90 datasets found
  1. h

    geoquery

    • huggingface.co
    Updated Feb 1, 2002
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giwon Hong (2002). geoquery [Dataset]. https://huggingface.co/datasets/GWHed/geoquery
    Explore at:
    Dataset updated
    Feb 1, 2002
    Authors
    Giwon Hong
    Description

    GWHed/geoquery dataset hosted on Hugging Face and contributed by the HF Datasets community

  2. h

    geoquery-48k

    • huggingface.co
    Updated Aug 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    raul ramos (2025). geoquery-48k [Dataset]. https://huggingface.co/datasets/rramosp/geoquery-48k
    Explore at:
    Dataset updated
    Aug 31, 2025
    Authors
    raul ramos
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    We use an LLM to generate text descriptions of satellite imagery, and then do semantic search just by using text embeddings. We also use image embeddings to validate how image descriptions can mimic them. We provide precomputed image and text embeddings for 48k locations around the world, together with their Sentinel2 RGB imagery in chips sized 512x512 pixels at 10m/pixel. See our github repo at rramosp/geoquery-poc for notebooks and examples on how to use this data. This is an example.… See the full description on the dataset page: https://huggingface.co/datasets/rramosp/geoquery-48k.

  3. Sample datasets for a tool benchmark

    • zenodo.org
    bin
    Updated Sep 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xie Zihong; Xie Zihong (2022). Sample datasets for a tool benchmark [Dataset]. http://doi.org/10.5281/zenodo.6497091
    Explore at:
    binAvailable download formats
    Dataset updated
    Sep 21, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Xie Zihong; Xie Zihong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
  4. Studies on GEO related to neurogeneration or infections diseases

    • zenodo.org
    • data.niaid.nih.gov
    Updated Mar 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tiago Lubiana; Tiago Lubiana (2021). Studies on GEO related to neurogeneration or infections diseases [Dataset]. http://doi.org/10.5281/zenodo.4589519
    Explore at:
    Dataset updated
    Mar 9, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tiago Lubiana; Tiago Lubiana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description:

    A set of transcriptomics studies on the Gene Expression Omnibus (GEO) platform somehow related to infectious or neurodegenerative diseases.

    Columns:

    Column names followed by "_QID" hold the Wikidata IDs relative to that column.

    Google Sheets:
    https://docs.google.com/spreadsheets/d/1LjF4h8n6Sy4PgTJoC-fJ7mGnqGCvqmWiatf2zD-5RM8

    Funding:

    This curation and release were supported by the grants #2018/10257-2 and #2019/26284-1 from the São Paulo Research Foundation (FAPESP).

  5. mTopic - Supplementary h5mu data

    • zenodo.org
    bin
    Updated May 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Piotr Rutkowski; Piotr Rutkowski; Natalia Ochocka; Natalia Ochocka; Damian Panas; Damian Panas; Marcin Tabaka; Marcin Tabaka (2025). mTopic - Supplementary h5mu data [Dataset]. http://doi.org/10.5281/zenodo.15387482
    Explore at:
    binAvailable download formats
    Dataset updated
    May 12, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Piotr Rutkowski; Piotr Rutkowski; Natalia Ochocka; Natalia Ochocka; Damian Panas; Damian Panas; Marcin Tabaka; Marcin Tabaka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Uploaded files are raw (*_raw.h5mu), filtered (*_filtered.h5mu), and trained (*_trained.h5mu) h5mu objects, as processed by mTopic.

    Single-cell data processed here are publicly available from the Gene Expression Omnibus (GEO) and 10x Genomics:

    P22 mouse brain datasets (P22_Mouse_Brain_H3K4me3_RNA, P22_Mouse_Brain_H3K27me3_RNA, P22_Mouse_Brain_H3K27ac_RNA) [1]

    RNA data: GSE218593
    GSM6753043 for ATAC-RNA
    GSM6753046 for H3K4me3-RNA
    GSM6753044 for H3K27me3-RNA
    GSM6753045 for H3K27ac-RNA

    ATAC/histone modification data: GSE205055
    GSM6758285 for ATAC-RNA
    GSM6704980 for H3K4me3-RNA
    GSM6704978 for H3K27me3-RNA
    GSM6704979 for H3K27ac-RNA

    Human PBMC dataset (Human_PBMC_ATAC_RNA_Protein) [2]

    GSE166188
    GSM5065524 for ATAC
    GSM5065525 for RNA
    GSM5065526 for protein

    Human tonsil dataset (Human_Tonsil_RNA_Protein)

    Available from 10x Genomics here.

    References

    [1] Zhang D, Deng Y, Kukanja P, Agirre E et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 2023 Apr;616(7955):113-122. PMID: 36922587
    [2] Mimitou EP, Lareau CA, Chen KY, Zorzetto-Fernandes AL et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat Biotechnol 2021 Oct;39(10):1246-1258. PMID: 34083792

  6. d

    Extended data tables to Haering and Habermann, F1000Res, RNfuzzyApp: an R...

    • datadryad.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Jul 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bianca Habermann; Margaux Haering (2021). Extended data tables to Haering and Habermann, F1000Res, RNfuzzyApp: an R shiny RNA-seq data analysis app for visualisation, differential expression analysis, time-series clustering and enrichment analysis [Dataset]. http://doi.org/10.5061/dryad.8pk0p2nnd
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 8, 2021
    Dataset provided by
    Dryad
    Authors
    Bianca Habermann; Margaux Haering
    Time period covered
    Jul 6, 2021
    Description

    Details on data processing and analysis can be found in the associated article.

  7. e

    The Parathyroid Hormone-Regulated Transcriptome in Osteocytes: Parallel...

    • ebi.ac.uk
    Updated Nov 13, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Meyer; Hillary St. John; J Pike (2014). The Parathyroid Hormone-Regulated Transcriptome in Osteocytes: Parallel Actions with 1,25-Dihydroxyvitamin D3 to Oppose Gene Expression Changes During Differentiation and to Promote Mature Cell Function [RNA-Seq] [Dataset]. https://www.ebi.ac.uk/biostudies/studies/E-GEOD-62979
    Explore at:
    Dataset updated
    Nov 13, 2014
    Authors
    Mark Meyer; Hillary St. John; J Pike
    Description

    Although localized to the mineralized matrix of bone, osteocytes are able to respond to systemic factors such as the calciotropic hormones 1,25(OH)2D3 and PTH. In the present studies, we examine the transcriptomic response to PTH in an osteocyte cell model and found that this hormone regulated an extensive panel of genes. Surprisingly, PTH uniquely modulated two cohorts of genes, one that was expressed and associated with the osteoblast to osteocyte transition and the other a cohort that was expressed only in the mature osteocyte. Interestingly, PTHM-bM-^@M-^Ys effects were largely to oppose the expression of differentiation-related genes in the former cohort, while potentiating the expression of osteocyte-specific genes in the latter cohort. A comparison of the transcriptional effects of PTH with those obtained previously with 1,25(OH)2D3 revealed a subset of genes that was strongly overlapping. While 1,25(OH)2D3 potentiated the expression of osteocyte-specific genes similar to that seen with PTH, the overlap between the two hormones was more limited. Additional experiments identified the PKA-activated phospho-CREB (pCREB) cistrome, revealing that while many of the differentiation-related PTH regulated genes were apparent targets of a PKA-mediated signaling pathway, a reduction in pCREB binding at sites associated with osteocyte-specific PTH targets appeared to involve alternative PTH activation pathways. That pCREB binding activities positioned near important hormone-regulated gene cohorts were localized to control regions of genes was reinforced by the presence of epigenetic enhancer signatures exemplified by unique modifications at histones H3 and H4. These studies suggest that both PTH and 1,25(OH)2D3 may play important and perhaps cooperative roles in limiting osteocyte differentiation from its precursors while simultaneously exerting distinct roles in regulating mature osteocyte function. Our results provide new insight into transcription factor-associated mechanisms through which PTH and 1,25(OH)2D3 regulate a plethora of genes important to the osteoblast/osteocyte lineage. Fully differentiated IDG-SW3 cells were treated in biological triplicate with 100nM PTH for 24 hours prior to mRNA isolation and sequencing. Vehicle treated samples were previously published in GSE54783: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1323967 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1323968 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1323969

  8. Z

    zebrafish GSE223922 scRNA data set objects

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristian K Ullrich (2023). zebrafish GSE223922 scRNA data set objects [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8133568
    Explore at:
    Dataset updated
    Jul 13, 2023
    Dataset authored and provided by
    Kristian K Ullrich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    scRNA data from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223922 (Sur et al. 2023), see a detailed description of the study here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055256/

    Data were downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223922 to create a R Seurat object and converted into AnnData (h5ad) file to be able to analyse with e.g. python scanpy package.

    If you use this data, please cite Sur et al. 2023.

  9. Data from: TempO-seq and RNA-seq gene expression levels are highly...

    • catalog.data.gov
    Updated Jun 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2025). TempO-seq and RNA-seq gene expression levels are highly correlated for most genes: A comparison using 39 human cell lines [Dataset]. https://catalog.data.gov/dataset/tempo-seq-and-rna-seq-gene-expression-levels-are-highly-correlated-for-most-genes-a-compar
    Explore at:
    Dataset updated
    Jun 8, 2025
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Journal article published in PLOS One, Vol 20, Issue 5, e0320862, 2025; DOI: https://doi.org/10.1371/journal.pone.0320862; PMC12064016. The datasets generated and analyzed during the current study are provided in Supplemental S1 File. The RNA-seq data is Protein Atlas Version 23 from the Human Protein Atlas website (https://www.proteinatlas.org/about/download, “RNA HPA cell line gene data” released 2023.06.19). All FASTQ files and aligned counts for the U.S. EPA TempO-seq data have been deposited into NCBI Gene Expression Omnibus under the accession number GSE288929 and are publicly available at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE288929. The R code is available through FigShare at: https://doi.org/10.23645/epacomptox.27341970.v1. This dataset is associated with the following publication: Word, L., C. Willis, R. Judson, L. Everett, S. Davidson-Fritz, D. Haggard, B. Chambers, J. Rogers, J. Bundy, I. Shah, N. Sipes, and J. Harrill. TempO-seq and RNA-seq Gene Expression Levels are Highly Correlated for Most Genes: A Comparison Using 39 Human Cell Lines. PLOS ONE. Public Library of Science, San Francisco, CA, USA, 20(5): e0320862, (2025).

  10. mTopic - Supplementary RDS data

    • zenodo.org
    bin
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Piotr Rutkowski; Piotr Rutkowski; Natalia Ochocka; Natalia Ochocka; Damian Panas; Damian Panas; Marcin Tabaka; Marcin Tabaka (2025). mTopic - Supplementary RDS data [Dataset]. http://doi.org/10.5281/zenodo.15472980
    Explore at:
    binAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Piotr Rutkowski; Piotr Rutkowski; Natalia Ochocka; Natalia Ochocka; Damian Panas; Damian Panas; Marcin Tabaka; Marcin Tabaka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Uploaded files are raw (*_raw.rds) and filtered (*_filtered.rds) RDS objects used for R tutorials of mTopic.

    Single-cell data processed here are publicly available from the Gene Expression Omnibus (GEO) and 10x Genomics:

    P22 mouse brain dataset (P22_Mouse_Brain_ATAC_RNA) [1]

    GSE218593 (GSM6753043) for RNA
    GSE205055 (GSM6758285) for ATAC

    Human tonsil dataset (Human_Tonsil_RNA_Protein)

    Available from 10x Genomics here.

    Human PBMC dataset (Human_PBMC_ATAC_RNA_Protein) [2]

    GSE166188
    GSM5065524 for ATAC
    GSM5065525 for RNA
    GSM5065526 for protein


    References

    [1] Zhang D, Deng Y, Kukanja P, Agirre E et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 2023 Apr;616(7955):113-122. PMID: 36922587
    [2] Mimitou EP, Lareau CA, Chen KY, Zorzetto-Fernandes AL et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat Biotechnol 2021 Oct;39(10):1246-1258. PMID: 34083792

  11. Medulloblastoma omics data

    • kaggle.com
    Updated Feb 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Chervov (2023). Medulloblastoma omics data [Dataset]. https://www.kaggle.com/datasets/alexandervc/medulloblastoma-omics-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Alexander Chervov
    Description

    Collection of gene expression and similar datasets related to brain tumors. In particular Medulloblastoma. Medulloblastoma is the most common malignant brain tumor in childhood. Typically csv files genes x samples.

    GSE124814 WOW! Integration of many (all?) medulloblastoma datasets(!): 1641 samples, of which 1350 samples represent primary medulloblastomas and 291 samples represent normal brain

    https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124814 Weishaupt H, Johansson P, Sundström A, Lubovac-Pilav Z et al. Batch-normalization of cerebellar and medulloblastoma gene expression datasets utilizing empirically defined negative control genes. Bioinformatics 2019 Sep 15;35(18):3357-3364. PMID: 30715209 https://doi.org/10.1093/bioinformatics/btz066 We downloaded a total of 1796 CEL files from previously published GEO or ArrayExpress records: GSE85217(n=763), GSE25219(n=154), GSE60862(n=130), GSE12992(n=40), GSE67850(n=22), GSE10327(n=62), GSE30074(n=30), E-MTAB-292(n=19), GSE74195(n=30), GSE37418(n=76), GSE4036(n=14), GSE62803(n=52), GSE21140(n=103), GSE37382(n=50), GSE22569(n=24), GSE35974(n=50), GSE73038(n=46), GSE50161(n=24), GSE3526(n=9), GSE50765(n=12), GSE49243(n=58), GSE41842(n=19), GSE44971(n=9). After preprocessing of all CEL files, we averaged the expression profiles of samples that mapped to the same patient in a single dataset, producing a final expression array comprising 1641 samples, of which 1350 samples represent primary medulloblastomas and 291 samples represent normal brain (cerebellum/upper rhombic lip). Also discussed in paper: A transcriptome-based classifier to determine molecular subtypes in medulloblastoma https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008263

    GSE85217 (Cavalli ... Taylor ) 768 samples 2016 ( Affimetrix Human Gene 1.1 ST Array ) Cavalli FMG, Remke M, Rampasek L, Peacock J et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 2017 Jun 12;31(6):737-754.e6. PMID: 28609654 Ramaswamy V, Taylor MD. Bioinformatic Strategies for the Genomic and Epigenomic Characterization of Brain Tumors. Methods Mol Biol 2019;1869:37-56. PMID: 30324512 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85217

    GSE202043 (Pomeroy) 214 samples, 2011 (Expression profiling by array) Cho YJ, Tsherniak A, Tamayo P, Santagata S et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 2011 Apr 10;29(11):1424-30. PMID: 21098324 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE202043

    GSE12992 (Fattet ... Delattre) 72 samples, 2009 (Expression profiling by array) Fattet S, Haberler C, Legoix P, Varlet P et al. Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol 2009 May;218(1):86-94. PMID: 19197950 A series of 72 pediatric medulloblastoma tumors has been studied at the genomic level (array-CGH), screened for CTNNB1 mutations and beta-catenin expression (immunohistochemistry). A subset of 40 tumor samples has been analyzed at the RNA expression level (Affymetrix HG U133 Plus 2.0). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12992

    GSE37382 (Northcott ... Taylor) 2012 (Expression profiling by array, Affymetrix Human Gene 1.1 ST Array profiling of 285 primary medulloblastoma samples.) Northcott PA, Shih DJ, Peacock J, Garzia L et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 2012 Aug 2;488(7409):49-56. PMID: 22832581 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37382

    GSE10327 (M. Kool ) 62 samples, 2008 ( Expression profiling by array ) (beware it is sometimes referred as GSE10237 in original paper and several references - that is an error reference). Kool M, Koster J, Bunt J, Hasselt NE et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 2008 Aug 28;3(8):e3088. PMID: 18769486 Rack PG, Ni J, Payumo AY, Nguyen V et al. Arhgap36-dependent activation of Gli transcription factors. Proc Natl Acad Sci U S A 2014 Jul 29;111(30):11061-6. PMID: 25024229 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10327

    Other datasets (not yet loaded):

    (47.1 Gb, 2012) (Expression profiling by array, Genome variation profiling by SNP array, SNP genotyping by SNP array ) Northcott PA, Shih DJ, Peacock J, Garzia L et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 2012 Aug 2;488(7409):49-56. PMID: 22832581 Here we report somatic copy number aberrations (SCNAs) in 1087 unique medulloblastomas. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37385

  12. Data for github demo

    • figshare.com
    bin
    Updated Jan 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thanh Nguyen (2021). Data for github demo [Dataset]. http://doi.org/10.6084/m9.figshare.13660973.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 28, 2021
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Thanh Nguyen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The expression matrix and gene list for github demo code at https://github.com/thamnguy/l-PGC. The dataset contains peripheral blood single cell from healthy donors in dataset GSM4710729 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4710729)

  13. o

    mouse GSE199308 scRNA data set objects

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Apr 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristian Ullrich (2024). mouse GSE199308 scRNA data set objects [Dataset]. http://doi.org/10.5281/zenodo.10912501
    Explore at:
    Dataset updated
    Apr 4, 2024
    Authors
    Kristian Ullrich
    Description

    scRNA data from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199308 (Huang et al. 2023), see a detailed description of the study here: https://atlas.gs.washington.edu/mmca_v2/public/about.html Data were downloaded from https://atlas.gs.washington.edu/mmca_v2/public/download.html to create an AnnData (h5ad) file with meta data to be able to analyse with e.g. python scanpy package. If you use this data, please cite Huang et al. 2023.

  14. f

    Integrated Fibrosis Atlas

    • figshare.com
    application/gzip
    Updated Oct 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lukas Tombor (2024). Integrated Fibrosis Atlas [Dataset]. http://doi.org/10.6084/m9.figshare.24428698.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Oct 24, 2024
    Dataset provided by
    figshare
    Authors
    Lukas Tombor
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
  15. Z

    Peakachu peaks of human uvCLAP datasets.

    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Maticzka (2020). Peakachu peaks of human uvCLAP datasets. [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_1063947
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset authored and provided by
    Daniel Maticzka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
  16. d

    NCBI accession numbers and related metadata from a study of transcriptomic...

    • search.dataone.org
    • bco-dmo.org
    • +1more
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen E. Whalen; Elizabeth Harvey (2025). NCBI accession numbers and related metadata from a study of transcriptomic response of Emiliania huxleyi to 2-heptyl-4-quinolone (HHQ) [Dataset]. http://doi.org/10.26008/1912/bco-dmo.773272.1
    Explore at:
    Dataset updated
    Mar 9, 2025
    Dataset provided by
    Biological and Chemical Oceanography Data Management Office (BCO-DMO)
    Authors
    Kristen E. Whalen; Elizabeth Harvey
    Time period covered
    Jun 20, 2018 - Jun 23, 2018
    Description

    Sequences from this study are available at the NCBI GEO under accession series GSE131846 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE131846

  17. R

    Annotations of porcine oligo-sets GPL16524 and GPL10162 using sigReannot on...

    • entrepot.recherche.data.gouv.fr
    ods
    Updated Oct 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrice Dehais; Patrice Dehais (2024). Annotations of porcine oligo-sets GPL16524 and GPL10162 using sigReannot on Ensembl 92 Sscrofa11.1 [Dataset]. http://doi.org/10.57745/KNFKSE
    Explore at:
    ods(7044987)Available download formats
    Dataset updated
    Oct 29, 2024
    Dataset provided by
    Recherche Data Gouv
    Authors
    Patrice Dehais; Patrice Dehais
    License

    https://spdx.org/licenses/etalab-2.0.htmlhttps://spdx.org/licenses/etalab-2.0.html

    Description

    The annotations.ods spreadsheet contains the annotation report provided by the sigReannot pipeline in November 2018 for the GPL16524 (Agilent-037880) and GPL10162 (Agilent-020109) chips using the pig data available in Ensembl92 (Sscrofa11.1) Chip data are available at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL16524 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL10162

  18. Z

    celegans scRNA data set objects

    • data.niaid.nih.gov
    Updated Dec 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristian K Ullrich (2022). celegans scRNA data set objects [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7245547
    Explore at:
    Dataset updated
    Dec 31, 2022
    Dataset authored and provided by
    Kristian K Ullrich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Combined and converted scRNA data from (Packer and Zhu et al. 2019), see a detailed description of the study here: https://www.science.org/doi/full/10.1126/science.aax1971

    Data were downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126954 converted into Seurat object and converted into loom and AnnData (h5ad) files to be able to analyse with e.g. python scanpy package.

    If you use this data, please cite Packer and Zhu et al. 2019.

  19. d

    Genetic accessions, treatment information, and methodology from laboratory...

    • search.dataone.org
    • bco-dmo.org
    • +1more
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neelakanteswar Aluru; Mark Hahn (2025). Genetic accessions, treatment information, and methodology from laboratory experiments studying transcriptomic responses to saxitoxin in zebrafish (Danio rerio) [Dataset]. http://doi.org/10.26008/1912/bco-dmo.881469.1
    Explore at:
    Dataset updated
    Mar 9, 2025
    Dataset provided by
    Biological and Chemical Oceanography Data Management Office (BCO-DMO)
    Authors
    Neelakanteswar Aluru; Mark Hahn
    Time period covered
    Jan 1, 2022
    Description

    The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus (GEO) and are accessible through GEO Series accession number GSE204989 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE204989).

    Sequence Read Archive (SRA) data, BioSamples, and GEO holdings can be accessed from the NCBI BioProject PRJNA843039 (http://www.ncbi.nlm.nih.gov/bioproject/PRJNA843039).

  20. e

    Strand-specific RNA-seq of nine rhesus macaque tissues

    • ebi.ac.uk
    Updated Dec 20, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jason Merkin; Christopher Burge (2012). Strand-specific RNA-seq of nine rhesus macaque tissues [Dataset]. https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-2799
    Explore at:
    Dataset updated
    Dec 20, 2012
    Authors
    Jason Merkin; Christopher Burge
    Description

    This experiment is contains rhesus macaque organism part samples and strand-specific RNA-seq data from experiment E-GEOD-41637 (https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-41637/), which aimed at assessing tissue-specific transcriptome variation across mammals, with chicken used as an outgroup in evolutionary analyses. Each organism part was sourced from three different animals as biological replicates. This data set was originally submitted to NCBI Gene Expression Omnibus under accession number GSE41637 (http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE41637) and later imported to ArrayExpress as E-GEOD-41637.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Giwon Hong (2002). geoquery [Dataset]. https://huggingface.co/datasets/GWHed/geoquery

geoquery

GWHed/geoquery

Explore at:
Dataset updated
Feb 1, 2002
Authors
Giwon Hong
Description

GWHed/geoquery dataset hosted on Hugging Face and contributed by the HF Datasets community

Search
Clear search
Close search
Google apps
Main menu