Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Your manager has just assigned you to help the Park Service select some new observation points within Dinosaur National Park. These new observation points should meet a set of criteria based on their location. Twenty potential observation points have been identified. So, what is your next step? How can you use ArcGIS Pro to accomplish the analysis efficiently and accurately?After completing this course, you will be able to perform the following tasks:Use the appropriate geoprocessing tool for a given spatial problem.Demonstrate multiple methods for accessing geoprocessing tools.Use ArcGIS Pro to set geoprocessing environments.
Facebook
TwitterThe Minnesota DNR Toolbox and Hydro Tools provide a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR. All tools require at least ArcGIS 10+.
If you create a GDRS using GDRS Manager and include this toolbox resource and MNDNR Quick Layers, the DNR toolboxes will automatically be added to the ArcToolbox window whenever Quick Layers GDRS Location is set to the GDRS location that has the toolboxes.
Toolsets included in MNDNR Tools V10:
- Analysis Tools
- Conversion Tools
- Division Tools
- General Tools
- Hydrology Tools
- LiDAR and DEM Tools
- Raster Tools
- Sampling Tools
These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.
Facebook
TwitterGeographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset.
Toolbox Use
License
Creative Commons-PDDC
Recommended Citation
Welty JL, Jeffries MI, Arkle RS, Pilliod DS, Kemp SK. 2021. GIS Clipping and Summarization Toolbox: U.S. Geological Survey Software Release. https://doi.org/10.5066/P99X8558
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In Geographic Information Systems (GIS), geoprocessing workflows allow analysts to organize their methods on spatial data in complex chains. We propose a method for expressing workflows as linked data, and for semi-automatically enriching them with semantics on the level of their operations and datasets. Linked workflows can be easily published on the Web and queried for types of inputs, results, or tools. Thus, GIS analysts can reuse their workflows in a modular way, selecting, adapting, and recommending resources based on compatible semantic types. Our typing approach starts from minimal annotations of workflow operations with classes of GIS tools, and then propagates data types and implicit semantic structures through the workflow using an OWL typing scheme and SPARQL rules by backtracking over GIS operations. The method is implemented in Python and is evaluated on two real-world geoprocessing workflows, generated with Esri's ArcGIS. To illustrate the potential applications of our typing method, we formulate and execute competency questions over these workflows.
Facebook
TwitterThe layer was based on the geoprocessing buffer analysis tool. The buffer analysis was applied to libraries in Broward County. The purpose of the data is for 2020 Census planning purposes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT Watershed delineation, drainage network generation and determination of river hydraulic characteristics are important issues in hydrological sciences. In general, this information can be obtained from Digital Elevation Models (DEM) processing within GIS commercial softwares, such as ArcGIS and IDRISI. On the other hand, the use of open source GIS tools has increased significantly, and their advantages include free distribution, continuous development by user communities and full customization for specific requirements. Herein, we present the IPH-Hydro Tools, an open source tool coupled to MapWindow GIS software designed for watershed topology acquisition, including preprocessing steps in hydrological models such as MGB-IPH. In addition, several tests were carried out assessing the performance and applicability of the developed tool, given by a comparison with available GIS packages (ArcGIS, IDRISI, WhiteBox) for similar purposes. The IPH-Hydro Tools provided satisfactory results on tested applications, allowing for better drainage network and less processing time for catchment delineation. Regarding its limitations, the developed tool was incompatible with huge terrain data and showed some difficulties to represent drainage networks in extensive flat areas, which can occur in reservoirs and large rivers.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This course introduces the Python scripting language. You will be introduced to the structure, or syntax, of the language through many GIS-related examples. This course also introduces ArcPy, which integrates Python into ArcGIS 10. Through Python, you can access geoprocessing and map automation tools available in ArcGIS.After completing this course, you will be able to:Determine where to write and run Python scripts.Create scripts with correct Python syntax.Identify common scripting errors.Build Python scripts to run geoprocessing tools.
Facebook
TwitterA mesh of regular hexagons is created using a geoprocessing tool (https://www.arcgis.com/home/item.html?id=03388990d3274160afe240ac54763e57). This tool creates a mesh of hexagons overlapping a study area. The study area is the Gulf of Mexico region for GCOOS. The data is available at https://gis.gcoos.org/arcgis/rest/services/Boundary/GoM_Regions/MapServer
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GIS data and geoprocessing tools associated with White and Lambert (2025) modeling paper that assesses the potential impact of development on the archaeological resources of Illinois.
Facebook
TwitterThe Solar Radiation Potential Model (SRPM) was derived from the Lake County 2007 Digital Surface Model (DSM). The DSM is a 3-foot pixel resolution raster in GeoTIFF format, created using all points (excluding NOISE) from our 2007 LiDAR data without incorporating the breaklines. The SRPM was created using the ArcGIS 'Area Solar Radiation' geoprocessing tool. Due to the number of variables and parameters, the default values of the geoprocessing tool were used.The solar radiation analysis tools in the ArcGIS Spatial Analyst extension enables one to map and analyze the effects of the sun over a geographic area for specific time periods. It accounts for atmospheric effects, site latitude and elevation, steepness (slope) and compass direction (aspect), daily and seasonal shifts of the sun angle, and effects of shadows cast by surrounding topography. The resultant outputs can be easily integrated with other GIS data and can help model physical and biological processes as they are affected by the sun.These data are derived from other data sources, no accuracy measurements or tests were conducted. Primary use and intent for these data are for visualizations and topographic analysis. This dataset does not take the place of an on-site survey for design, construction or regulatory purposes.
Facebook
TwitterThe Solar Radiation Potential Model (SRPM) was derived from the Lake County 2007 Digital Surface Model (DSM). The DSM is a 3-foot pixel resolution raster in GeoTIFF format, created using all points (excluding NOISE) from our 2007 LiDAR data without incorporating the breaklines. The SRPM was created using the ArcGIS 'Area Solar Radiation' geoprocessing tool. Due to the number of variables and parameters, the default values of the geoprocessing tool were used.The solar radiation analysis tools in the ArcGIS Spatial Analyst extension enables one to map and analyze the effects of the sun over a geographic area for specific time periods. It accounts for atmospheric effects, site latitude and elevation, steepness (slope) and compass direction (aspect), daily and seasonal shifts of the sun angle, and effects of shadows cast by surrounding topography. The resultant outputs can be easily integrated with other GIS data and can help model physical and biological processes as they are affected by the sun.These data are derived from other data sources, no accuracy measurements or tests were conducted. Primary use and intent for these data are for visualizations and topographic analysis. This dataset does not take the place of an on-site survey for design, construction or regulatory purposes.
Facebook
TwitterThe Solar Radiation Potential Model (SRPM) was derived from the Lake County 2007 Digital Surface Model (DSM). The DSM is a 3-foot pixel resolution raster in GeoTIFF format, created using all points (excluding NOISE) from our 2007 LiDAR data without incorporating the breaklines. The SRPM was created using the ArcGIS 'Area Solar Radiation' geoprocessing tool. Due to the number of variables and parameters, the default values of the geoprocessing tool were used.The solar radiation analysis tools in the ArcGIS Spatial Analyst extension enables one to map and analyze the effects of the sun over a geographic area for specific time periods. It accounts for atmospheric effects, site latitude and elevation, steepness (slope) and compass direction (aspect), daily and seasonal shifts of the sun angle, and effects of shadows cast by surrounding topography. The resultant outputs can be easily integrated with other GIS data and can help model physical and biological processes as they are affected by the sun.These data are derived from other data sources, no accuracy measurements or tests were conducted. Primary use and intent for these data are for visualizations and topographic analysis. This dataset does not take the place of an on-site survey for design, construction or regulatory purposes.
Facebook
TwitterThis data set represents a 5-meter resolution LiDAR-derived percent slope layer for New Hampshire. It was generated from a statewide Esri Mosaic Dataset which comprised 8 separate LiDAR collections that covered the state as of January, 2020. The Mosaic Dataset was used as input to the ArcGIS Spatial Analyst "Slope" geoprocessing tool which calculates the percent slope for each cell of the input raster, in this case, the statewide mosaic dataset.
Facebook
TwitterA mesh of regular hexagons is created using a geoprocessing tool (http://www.arcgis.com/home/item.html?id=03388990d3274160afe240ac54763e57). This tool creates a mesh of hexagons overlapping a study area. The study area is the Gulf of Mexico region for GCOOS. The data is available at http://gis.gcoos.org:8080/arcgis/rest/services/Boundary/GoM_Regions/MapServer
Facebook
TwitterThe US Forest Service manages 193 million acres including the nation's 154 National Forests and 20 National Grasslands. These lands provide a wide variety of recreational opportunities, protect sources of clean water, and supply timber and forage.Dataset SummaryPhenomenon Mapped: United States lands managed by the US Forest ServiceGeographic Extent: Contiguous United States, Alaska, and Puerto RicoVisible Scale: The data is visible at all scales.Source: USFS Surface Ownership ParcelsPublication Date: May 2025This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Forest Service lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "forest service" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "forest service" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in ProThe data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage..This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterArcGIS is a platform, and the platform is extending to the web. ArcGIS Online offers shared content, and has become a living atlas of the world. Ready-to-use curated content is published by Esri, Partners, and Users, and Esri is getting the ball rolling by offering authoritative data layers and tools.Specifically for Natural Resources data, Esri is offering foundational data useful for biogeographic analysis, natural resource management, land use planning and conservation. Some of the layers available are Land Cover, Wilderness Areas, Soils Range Production, Soils Frost Free Days, Watershed Delineation, Slope. The layers are available as Image Services that are analysis-ready and Geoprocessing Services that extract data for download and perform analysis.We've made large strides with online analysis. The latest release of ArcGIS Online's map viewer allows you to perform analysis on ArcGIS Online. Some of the currently available analysis tools are Find Hot Spots, Create Buffers, Summarize Within, Summarize Nearby. In addition, we've created Ready-to-use Esri hosted analysis tools that run on Esri hosted data. These are in Beta, and they include Watershed Delineation, Viewshed, Profile, and Summarize Elevation.
Facebook
TwitterData in this layer is compiled from a variety of sources. Attributes have been added to distinguish the sources."LeePA Building Footprints" are created and maintained by the Lee County Property Appraiser's GIS. The geometry and attributes are extracted from their databases and combined based on the unique building key."LeePA Condo Buildings" are created from features in the Lee County Property Appraiser's parcel fabric. The geometry and attributes are extracted from their databases and combined using a variety of methods.Other buildings have been added by Lee County GIS. These are typically mobile/manufactured homes or time shares. Most mobile/manufactured homes were created using Esri's Building Footprint Extraction deep learning package and Regularize Building Footprint geoprocessing tool from 2025 aerial imagery. Additional attributes were added by Lee County GIS.
Facebook
TwitterOne-eighth of the United States (247.3 million acres) is managed by the Bureau of Land Management. As part of the Department of the Interior, the agency oversees the 30 million acre National Landscape Conservation System, a collection of lands that includes 221 wilderness areas, 23 national monuments and 636 other protected areas. Bureau of Land Management Lands contain over 63,000 oil and gas wells and provide forage for over 18,000 grazing permit holders on 155 million acres of land. Dataset SummaryPhenomenon Mapped: United States lands managed by the Bureau of Land ManagementGeographic Extent: Contiguous United States and AlaskaData Coordinate System: WGS 1984Visible Scale: The data is visible at all scales but draws best at scales larger than 1:2,000,000.Source: BLM Surface Management Agency layer, Rasterized by Esri from features May 2025.Publication Date: December 2024This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Bureau of Land Management lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "bureau of land management" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "bureau of land management" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterNotice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2018 and 2019.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of Arizona Dr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAADaphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Facebook
TwitterThe method to create the Wind Resource Area datasets is to:Query Power Plant point locations from the California Energy Commission, California Power Plants data set by operational status and capacity greater than or equal to 2 MW at each facility from the Quarterly Fuel and Energy Report, CEC-1304A. Plants tracked include those of at least 1 MW, which are considered of commercial size. A polygon was generated around the resulting operational, commercial wind facilities using the Aggregate Points geoprocessing tool with an aggregation distance of 15 survey miles. A 5 mile spatial buffer was added to the resulting polygons. The buffer does not represent information regarding environmental analysis. It is used only to depict plant concentration regions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Your manager has just assigned you to help the Park Service select some new observation points within Dinosaur National Park. These new observation points should meet a set of criteria based on their location. Twenty potential observation points have been identified. So, what is your next step? How can you use ArcGIS Pro to accomplish the analysis efficiently and accurately?After completing this course, you will be able to perform the following tasks:Use the appropriate geoprocessing tool for a given spatial problem.Demonstrate multiple methods for accessing geoprocessing tools.Use ArcGIS Pro to set geoprocessing environments.