89 datasets found
  1. M

    DNR Toolbox for ArcGIS Pro

    • gisdata.mn.gov
    esri_toolbox
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2025). DNR Toolbox for ArcGIS Pro [Dataset]. https://gisdata.mn.gov/dataset/dnr-pro-toolbox
    Explore at:
    esri_toolboxAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    Natural Resources Department
    Description

    The Minnesota DNR Toolbox provides a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR.

    Toolsets included in MNDNR Tools:
    - Analysis Tools
    - Conversion Tools
    - General Tools
    - LiDAR and DEM Tools
    - Sampling Tools

    The application download includes a comprehensive help document, which you can also access separately here: ArcGISPro_MNDNR_Toolbox_Pro_User_Guide.pdf

    These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.

  2. a

    13.2 Building Models for GIS Analysis Using ArcGIS

    • hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 13.2 Building Models for GIS Analysis Using ArcGIS [Dataset]. https://hub.arcgis.com/documents/IowaDOT::13-2-building-models-for-gis-analysis-using-arcgis/about
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ArcGIS has many analysis and geoprocessing tools that can help you solve real-world problems with your data. In some cases, you are able to run individual tools to complete an analysis. But sometimes you may require a more comprehensive way to create, share, and document your analysis workflow.In these situations, you can use a built-in application called ModelBuilder to create a workflow that you can reuse, modify, save, and share with others.In this course, you will learn the basics of working with ModelBuilder and creating models. Models contain many different elements, many of which you will learn about. You will also learn how to work with models that others create and share with you. Sharing models is one of the major advantages of working with ModelBuilder and models in general. You will learn how to prepare a model for sharing by setting various model parameters.After completing this course, you will be able to:Identify model elements and states.Describe a prebuilt model's processes and outputs.Create and document models for site selection and network analysis.Define model parameters and prepare a model for sharing.

  3. f

    Data from: IPH-Hydro Tools: a GIS coupled tool for watershed topology...

    • scielo.figshare.com
    jpeg
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vinícius Alencar Siqueira; Ayan Fleischmann; Pedro Frediani Jardim; Fernando Mainardi Fan; Walter Collischonn (2023). IPH-Hydro Tools: a GIS coupled tool for watershed topology acquisition in an open-source environment [Dataset]. http://doi.org/10.6084/m9.figshare.7506998.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SciELO journals
    Authors
    Vinícius Alencar Siqueira; Ayan Fleischmann; Pedro Frediani Jardim; Fernando Mainardi Fan; Walter Collischonn
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT Watershed delineation, drainage network generation and determination of river hydraulic characteristics are important issues in hydrological sciences. In general, this information can be obtained from Digital Elevation Models (DEM) processing within GIS commercial softwares, such as ArcGIS and IDRISI. On the other hand, the use of open source GIS tools has increased significantly, and their advantages include free distribution, continuous development by user communities and full customization for specific requirements. Herein, we present the IPH-Hydro Tools, an open source tool coupled to MapWindow GIS software designed for watershed topology acquisition, including preprocessing steps in hydrological models such as MGB-IPH. In addition, several tests were carried out assessing the performance and applicability of the developed tool, given by a comparison with available GIS packages (ArcGIS, IDRISI, WhiteBox) for similar purposes. The IPH-Hydro Tools provided satisfactory results on tested applications, allowing for better drainage network and less processing time for catchment delineation. Regarding its limitations, the developed tool was incompatible with huge terrain data and showed some difficulties to represent drainage networks in extensive flat areas, which can occur in reservoirs and large rivers.

  4. m

    DNR Toolbox for ArcGIS 10

    • gisdata.mn.gov
    esri_toolbox
    Updated May 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2024). DNR Toolbox for ArcGIS 10 [Dataset]. https://gisdata.mn.gov/dataset/dnr-arcgis-toolbox
    Explore at:
    esri_toolboxAvailable download formats
    Dataset updated
    May 25, 2024
    Dataset provided by
    Natural Resources Department
    Description

    The Minnesota DNR Toolbox and Hydro Tools provide a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR. All tools require at least ArcGIS 10+.

    If you create a GDRS using GDRS Manager and include this toolbox resource and MNDNR Quick Layers, the DNR toolboxes will automatically be added to the ArcToolbox window whenever Quick Layers GDRS Location is set to the GDRS location that has the toolboxes.

    Toolsets included in MNDNR Tools V10:
    - Analysis Tools
    - Conversion Tools
    - Division Tools
    - General Tools
    - Hydrology Tools
    - LiDAR and DEM Tools
    - Raster Tools
    - Sampling Tools

    These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.

  5. f

    Data from: Semantic typing of linked geoprocessing workflows

    • tandf.figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon Scheider; Andrea Ballatore (2023). Semantic typing of linked geoprocessing workflows [Dataset]. http://doi.org/10.6084/m9.figshare.4814827
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Simon Scheider; Andrea Ballatore
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In Geographic Information Systems (GIS), geoprocessing workflows allow analysts to organize their methods on spatial data in complex chains. We propose a method for expressing workflows as linked data, and for semi-automatically enriching them with semantics on the level of their operations and datasets. Linked workflows can be easily published on the Web and queried for types of inputs, results, or tools. Thus, GIS analysts can reuse their workflows in a modular way, selecting, adapting, and recommending resources based on compatible semantic types. Our typing approach starts from minimal annotations of workflow operations with classes of GIS tools, and then propagates data types and implicit semantic structures through the workflow using an OWL typing scheme and SPARQL rules by backtracking over GIS operations. The method is implemented in Python and is evaluated on two real-world geoprocessing workflows, generated with Esri's ArcGIS. To illustrate the potential applications of our typing method, we formulate and execute competency questions over these workflows.

  6. u

    GIS Clipping and Summarization Toolbox

    • verso.uidaho.edu
    • data.nkn.uidaho.edu
    Updated Mar 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Justin Welty; Michelle Jefferies; Robert Arkle; David Pilliod; Susan Kemp (2022). GIS Clipping and Summarization Toolbox [Dataset]. https://verso.uidaho.edu/esploro/outputs/dataset/GIS-Clipping-and-Summarization-Toolbox/996762913201851
    Explore at:
    Dataset updated
    Mar 9, 2022
    Dataset provided by
    Idaho EPSCoR, EPSCoR GEM3
    Authors
    Justin Welty; Michelle Jefferies; Robert Arkle; David Pilliod; Susan Kemp
    Time period covered
    Mar 9, 2022
    Description

    Geographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset.

    Toolbox Use
    License
    Creative Commons-PDDC
    Recommended Citation
    Welty JL, Jeffries MI, Arkle RS, Pilliod DS, Kemp SK. 2021. GIS Clipping and Summarization Toolbox: U.S. Geological Survey Software Release. https://doi.org/10.5066/P99X8558

  7. a

    Albuquerque Crime Hot Spots, 2016

    • hub.arcgis.com
    Updated Jun 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larry Spear's GIS Research Projects (2017). Albuquerque Crime Hot Spots, 2016 [Dataset]. https://hub.arcgis.com/maps/16015d2fdaf44370b16f80a8dcd8881a
    Explore at:
    Dataset updated
    Jun 23, 2017
    Dataset authored and provided by
    Larry Spear's GIS Research Projects
    Area covered
    Description

    Albuquerque, NM 2016 crimes. Created using ArcGIS Pro Geoprocessing tools (Create Space Time Cube, Emerging Hot Spot Analysis). Data obtained from the Albuquerque Police Department (see ABQ Data). Note: Composite of all crime types reported by APD.

  8. I

    Data for Estimating the Impacts of Development and Climate-Driven Migration...

    • databank.illinois.edu
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew White; John Lambert (2025). Data for Estimating the Impacts of Development and Climate-Driven Migration on Precontact Archaeological Sites in Illinois [Dataset]. http://doi.org/10.13012/B2IDB-6829928_V1
    Explore at:
    Dataset updated
    Jun 4, 2025
    Authors
    Andrew White; John Lambert
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Illinois
    Description

    GIS data and geoprocessing tools associated with White and Lambert (2025) modeling paper that assesses the potential impact of development on the archaeological resources of Illinois.

  9. u

    LiDAR-Derived Percent Slope - NH

    • nhgeodata.unh.edu
    • nh-granit-nhgranit.hub.arcgis.com
    Updated May 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Hampshire GRANIT GIS Clearinghouse (2021). LiDAR-Derived Percent Slope - NH [Dataset]. https://www.nhgeodata.unh.edu/datasets/0668b762dbb8435896a211354fd7e2e9
    Explore at:
    Dataset updated
    May 8, 2021
    Dataset authored and provided by
    New Hampshire GRANIT GIS Clearinghouse
    Area covered
    Description

    This data set represents a 5-meter resolution LiDAR-derived percent slope layer for New Hampshire. It was generated from a statewide Esri Mosaic Dataset which comprised 8 separate LiDAR collections that covered the state as of January, 2020. The Mosaic Dataset was used as input to the ArcGIS Spatial Analyst "Slope" geoprocessing tool which calculates the percent slope for each cell of the input raster, in this case, the statewide mosaic dataset.

  10. World Soils 250m Percent Clay

    • cacgeoportal.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Oct 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). World Soils 250m Percent Clay [Dataset]. https://www.cacgeoportal.com/maps/1bfc47d2a0d544bea70588f81aac8afb
    Explore at:
    Dataset updated
    Oct 25, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the physical soil variable percent clay (clay).Within the subset of soil that is smaller than 2mm in size, also known as the fine earth portion, clay is defined as particles that are smaller than 0.002mm, making them only visible in an electron microscope. Clay soils contain low amounts of air, and water drains through them very slowly.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for percent clay are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Proportion of clay particles (< 0.002 mm) in the fine earth fraction in g/100g (%)Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for clay were used to create this layer. You may access the percent clay in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.

  11. g

    U.S. Exclusive Economic Zone of the Gulf of Mexico in Hexagonal grid (GCOOS)...

    • gisdata.gcoos.org
    • hub.arcgis.com
    Updated Aug 6, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jeradk18@tamu.edu_tamu (2019). U.S. Exclusive Economic Zone of the Gulf of Mexico in Hexagonal grid (GCOOS) [Dataset]. https://gisdata.gcoos.org/maps/93e60e09934a4cee8158b4150ec14e88
    Explore at:
    Dataset updated
    Aug 6, 2019
    Dataset authored and provided by
    jeradk18@tamu.edu_tamu
    Area covered
    Description

    A mesh of regular hexagons is created using a geoprocessing tool (http://www.arcgis.com/home/item.html?id=03388990d3274160afe240ac54763e57). This tool creates a mesh of hexagons overlapping a study area. The study area is the Gulf of Mexico region for GCOOS. The data is available at http://gis.gcoos.org:8080/arcgis/rest/services/Boundary/GoM_Regions/MapServer

  12. d

    2007 Solar Potential Model -Township 46N Range 10E

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Sep 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2022). 2007 Solar Potential Model -Township 46N Range 10E [Dataset]. https://catalog.data.gov/dataset/2007-solar-potential-model-township-46n-range-10e-32a35
    Explore at:
    Dataset updated
    Sep 1, 2022
    Dataset provided by
    Lake County Illinois GIS
    Description

    The Solar Radiation Potential Model (SRPM) was derived from the Lake County 2007 Digital Surface Model (DSM). The DSM is a 3-foot pixel resolution raster in GeoTIFF format, created using all points (excluding NOISE) from our 2007 LiDAR data without incorporating the breaklines. The SRPM was created using the ArcGIS 'Area Solar Radiation' geoprocessing tool. Due to the number of variables and parameters, the default values of the geoprocessing tool were used.The solar radiation analysis tools in the ArcGIS Spatial Analyst extension enables one to map and analyze the effects of the sun over a geographic area for specific time periods. It accounts for atmospheric effects, site latitude and elevation, steepness (slope) and compass direction (aspect), daily and seasonal shifts of the sun angle, and effects of shadows cast by surrounding topography. The resultant outputs can be easily integrated with other GIS data and can help model physical and biological processes as they are affected by the sun.These data are derived from other data sources, no accuracy measurements or tests were conducted. Primary use and intent for these data are for visualizations and topographic analysis. This dataset does not take the place of an on-site survey for design, construction or regulatory purposes.

  13. d

    2007 Solar Potential Model -Township 45N Range 12E

    • catalog.data.gov
    Updated Sep 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2022). 2007 Solar Potential Model -Township 45N Range 12E [Dataset]. https://catalog.data.gov/dataset/2007-solar-potential-model-township-45n-range-12e-46b36
    Explore at:
    Dataset updated
    Sep 1, 2022
    Dataset provided by
    Lake County Illinois GIS
    Description

    The Solar Radiation Potential Model (SRPM) was derived from the Lake County 2007 Digital Surface Model (DSM). The DSM is a 3-foot pixel resolution raster in GeoTIFF format, created using all points (excluding NOISE) from our 2007 LiDAR data without incorporating the breaklines. The SRPM was created using the ArcGIS 'Area Solar Radiation' geoprocessing tool. Due to the number of variables and parameters, the default values of the geoprocessing tool were used.The solar radiation analysis tools in the ArcGIS Spatial Analyst extension enables one to map and analyze the effects of the sun over a geographic area for specific time periods. It accounts for atmospheric effects, site latitude and elevation, steepness (slope) and compass direction (aspect), daily and seasonal shifts of the sun angle, and effects of shadows cast by surrounding topography. The resultant outputs can be easily integrated with other GIS data and can help model physical and biological processes as they are affected by the sun.These data are derived from other data sources, no accuracy measurements or tests were conducted. Primary use and intent for these data are for visualizations and topographic analysis. This dataset does not take the place of an on-site survey for design, construction or regulatory purposes.

  14. u

    LiDAR-Derived Degree Slope - NH

    • granit.unh.edu
    • nhgeodata.unh.edu
    • +1more
    Updated May 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Hampshire GRANIT GIS Clearinghouse (2021). LiDAR-Derived Degree Slope - NH [Dataset]. https://granit.unh.edu/datasets/46f1859ab1d84fdf85325734c7a3cffe
    Explore at:
    Dataset updated
    May 8, 2021
    Dataset authored and provided by
    New Hampshire GRANIT GIS Clearinghouse
    Area covered
    Description

    This data set represents a 5-meter resolution LiDAR-derived degree slope layer for New Hampshire. It was generated from a statewide Esri Mosaic Dataset which comprised 8 separate LiDAR collections that covered the state as of January, 2020. The Mosaic Dataset was used as input to the ArcGIS Spatial Analyst "Slope" geoprocessing tool which calculates the degree slope for each cell of the input raster, in this case, the statewide mosaic dataset.

  15. d

    2007 Solar Potential Model -Township 43N Range 11E

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Sep 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2022). 2007 Solar Potential Model -Township 43N Range 11E [Dataset]. https://catalog.data.gov/dataset/2007-solar-potential-model-township-43n-range-11e-3bb3a
    Explore at:
    Dataset updated
    Sep 1, 2022
    Dataset provided by
    Lake County Illinois GIS
    Description

    The Solar Radiation Potential Model (SRPM) was derived from the Lake County 2007 Digital Surface Model (DSM). The DSM is a 3-foot pixel resolution raster in GeoTIFF format, created using all points (excluding NOISE) from our 2007 LiDAR data without incorporating the breaklines. The SRPM was created using the ArcGIS 'Area Solar Radiation' geoprocessing tool. Due to the number of variables and parameters, the default values of the geoprocessing tool were used.The solar radiation analysis tools in the ArcGIS Spatial Analyst extension enables one to map and analyze the effects of the sun over a geographic area for specific time periods. It accounts for atmospheric effects, site latitude and elevation, steepness (slope) and compass direction (aspect), daily and seasonal shifts of the sun angle, and effects of shadows cast by surrounding topography. The resultant outputs can be easily integrated with other GIS data and can help model physical and biological processes as they are affected by the sun.These data are derived from other data sources, no accuracy measurements or tests were conducted. Primary use and intent for these data are for visualizations and topographic analysis. This dataset does not take the place of an on-site survey for design, construction or regulatory purposes.

  16. W

    2007 Solar Potential Model -Township 46N Range 12E

    • cloud.csiss.gmu.edu
    • catalog.data.gov
    • +1more
    esri rest, html
    Updated Oct 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2020). 2007 Solar Potential Model -Township 46N Range 12E [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/2007-solar-potential-model-township-46n-range-12e
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Oct 29, 2020
    Dataset provided by
    United States
    License

    https://data-lakecountyil.opendata.arcgis.com/datasets/a99c33dfc90c4087acf2ec6d5ac9a5b9/license.jsonhttps://data-lakecountyil.opendata.arcgis.com/datasets/a99c33dfc90c4087acf2ec6d5ac9a5b9/license.json

    Description

    The Solar Radiation Potential Model (SRPM) was derived from the Lake County 2007 Digital Surface Model (DSM). The DSM is a 3-foot pixel resolution raster in GeoTIFF format, created using all points (excluding NOISE) from our 2007 LiDAR data without incorporating the breaklines. The SRPM was created using the ArcGIS 'Area Solar Radiation' geoprocessing tool. Due to the number of variables and parameters, the default values of the geoprocessing tool were used.

    The solar radiation analysis tools in the ArcGIS Spatial Analyst extension enables one to map and analyze the effects of the sun over a geographic area for specific time periods. It accounts for atmospheric effects, site latitude and elevation, steepness (slope) and compass direction (aspect), daily and seasonal shifts of the sun angle, and effects of shadows cast by surrounding topography. The resultant outputs can be easily integrated with other GIS data and can help model physical and biological processes as they are affected by the sun.

    These data are derived from other data sources, no accuracy measurements or tests were conducted. Primary use and intent for these data are for visualizations and topographic analysis. This dataset does not take the place of an on-site survey for design, construction or regulatory purposes.

  17. u

    LiDAR-Derived Digital Surface Model - NH

    • nhgeodata.unh.edu
    • granit.unh.edu
    • +2more
    Updated Jun 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Hampshire GRANIT GIS Clearinghouse (2020). LiDAR-Derived Digital Surface Model - NH [Dataset]. https://www.nhgeodata.unh.edu/datasets/lidar-derived-digital-surface-model-nh/about
    Explore at:
    Dataset updated
    Jun 15, 2020
    Dataset authored and provided by
    New Hampshire GRANIT GIS Clearinghouse
    Area covered
    Description

    This data set represents a 2-meter resolution LiDAR first return surface or Digital Surface Model (DSM) for New Hampshire. It was derived from a statewide LAS Dataset which comprised 8 separate LiDAR collections that covered the state as of January, 2020. The LAS Dataset was used as input to the ArcGIS "LAS Dataset to Raster" geoprocessing tool which converted the LAS first return values to raster values in the output data set. In some areas, users may notice unusual linear edges which appear unlikely or anomalous. The LiDAR vendor explained that these anomalies may be the result of changes in the degrees of tree canopy closure that occurred between the times adjacent flight lines were completed. Although leaf-off conditions were specified for data collection, strict adherence to the project specifications was not possible in all locations and exceptions occurred in order to complete data acquisition in a timely manner. As a result, abrupt discontinuities may be noticeable where data were collected on different dates. Eamples of these anomalies can be found in the areas of Cave Mountain in Bartlett and to the west of Woodstock.

  18. Windows and Doors Extraction

    • hub.arcgis.com
    • sdiinnovation-geoplatform.hub.arcgis.com
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Windows and Doors Extraction [Dataset]. https://hub.arcgis.com/content/8c0078cc7e314e31b20001d94daace5e
    Explore at:
    Dataset updated
    Nov 9, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    This deep learning model is used for extracting windows and doors in textured building data displayed in 3D views. Manually digitizing windows/doors from 3D building data can be a slow process. This model automates the extraction of these objects from a 3D view and can help in speeding up 3D editing and analysis workflows. Using this model, existing building data can be enhanced with additional information on location, size and orientation of windows and doors. The extracted windows and doors can be further used to perform 3D visibility analysis using existing 3D geoprocessing tools in ArcGIS.This model can be useful in many industries and workflows. National Government and state-level law enforcement could use this model in security analysis scenarios. Local governments could use windows and door locations to help with tax assessments with CAMA (computer aided mass appraisal) plus impact-studies for urban planning. Public safety users might be interested in regards to physical or visual access to restricted areas, or the ability to build evacuation plans. The commercial sector, with everyone from real-estate agents to advertisers to office/interior designers, would be able to benefit from knowing where windows and doors are located. Even utilities, especially mobile phone providers, could take advantage of knowing window sizes and positions. To be clear, this model doesn't solve these problems, but it does allow users to extract and collate some of the data they will need to do it.Using the modelThis model is generic and is expected to work well with a variety of building styles and shapes. To use this model, you need to install supported deep learning frameworks packages first. See Install deep learning frameworks for ArcGIS for more information. The model can be used with the Interactive Object Detection tool.A blog on the ArcGIS Pro tool that leverages this model is published on Esri Blogs. We've also published steps on how to retrain this model further using your data.InputThe model is expected to work with any textured building data displayed in 3D views. Example data sources include textured multipatches, 3D object scene layers, and integrated mesh layers. OutputFeature class with polygons representing the detected windows and doors in the input imagery. Model architectureThe model uses the FasterRCNN model architecture implemented using ArcGIS API for Python.Training dataThis model was trained using images from the Open Images Dataset.Sample resultsBelow, are sample results of the windows detected with this model in ArcGIS Pro using the Interactive Object Detection tool, which outputs the detected objects as a symbolized point feature class with size and orientation attributes.

  19. FWS National Hunting and Fishing Opportunities

    • gis.data.alaska.gov
    • gis-fws.opendata.arcgis.com
    • +1more
    Updated Oct 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2022). FWS National Hunting and Fishing Opportunities [Dataset]. https://gis.data.alaska.gov/maps/fws::fws-national-hunting-and-fishing-opportunities-1
    Explore at:
    Dataset updated
    Oct 3, 2022
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Authors
    U.S. Fish & Wildlife Service
    Area covered
    Description

    This data layer depicts a single point for all lands and waters administered by the U.S. Fish and Wildlife Service (USFWS) in North America, U.S. Trust Territories and Possessions where hunting and fishing opportunities exist. These points were generated, using a centroid geoprocessing tool, on the FWS National Realty Boundaries layer.Data Set Contact: U.S. Fish and Wildlife Service Natural Resource Program Center, GIS Team Lead, richard_easterbrook@fws.gov

  20. USA Flood Hazard Areas

    • climate-center-lincolninstitute.hub.arcgis.com
    • gis-support-utah-em.hub.arcgis.com
    • +2more
    Updated Oct 3, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). USA Flood Hazard Areas [Dataset]. https://climate-center-lincolninstitute.hub.arcgis.com/datasets/11955f1b47ec41a3af86650824e0c634
    Explore at:
    Dataset updated
    Oct 3, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    United States,
    Description

    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance for holders of federally regulated mortgages. In addition, this layer can help planners and firms avoid areas of flood risk and also avoid additional cost to carry insurance for certain planned activities.Dataset SummaryPhenomenon Mapped: Flood Hazard AreasGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Northern Mariana Islands, and American Samoa)Cell Sizes: 10 meters (default), 30 meters, and 90 metersUnits: NoneSource Type: ThematicPixel Type: Unsigned integerSource: Federal Emergency Management Agency (FEMA)Update Frequency: AnnualPublication Date: December 18, 2024This layer is derived from the December 18, 2024 version Flood Insurance Rate Map feature class S_FLD_HAZ_AR. The vector data were then flagged with an index of 88 classes, representing a unique combination of values displayed by three renderers. (In three resolutions the three renderers make nine processing templates.) Repair Geometry was run on the set of features, then the features were rasterized using the 88 class index at a resolutions of 10, 30, and 90 meters, using the Polygon to Raster tool and the "MAXIMUM_COMBINED_AREA" option. Not every part of the United States is covered by flood rate maps. This layer compiles all the flood insurance maps available at the time of publication. To make analysis easier, areas that were NOT mapped by FEMA for flood insurance rates no longer are served as NODATA but are filled in with a value of 250, representing any unmapped areas which appear in the US Census' boundary of the USA states and territories. The attribute table corresponding to value 250 will indicate that the area was not mapped.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "flood hazard areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "flood hazard areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Processing TemplatesCartographic Renderer - The default. These are meaningful classes grouped by FEMA which group its own Flood Zone Type and Subtype fields. This renderer uses FEMA's own cartographic interpretations of its flood zone and zone subtype fields to help you identify and assess risk. Flood Zone Type Renderer - Specifically renders FEMA FLD_ZONE (flood zone) attribute, which distinguishes the original, broadest categories of flood zones. This renderer displays high level categories of flood zones, and is less nuanced than the Cartographic Renderer. For example, a fld_zone value of X can either have moderate or low risk depending on location. This renderer will simply render fld_zone X as its own color without identifying "500 year" flood zones within that category.Flood Insurance Requirement Renderer - Shows Special Flood Hazard Area (SFHA) true-false status. This may be helpful if you want to show just the places where flood insurance is required. A value of True means flood insurance is mandatory in a majority of the area covered by each 10m pixel.Each of these three renderers have templates at three different raster resolutions depending on your analysis needs. To include the layer in web maps to serve maps and queries, the 10 meter renderers are the preferred option. These are served with overviews and render at all resolutions. However, when doing analysis of larger areas, we now offer two coarser resolutions of 30 and 90 meters in processing templates for added convenience and time savings.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Natural Resources Department (2025). DNR Toolbox for ArcGIS Pro [Dataset]. https://gisdata.mn.gov/dataset/dnr-pro-toolbox

DNR Toolbox for ArcGIS Pro

Explore at:
esri_toolboxAvailable download formats
Dataset updated
Mar 19, 2025
Dataset provided by
Natural Resources Department
Description

The Minnesota DNR Toolbox provides a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR.

Toolsets included in MNDNR Tools:
- Analysis Tools
- Conversion Tools
- General Tools
- LiDAR and DEM Tools
- Sampling Tools

The application download includes a comprehensive help document, which you can also access separately here: ArcGISPro_MNDNR_Toolbox_Pro_User_Guide.pdf

These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.

Search
Clear search
Close search
Google apps
Main menu