospatial layers relevant to identifying and assessing trucking fleet decarbonization opportunities with the MIT Climate & Sustainability Consortium's Geospatial Trucking Industry Decarbonization Explorer (Geo-TIDE) tool.
Relevant Links
Link to the online version of the tool (requires creation of a free user account).
Link to GitHub repo with source code to produce this dataset and deploy the Geo-TIDE tool locally.
Funding
This dataset was produced with support from the MIT Climate & Sustainability Consortium.
Original Data Sources
These geojson files draw from and synthesize a number of different datasets and tools. The original data sources and tools are described below:
Filename(s) Description of Original Data Source(s) Link(s) to Download Original Data License and Attribution for Original Data Source(s)
faf5_freight_flows/*.geojson
trucking_energy_demand.geojson
highway_assignment_links_*.geojson
infrastructure_pooling_thought_experiment/*.geojson
Regional and highway-level freight flow data obtained from the Freight Analysis Framework Version 5. Shapefiles for FAF5 region boundaries and highway links are obtained from the National Transportation Atlas Database. Emissions attributes are evaluated by incorporating data from the 2002 Vehicle Inventory and Use Survey and the GREET lifecycle emissions tool maintained by Argonne National Lab.
Shapefile for FAF5 Regions
Shapefile for FAF5 Highway Network Links
FAF5 2022 Origin-Destination Freight Flow database
FAF5 2022 Highway Assignment Results
Attribution for Shapefiles: United States Department of Transportation Bureau of Transportation Statistics National Transportation Atlas Database (NTAD). Available at: https://geodata.bts.gov/search?collection=Dataset.
License for Shapefiles: This NTAD dataset is a work of the United States government as defined in 17 U.S.C. § 101 and as such are not protected by any U.S. copyrights. This work is available for unrestricted public use.
Attribution for Origin-Destination Freight Flow database: National Transportation Research Center in the Oak Ridge National Laboratory with funding from the Bureau of Transportation Statistics and the Federal Highway Administration. Freight Analysis Framework Version 5: Origin-Destination Data. Available from: https://faf.ornl.gov/faf5/Default.aspx. Obtained on Aug 5, 2024. In the public domain.
Attribution for the 2022 Vehicle Inventory and Use Survey Data: United States Department of Transportation Bureau of Transportation Statistics. Vehicle Inventory and Use Survey (VIUS) 2002 [supporting datasets]. 2024. https://doi.org/10.21949/1506070
Attribution for the GREET tool (original publication): Argonne National Laboratory Energy Systems Division Center for Transportation Research. GREET Life-cycle Model. 2014. Available from this link.
Attribution for the GREET tool (2022 updates): Wang, Michael, et al. Summary of Expansions and Updates in GREET® 2022. United States. https://doi.org/10.2172/1891644
grid_emission_intensity/*.geojson
Emission intensity data is obtained from the eGRID database maintained by the United States Environmental Protection Agency.
eGRID subregion boundaries are obtained as a shapefile from the eGRID Mapping Files database.
eGRID database
Shapefile with eGRID subregion boundaries
Attribution for eGRID data: United States Environmental Protection Agency: eGRID with 2022 data. Available from https://www.epa.gov/egrid/download-data. In the public domain.
Attribution for shapefile: United States Environmental Protection Agency: eGRID Mapping Files. Available from https://www.epa.gov/egrid/egrid-mapping-files. In the public domain.
US_elec.geojson
US_hy.geojson
US_lng.geojson
US_cng.geojson
US_lpg.geojson
Locations of direct current fast chargers and refueling stations for alternative fuels along U.S. highways. Obtained directly from the Station Data for Alternative Fuel Corridors in the Alternative Fuels Data Center maintained by the United States Department of Energy Office of Energy Efficiency and Renewable Energy.
US_elec.geojson
US_hy.geojson
US_lng.geojson
US_cng.geojson
US_lpg.geojson
Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy. Alternative Fueling Station Corridors. 2024. Available from: https://afdc.energy.gov/corridors. In the public domain.
These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.
daily_grid_emission_profiles/*.geojson
Hourly emission intensity data obtained from ElectricityMaps.
Original data can be downloaded as csv files from the ElectricityMaps United States of America database
Shapefile with region boundaries used by ElectricityMaps
License: Open Database License (ODbL). Details here: https://www.electricitymaps.com/data-portal
Attribution for csv files: Electricity Maps (2024). United States of America 2022-23 Hourly Carbon Intensity Data (Version January 17, 2024). Electricity Maps Data Portal. https://www.electricitymaps.com/data-portal.
Attribution for shapefile with region boundaries: ElectricityMaps contributors (2024). electricitymaps-contrib (Version v1.155.0) [Computer software]. https://github.com/electricitymaps/electricitymaps-contrib.
gen_cap_2022_state_merged.geojson
trucking_energy_demand.geojson
Grid electricity generation and net summer power capacity data is obtained from the state-level electricity database maintained by the United States Energy Information Administration.
U.S. state boundaries obtained from this United States Department of the Interior U.S. Geological Survey ScienceBase-Catalog.
Annual electricity generation by state
Net summer capacity by state
Shapefile with U.S. state boundaries
Attribution for electricity generation and capacity data: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data/state/. In the public domain.
electricity_rates_by_state_merged.geojson
Commercial electricity prices are obtained from the Electricity database maintained by the United States Energy Information Administration.
Electricity rate by state
Attribution: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data.php. In the public domain.
demand_charges_merged.geojson
demand_charges_by_state.geojson
Maximum historical demand charges for each state and zip code are derived from a dataset compiled by the National Renewable Energy Laboratory in this this Data Catalog.
Historical demand charge dataset
The original dataset is compiled by the National Renewable Energy Laboratory (NREL), the U.S. Department of Energy (DOE), and the Alliance for Sustainable Energy, LLC ('Alliance').
Attribution: McLaren, Joyce, Pieter Gagnon, Daniel Zimny-Schmitt, Michael DeMinco, and Eric Wilson. 2017. 'Maximum demand charge rates for commercial and industrial electricity tariffs in the United States.' NREL Data Catalog. Golden, CO: National Renewable Energy Laboratory. Last updated: July 24, 2024. DOI: 10.7799/1392982.
eastcoast.geojson
midwest.geojson
la_i710.geojson
h2la.geojson
bayarea.geojson
saltlake.geojson
northeast.geojson
Highway corridors and regions targeted for heavy duty vehicle infrastructure projects are derived from a public announcement on February 15, 2023 by the United States Department of Energy.
The shapefile with Bay area boundaries is obtained from this Berkeley Library dataset.
The shapefile with Utah county boundaries is obtained from this dataset from the Utah Geospatial Resource Center.
Shapefile for Bay Area country boundaries
Shapefile for counties in Utah
Attribution for public announcement: United States Department of Energy. Biden-Harris Administration Announces Funding for Zero-Emission Medium- and Heavy-Duty Vehicle Corridors, Expansion of EV Charging in Underserved Communities (2023). Available from https://www.energy.gov/articles/biden-harris-administration-announces-funding-zero-emission-medium-and-heavy-duty-vehicle.
Attribution for Bay area boundaries: San Francisco (Calif.). Department Of Telecommunications and Information Services. Bay Area Counties. 2006. In the public domain.
Attribution for Utah boundaries: Utah Geospatial Resource Center & Lieutenant Governor's Office. Utah County Boundaries (2023). Available from https://gis.utah.gov/products/sgid/boundaries/county/.
License for Utah boundaries: Creative Commons 4.0 International License.
incentives_and_regulations/*.geojson
State-level incentives and regulations targeting heavy duty vehicles are collected from the State Laws and Incentives database maintained by the United States Department of Energy's Alternative Fuels Data Center.
Data was collected manually from the State Laws and Incentives database.
Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Alternative Fuels Data Center. State Laws and Incentives. Accessed on Aug 5, 2024 from: https://afdc.energy.gov/laws/state. In the public domain.
These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.
costs_and_emissions/*.geojson
diesel_price_by_state.geojson
trucking_energy_demand.geojson
Lifecycle costs and emissions of electric and diesel trucking are evaluated by adapting the model developed by Moreno Sader et al., and calibrated to the Run on Less dataset for the Tesla Semi collected from the 2023 PepsiCo Semi pilot by the North American Council for Freight Efficiency.
In