100+ datasets found
  1. GeoJSON files for the MCSC's Trucking Industry Decarbonization Explorer...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danika Eamer; Danika Eamer; Micah Borrero; Micah Borrero; Noman Bashir; Noman Bashir (2025). GeoJSON files for the MCSC's Trucking Industry Decarbonization Explorer (Geo-TIDE) [Dataset]. http://doi.org/10.5281/zenodo.13207716
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Danika Eamer; Danika Eamer; Micah Borrero; Micah Borrero; Noman Bashir; Noman Bashir
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary

    Geojson files used to visualize geospatial layers relevant to identifying and assessing trucking fleet decarbonization opportunities with the MIT Climate & Sustainability Consortium's Geospatial Trucking Industry Decarbonization Explorer (Geo-TIDE) tool.

    Relevant Links

    Link to the online version of the tool (requires creation of a free user account).

    Link to GitHub repo with source code to produce this dataset and deploy the Geo-TIDE tool locally.

    Funding

    This dataset was produced with support from the MIT Climate & Sustainability Consortium.

    Original Data Sources

    These geojson files draw from and synthesize a number of different datasets and tools. The original data sources and tools are described below:

    Filename(s)Description of Original Data Source(s)Link(s) to Download Original Data
    License and Attribution for Original Data Source(s)

    faf5_freight_flows/*.geojson

    trucking_energy_demand.geojson

    highway_assignment_links_*.geojson

    infrastructure_pooling_thought_experiment/*.geojson

    Regional and highway-level freight flow data obtained from the Freight Analysis Framework Version 5. Shapefiles for FAF5 region boundaries and highway links are obtained from the National Transportation Atlas Database. Emissions attributes are evaluated by incorporating data from the 2002 Vehicle Inventory and Use Survey and the GREET lifecycle emissions tool maintained by Argonne National Lab.

    Shapefile for FAF5 Regions

    Shapefile for FAF5 Highway Network Links

    FAF5 2022 Origin-Destination Freight Flow database

    FAF5 2022 Highway Assignment Results

    Attribution for Shapefiles: United States Department of Transportation Bureau of Transportation Statistics National Transportation Atlas Database (NTAD). Available at: https://geodata.bts.gov/search?collection=Dataset.

    License for Shapefiles: This NTAD dataset is a work of the United States government as defined in 17 U.S.C. § 101 and as such are not protected by any U.S. copyrights. This work is available for unrestricted public use.

    Attribution for Origin-Destination Freight Flow database: National Transportation Research Center in the Oak Ridge National Laboratory with funding from the Bureau of Transportation Statistics and the Federal Highway Administration. Freight Analysis Framework Version 5: Origin-Destination Data. Available from: https://faf.ornl.gov/faf5/Default.aspx. Obtained on Aug 5, 2024. In the public domain.

    Attribution for the 2022 Vehicle Inventory and Use Survey Data: United States Department of Transportation Bureau of Transportation Statistics. Vehicle Inventory and Use Survey (VIUS) 2002 [supporting datasets]. 2024. https://doi.org/10.21949/1506070

    Attribution for the GREET tool (original publication): Argonne National Laboratory Energy Systems Division Center for Transportation Research. GREET Life-cycle Model. 2014. Available from this link.

    Attribution for the GREET tool (2022 updates): Wang, Michael, et al. Summary of Expansions and Updates in GREET® 2022. United States. https://doi.org/10.2172/1891644

    grid_emission_intensity/*.geojson

    Emission intensity data is obtained from the eGRID database maintained by the United States Environmental Protection Agency.

    eGRID subregion boundaries are obtained as a shapefile from the eGRID Mapping Files database.

    eGRID database

    Shapefile with eGRID subregion boundaries

    Attribution for eGRID data: United States Environmental Protection Agency: eGRID with 2022 data. Available from https://www.epa.gov/egrid/download-data. In the public domain.

    Attribution for shapefile: United States Environmental Protection Agency: eGRID Mapping Files. Available from https://www.epa.gov/egrid/egrid-mapping-files. In the public domain.

    US_elec.geojson

    US_hy.geojson

    US_lng.geojson

    US_cng.geojson

    US_lpg.geojson

    Locations of direct current fast chargers and refueling stations for alternative fuels along U.S. highways. Obtained directly from the Station Data for Alternative Fuel Corridors in the Alternative Fuels Data Center maintained by the United States Department of Energy Office of Energy Efficiency and Renewable Energy.

    US_elec.geojson

    US_hy.geojson

    US_lng.geojson

    US_cng.geojson

    US_lpg.geojson

    Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy. Alternative Fueling Station Corridors. 2024. Available from: https://afdc.energy.gov/corridors. In the public domain.

    These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.

    daily_grid_emission_profiles/*.geojson

    Hourly emission intensity data obtained from ElectricityMaps.

    Original data can be downloaded as csv files from the ElectricityMaps United States of America database

    Shapefile with region boundaries used by ElectricityMaps

    License: Open Database License (ODbL). Details here: https://www.electricitymaps.com/data-portal

    Attribution for csv files: Electricity Maps (2024). United States of America 2022-23 Hourly Carbon Intensity Data (Version January 17, 2024). Electricity Maps Data Portal. https://www.electricitymaps.com/data-portal.

    Attribution for shapefile with region boundaries: ElectricityMaps contributors (2024). electricitymaps-contrib (Version v1.155.0) [Computer software]. https://github.com/electricitymaps/electricitymaps-contrib.

    gen_cap_2022_state_merged.geojson

    trucking_energy_demand.geojson

    Grid electricity generation and net summer power capacity data is obtained from the state-level electricity database maintained by the United States Energy Information Administration.

    U.S. state boundaries obtained from "https://www.sciencebase.gov/catalog/item/52c78623e4b060b9ebca5be5">this United

  2. d

    Country Polygons as GeoJSON

    • datahub.io
    Updated Sep 1, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Country Polygons as GeoJSON [Dataset]. https://datahub.io/core/geo-countries
    Explore at:
    Dataset updated
    Sep 1, 2017
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    geodata data package providing geojson polygons for all the world's countries

  3. g

    Belgium Shapefile

    • geopostcodes.com
    shp
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Belgium Shapefile [Dataset]. https://www.geopostcodes.com/country/belgium-shapefile
    Explore at:
    shpAvailable download formats
    Dataset updated
    May 22, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Belgium
    Description

    Download high-quality, up-to-date Belgium shapefile boundaries (SHP, projection system SRID 4326). Our Belgium Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  4. g

    Benign Shapefile

    • geopostcodes.com
    shp
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Benign Shapefile [Dataset]. https://www.geopostcodes.com/country/benin-shapefile/
    Explore at:
    shpAvailable download formats
    Dataset updated
    May 22, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Benign
    Description

    Download high-quality, up-to-date Benign shapefile boundaries (SHP, projection system SRID 4326). Our Benign Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  5. a

    Data from: Congressional Districts

    • data-usdot.opendata.arcgis.com
    • catalog.data.gov
    • +1more
    Updated Jul 1, 1995
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Transportation: ArcGIS Online (1995). Congressional Districts [Dataset]. https://data-usdot.opendata.arcgis.com/datasets/usdot::congressional-districts/about
    Explore at:
    Dataset updated
    Jul 1, 1995
    Dataset authored and provided by
    U.S. Department of Transportation: ArcGIS Online
    Area covered
    Description

    The 119th Congressional Districts dataset reflects boundaries from January 03, 2025 from the United States Census Bureau (USCB), and the attributes are updated every Sunday from the United States House of Representatives and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Information for each member of Congress is appended to the Census Congressional District shapefile using information from the Office of the Clerk, U.S. House of Representatives' website https://clerk.house.gov/xml/lists/MemberData.xml and its corresponding XML file. Congressional districts are the 435 areas from which people are elected to the U.S. House of Representatives. This dataset also includes 9 geographies for non-voting at large delegate districts, resident commissioner districts, and congressional districts that are not defined. After the apportionment of congressional seats among the states based on census population counts, each state is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The 119th Congress is seated from January 3, 2025 through January 3, 2027. In Connecticut, Illinois, and New Hampshire, the Redistricting Data Program (RDP) participant did not define the CDs to cover all of the state or state equivalent area. In these areas with no CDs defined, the code "ZZ" has been assigned, which is treated as a single CD for purposes of data presentation. The TIGER/Line shapefiles for the District of Columbia, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands) each contain a single record for the non-voting delegate district in these areas. The boundaries of all other congressional districts reflect information provided to the Census Bureau by the states by May 31, 2024. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529006

  6. Z

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liu, Jie (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Liu, Jie
    Zhu, Guang-Fu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  7. d

    Polygon Data | Marinas in US and Canada | Map & Geospatial Insights

    • datarade.ai
    Updated Mar 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xtract (2023). Polygon Data | Marinas in US and Canada | Map & Geospatial Insights [Dataset]. https://datarade.ai/data-products/xtract-io-geometry-data-marinas-in-us-and-canada-xtract
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Mar 23, 2023
    Dataset authored and provided by
    Xtract
    Area covered
    Canada, United States
    Description

    This specialized location dataset delivers detailed information about marina establishments. Maritime industry professionals, coastal planners, and tourism researchers can leverage precise location insights to understand maritime infrastructure, analyze recreational boating landscapes, and develop targeted strategies.

    How Do We Create Polygons? -All our polygons are manually crafted using advanced GIS tools like QGIS, ArcGIS, and similar applications. This involves leveraging aerial imagery and street-level views to ensure precision. -Beyond visual data, our expert GIS data engineers integrate venue layout/elevation plans sourced from official company websites to construct detailed indoor polygons. This meticulous process ensures higher accuracy and consistency. -We verify our polygons through multiple quality checks, focusing on accuracy, relevance, and completeness.

    What's More? -Custom Polygon Creation: Our team can build polygons for any location or category based on your specific requirements. Whether it’s a new retail chain, transportation hub, or niche point of interest, we’ve got you covered. -Enhanced Customization: In addition to polygons, we capture critical details such as entry and exit points, parking areas, and adjacent pathways, adding greater context to your geospatial data. -Flexible Data Delivery Formats: We provide datasets in industry-standard formats like WKT, GeoJSON, Shapefile, and GDB, making them compatible with various systems and tools. -Regular Data Updates: Stay ahead with our customizable refresh schedules, ensuring your polygon data is always up-to-date for evolving business needs.

    Unlock the Power of POI and Geospatial Data With our robust polygon datasets and point-of-interest data, you can: -Perform detailed market analyses to identify growth opportunities. -Pinpoint the ideal location for your next store or business expansion. -Decode consumer behavior patterns using geospatial insights. -Execute targeted, location-driven marketing campaigns for better ROI. -Gain an edge over competitors by leveraging geofencing and spatial intelligence.

    Why Choose LocationsXYZ? LocationsXYZ is trusted by leading brands to unlock actionable business insights with our spatial data solutions. Join our growing network of successful clients who have scaled their operations with precise polygon and POI data. Request your free sample today and explore how we can help accelerate your business growth.

  8. CA Geographic Boundaries

    • data.ca.gov
    • s.cnmilf.com
    • +1more
    shp
    Updated May 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2024). CA Geographic Boundaries [Dataset]. https://data.ca.gov/dataset/ca-geographic-boundaries
    Explore at:
    shp(136046), shp(10153125), shp(2597712)Available download formats
    Dataset updated
    May 3, 2024
    Dataset authored and provided by
    California Department of Technologyhttp://cdt.ca.gov/
    Description

    This dataset contains shapefile boundaries for CA State, counties and places from the US Census Bureau's 2023 MAF/TIGER database. Current geography in the 2023 TIGER/Line Shapefiles generally reflects the boundaries of governmental units in effect as of January 1, 2023.

  9. g

    Sweden Shapefile

    • geopostcodes.com
    shp
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Sweden Shapefile [Dataset]. https://www.geopostcodes.com/country/sweden-shapefile
    Explore at:
    shpAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Sweden
    Description

    Download high-quality, up-to-date Sweden shapefile boundaries (SHP, projection system SRID 4326). Our Sweden Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  10. w

    World Subnational Boundaries - Dataset - waterdata

    • wbwaterdata.org
    Updated Mar 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). World Subnational Boundaries - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/world-subnational-boundaries
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    World Bank-approved boundaries (and polygons) including international boundaries, disputed areas, coastlines, lakes and a guide to help with their usage. Corresponding admin 1 and 2 level boundaries are only available internally to World Bank staff. Boundaries are available as an ESRI GeoDatabase, in GeoJSON, a shapefile and API endpoints for interactive maps. If Bank staff use this data to create a map (print, web, or presentations for external audience e.g. external web sites, on mission), staff must receive clearance for the map by submitting the created map to the World Bank Cartography Unit (please refer to contact email below).

  11. Monaco Country (Pays) Administrative Boundaries Dataset

    • geolocet.com
    Updated Nov 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geolocet (2023). Monaco Country (Pays) Administrative Boundaries Dataset [Dataset]. https://geolocet.com/products/monaco-admin-level-2-country
    Explore at:
    Dataset updated
    Nov 26, 2023
    Dataset authored and provided by
    Geolocet
    License

    https://geolocet.com/pages/terms-of-usehttps://geolocet.com/pages/terms-of-use

    Area covered
    Monaco
    Description

    This dataset provides the Country (Pays) level administrative boundaries for Monaco in GeoJSON and Shape file formats. Rendered in the industry-standard coordinate reference system, EPSG:4326 (WGS84), this dataset ensures precision and compatibility.

  12. World Countries Generalized

    • hub.arcgis.com
    • covid19.esriuk.com
    • +3more
    Updated May 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). World Countries Generalized [Dataset]. https://hub.arcgis.com/datasets/esri::world-countries-generalized/about
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    World Countries Generalized represents generalized boundaries for the countries of the world. It has fields for official names and country codes. The generalized political boundaries improve draw performance and effectiveness at a global or continental level.This layer is best viewed out beyond a scale of 1:5,000,000.This layer's geography was developed by Esri, Garmin International, Inc., the U.S. Central Intelligence Agency (The World Factbook), and the National Geographic Society for use as a world basemap. It is updated annually as country names or significant borders change.

  13. Activity FACTS Common Attributes (Feature Layer)

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +5more
    bin
    Updated Jun 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Activity FACTS Common Attributes (Feature Layer) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Activity_FACTS_Common_Attributes_Feature_Layer_/25974223
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data in this map service is updated every weekend.Note: This data includes all activities regardless of whether there is a spatial feature attached.Note: This is a large dataset. Metadata and Downloads are available at: https://data.fs.usda.gov/geodata/edw/datasets.php?xmlKeyword=FACTS+common+attributesTo download FACTS activities layers, search for the activity types you want, such as timber harvest or hazardous fuels treatments. The Forest Service's Natural Resource Manager (NRM) Forest Activity Tracking System (FACTS) is the agency standard for managing information about activities related to fire/fuels, silviculture, and invasive species. This feature class contains the FACTS attributes most commonly needed to describe FACTS activities.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService CSV Shapefile GeoJSON KML https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_ActivityFactsCommonAttributes_01/MapServer/0 Geodatabase Download Shapefile Download For complete information, please visit https://data.gov.

  14. A

    Facilities Database - Shapefile

    • data.amerigeoss.org
    • datadiscoverystudio.org
    • +1more
    csv, json, kml, zip
    Updated Apr 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). Facilities Database - Shapefile [Dataset]. https://data.amerigeoss.org/cs_CZ/dataset/selected-facilities-and-program-sites-shapefile
    Explore at:
    csv, zip, kml, jsonAvailable download formats
    Dataset updated
    Apr 11, 2019
    Dataset provided by
    United States
    Description

    The City Planning Facilities Database (FacDB) aggregates information about 35,000+ public and private facilities and program sites that are owned, operated, funded, licensed or certified by a City, State, or Federal agency in the City of New York. It captures facilities that generally help to shape quality of life in the city’s neighborhoods, including schools, day cares, parks, libraries, public safety services, youth programs, community centers, health clinics, workforce development programs, transitional housing, and solid waste and transportation infrastructure sites. To facilitate analysis and mapping, the data is available in coma-separated values (CSV) file format, ESRI Shapefile, and GeoJSon. The data is also complemented with a new interactive web map that enables users to easily filter the data for their needs. Users are strongly encouraged to read the database documentation, particularly with regard to analytical limitations.

    For data dictionary, please follow this link

  15. G

    Hydroclimatic atlas 2022

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    csv, geojson, html +3
    Updated May 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Municipalities of Québec (2025). Hydroclimatic atlas 2022 [Dataset]. https://open.canada.ca/data/dataset/8bc217ff-d25d-4f55-a9a7-ada3df4b29a7
    Explore at:
    csv, geojson, pdf, zip, html, shpAvailable download formats
    Dataset updated
    May 1, 2025
    Dataset provided by
    Government and Municipalities of Québec
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 1970 - Dec 31, 2100
    Description

    #Données of the 2022 Hydroclimatic Atlas ## #Description The Hydroclimatic Atlas describes the current and future water regime of southern Quebec in order to support the implementation of water management practices that are resilient to climate change. These data are from the most recent version of the Hydroclimatic Atlas. ## #Nouveautés * Improvement of the spatial resolution of the hydrographic network; * Greater spatial coverage; * Addition of the CliMEX and CORDEX-NA sets, in addition to the scenarios in the CMIP5 set; * Use of six hydrological platforms; * * Addition of indicators, especially annual ones. * Etc. ## #Liste data available * Link to the new Hydroclimatic Atlas website. * Map of the 24,604 river sections of the Hydroclimatic Atlas with their attributes, available in GeoJSON and shapefile format. To facilitate download and display, the map is divided into 11 GeoJSON files: ABIT (Abitibi and Lac Abitibi region), CND west (North Shore A and B regions), CND east (North Shore regions C, D and E), GASP (North Shore regions C, D and E), GASP (Gaspésie), MONT (Gaspesie), MONT (Montégérie), OUTM (Outaouais Upstream), OUTV (Outaouais Downstream), OUTV (Outaouais Downstream), SAGU (Saguenay), SLNO (St-Laurent Nord-Ouest), SLSO (St-Laurent Sud-Ouest), and VAUD (Vaudreuil). * The CSV tables (“Magnitude...”) for each of the 76 hydrological indicators describing the amplement, the direction and the dispersion for RCP 4.5 and RCP8.5, for the three future horizons (see the documentation for details). * The CSV tables (“Projected indicator...”) for each of the 76 hydrological indicators detailing the flow values with their uncertainty for the historical period and the three future horizons (RCP4.5 and 8.5). See the documentation for more details. * A PDF with the metadata and a more detailed description of the data. ## #Note The 2018 version data is archived on Data Quebec for reference, for example for old reports or analyses referring to this version of the data. Any new study or analysis should use the most recent data available below or on the Atlas website.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  16. f

    Simplified shape file for mapping

    • figshare.com
    txt
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziwang Deng; Huaiping Zhu; Jingliang Liu; Xin Qiu; Xiaolan Zhou; Xiaoyun Chen (2023). Simplified shape file for mapping [Dataset]. http://doi.org/10.6084/m9.figshare.10312097.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Ziwang Deng; Huaiping Zhu; Jingliang Liu; Xin Qiu; Xiaolan Zhou; Xiaoyun Chen
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    In this directory, there are 6 geojson files which were used for mapping.1. Lake_Arc_simplify: Boundary of Lakes in and around Ontario2. Ontario_arc: Boundary lines of Ontario3. Municipal_Arc_simplify: Boundary lines of municipalities4. Municipal_Polygon: Polygons of the municipalities5. Stations151: Locations of 151 weather stations (municipalites)6.polygon9864: Rectangle areas centered at the 9864 grid pointssource:https://github.com/LAMPSYORKU/OntarioClimateDataPortal/tree/master/shapefiles

  17. Andorra Country Administrative Boundaries Dataset

    • geolocet.com
    Updated Nov 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geolocet (2023). Andorra Country Administrative Boundaries Dataset [Dataset]. https://geolocet.com/products/andorra-admin-level-2-country
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset authored and provided by
    Geolocet
    License

    https://geolocet.com/pages/terms-of-usehttps://geolocet.com/pages/terms-of-use

    Area covered
    Andorra
    Description

    This dataset provides the Country level administrative boundaries for Andorra in GeoJSON and Shape file formats. Rendered in the industry-standard coordinate reference system, EPSG:4326 (WGS84), this dataset ensures precision and compatibility.

  18. a

    Homeland Infrastructure Foundation Level Data (HIFLD) Open Data

    • hub.arcgis.com
    Updated May 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Data Center (2017). Homeland Infrastructure Foundation Level Data (HIFLD) Open Data [Dataset]. https://hub.arcgis.com/documents/a887fea190a84bd493eb6a3de0cbf99e
    Explore at:
    Dataset updated
    May 2, 2017
    Dataset authored and provided by
    Environmental Data Center
    Description

    Historically, access to the Homeland Infrastructure Foundation-Level Data (HIFLD) has been restricted to applicants meeting a variety of criteria, such as working for a federal government agency, or state emergency management agency. With the release of their new ArcGIS Online Open Data website, the HIFLD has made data previously contained within the Homeland Security Infrastructure Program (HSIP) databases available, and open, to the public. Currently, there are over 270 datasets available that can be downloaded in a variety of proprietary and open data formats, such as a Shapefile, CSV, and KML. All datasets are also available as APIs, such as GeoJSON and GeoServices which allows data to be easily added to web applications. All data are separated into a variety of useful categories such as agriculture, emergency services, natural hazards, and ground transportation, to name a few. Once a dataset is selected, users can read a detailed description of the data, preview the data in the map window, preview the attribute table, and select to download data by map area, or filtered attributes. Once the data has been filtered, or once a focus area has been selected by the user, the data can either be downloaded or opened in ArcGIS Online.

  19. g

    Portugal Shapefile

    • geopostcodes.com
    shp
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Portugal Shapefile [Dataset]. https://www.geopostcodes.com/country/portugal-shapefile
    Explore at:
    shpAvailable download formats
    Dataset updated
    Jun 7, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Portugal
    Description

    Download high-quality, up-to-date Portugal shapefile boundaries (SHP, projection system SRID 4326). Our Portugal Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  20. Data from: AVIRIS Facility Instruments: Flight Line Geospatial and...

    • data.nasa.gov
    • gimi9.com
    • +7more
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). AVIRIS Facility Instruments: Flight Line Geospatial and Contextual Data [Dataset]. https://data.nasa.gov/dataset/aviris-facility-instruments-flight-line-geospatial-and-contextual-data-18eeb
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This dataset provides attributed geospatial and tabular information for identifying and querying flight lines of interest for the Airborne Visible InfraRed Imaging Spectrometer-Classic (AVIRIS-C) and Airborne Visible InfraRed Imaging Spectrometer-Next Generation (AVIRIS-NG) Facility Instrument collections. It includes attributed shapefile and GeoJSON files containing polygon representation of individual flights lines for all years and separate KMZ files for each year. These files allow users to visualize and query flight line locations using Geographic Information System (GIS) software. Tables of AVIRIS-C and AVIRIS-NG flight lines with attributed information include dates, bounding coordinates, site names, investigators involved, flight attributes, associated campaigns, and corresponding file names for associated L1B (radiance) and L2 (reflectance) files in the AVIRIS-C and AVIRIS-NG Facility Instrument Collections. Tabular information is also provided in comma-separated values (CSV) format.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Danika Eamer; Danika Eamer; Micah Borrero; Micah Borrero; Noman Bashir; Noman Bashir (2025). GeoJSON files for the MCSC's Trucking Industry Decarbonization Explorer (Geo-TIDE) [Dataset]. http://doi.org/10.5281/zenodo.13207716
Organization logo

GeoJSON files for the MCSC's Trucking Industry Decarbonization Explorer (Geo-TIDE)

Explore at:
zipAvailable download formats
Dataset updated
May 28, 2025
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Danika Eamer; Danika Eamer; Micah Borrero; Micah Borrero; Noman Bashir; Noman Bashir
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Summary

Geojson files used to visualize geospatial layers relevant to identifying and assessing trucking fleet decarbonization opportunities with the MIT Climate & Sustainability Consortium's Geospatial Trucking Industry Decarbonization Explorer (Geo-TIDE) tool.

Relevant Links

Link to the online version of the tool (requires creation of a free user account).

Link to GitHub repo with source code to produce this dataset and deploy the Geo-TIDE tool locally.

Funding

This dataset was produced with support from the MIT Climate & Sustainability Consortium.

Original Data Sources

These geojson files draw from and synthesize a number of different datasets and tools. The original data sources and tools are described below:

Filename(s)Description of Original Data Source(s)Link(s) to Download Original Data
License and Attribution for Original Data Source(s)

faf5_freight_flows/*.geojson

trucking_energy_demand.geojson

highway_assignment_links_*.geojson

infrastructure_pooling_thought_experiment/*.geojson

Regional and highway-level freight flow data obtained from the Freight Analysis Framework Version 5. Shapefiles for FAF5 region boundaries and highway links are obtained from the National Transportation Atlas Database. Emissions attributes are evaluated by incorporating data from the 2002 Vehicle Inventory and Use Survey and the GREET lifecycle emissions tool maintained by Argonne National Lab.

Shapefile for FAF5 Regions

Shapefile for FAF5 Highway Network Links

FAF5 2022 Origin-Destination Freight Flow database

FAF5 2022 Highway Assignment Results

Attribution for Shapefiles: United States Department of Transportation Bureau of Transportation Statistics National Transportation Atlas Database (NTAD). Available at: https://geodata.bts.gov/search?collection=Dataset.

License for Shapefiles: This NTAD dataset is a work of the United States government as defined in 17 U.S.C. § 101 and as such are not protected by any U.S. copyrights. This work is available for unrestricted public use.

Attribution for Origin-Destination Freight Flow database: National Transportation Research Center in the Oak Ridge National Laboratory with funding from the Bureau of Transportation Statistics and the Federal Highway Administration. Freight Analysis Framework Version 5: Origin-Destination Data. Available from: https://faf.ornl.gov/faf5/Default.aspx. Obtained on Aug 5, 2024. In the public domain.

Attribution for the 2022 Vehicle Inventory and Use Survey Data: United States Department of Transportation Bureau of Transportation Statistics. Vehicle Inventory and Use Survey (VIUS) 2002 [supporting datasets]. 2024. https://doi.org/10.21949/1506070

Attribution for the GREET tool (original publication): Argonne National Laboratory Energy Systems Division Center for Transportation Research. GREET Life-cycle Model. 2014. Available from this link.

Attribution for the GREET tool (2022 updates): Wang, Michael, et al. Summary of Expansions and Updates in GREET® 2022. United States. https://doi.org/10.2172/1891644

grid_emission_intensity/*.geojson

Emission intensity data is obtained from the eGRID database maintained by the United States Environmental Protection Agency.

eGRID subregion boundaries are obtained as a shapefile from the eGRID Mapping Files database.

eGRID database

Shapefile with eGRID subregion boundaries

Attribution for eGRID data: United States Environmental Protection Agency: eGRID with 2022 data. Available from https://www.epa.gov/egrid/download-data. In the public domain.

Attribution for shapefile: United States Environmental Protection Agency: eGRID Mapping Files. Available from https://www.epa.gov/egrid/egrid-mapping-files. In the public domain.

US_elec.geojson

US_hy.geojson

US_lng.geojson

US_cng.geojson

US_lpg.geojson

Locations of direct current fast chargers and refueling stations for alternative fuels along U.S. highways. Obtained directly from the Station Data for Alternative Fuel Corridors in the Alternative Fuels Data Center maintained by the United States Department of Energy Office of Energy Efficiency and Renewable Energy.

US_elec.geojson

US_hy.geojson

US_lng.geojson

US_cng.geojson

US_lpg.geojson

Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy. Alternative Fueling Station Corridors. 2024. Available from: https://afdc.energy.gov/corridors. In the public domain.

These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.

daily_grid_emission_profiles/*.geojson

Hourly emission intensity data obtained from ElectricityMaps.

Original data can be downloaded as csv files from the ElectricityMaps United States of America database

Shapefile with region boundaries used by ElectricityMaps

License: Open Database License (ODbL). Details here: https://www.electricitymaps.com/data-portal

Attribution for csv files: Electricity Maps (2024). United States of America 2022-23 Hourly Carbon Intensity Data (Version January 17, 2024). Electricity Maps Data Portal. https://www.electricitymaps.com/data-portal.

Attribution for shapefile with region boundaries: ElectricityMaps contributors (2024). electricitymaps-contrib (Version v1.155.0) [Computer software]. https://github.com/electricitymaps/electricitymaps-contrib.

gen_cap_2022_state_merged.geojson

trucking_energy_demand.geojson

Grid electricity generation and net summer power capacity data is obtained from the state-level electricity database maintained by the United States Energy Information Administration.

U.S. state boundaries obtained from "https://www.sciencebase.gov/catalog/item/52c78623e4b060b9ebca5be5">this United

Search
Clear search
Close search
Google apps
Main menu