4 datasets found
  1. C

    DSM2 Georeferenced Model Grid

    • data.cnra.ca.gov
    • data.ca.gov
    • +1more
    Updated Sep 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). DSM2 Georeferenced Model Grid [Dataset]. https://data.cnra.ca.gov/dataset/dsm2-georeferenced-model-grid
    Explore at:
    pdf(22679496), pdf(25962387), zip(158973), arcgis desktop map package(211110), zip(228604), pdf(22669649), zip(26881), arcgis pro map package(153901), zip(159621), pdf(20463896), arcgis desktop map package(300515), pdf(1443441), zip(140121), zip(149795)Available download formats
    Dataset updated
    Sep 12, 2025
    Dataset authored and provided by
    California Department of Water Resources
    Description

    ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.

    Monitoring Stations - shapefile with approximate locations of monitoring stations.

    DSM2 Grid 2025-05-28 Historical

    FC_2023.01

    DSM2 v8.2.0, calibrated version:

    • dsm2_8_2_grid_map_calibrated.mpkx - ArcGIS Pro map package containing all layers and symbology for the calibrated grid map.
    • dsm2_8_2_grid_map_calibrated.mpk - ArcGIS Desktop map package containing all layers and symbology for the calibrated grid map.
    • dsm2_8_2_0_calibrated_grid_map_qgis.zip - QGIS map package containing all layers and symbology for the calibrated grid map.
    • dsm2_8_2_0_calibrated_gridmap_shapefiles.zip - A zip file containing all the shapefiles used in the above map packages:
    • dsm2_8_2_0_calibrated_channels_centerlines - channel centerlines, follwing the path of CSDP centerlines
    • dsm2_8_2_0_calibrated_network_channels - channels represented by straight line segments which are connected the upstream and downstream nodes
    • dsm2_8_2_0_calibrated_nodes - DSM2 nodes
    • dsm2_8_2_0_calibrated_dcd_only_nodes - Nodes that are only used by DCD
    • dsm2_8_2_0_calibrated_and_dcd_nodes - Nodes that are shared by DSM2 and DCD
    • dsm2_8_2_0_calibrated_and_smcd_nodes - Nodes that are shared by DSM2 and SMCD
    • dsm2_8_2_0_calibrated_gates_actual_loc - The approximate actual locations of each gate in DSM2
    • dsm2_8_2_0_calibrated_gates_grid_loc - The locations of each gate in the DSM2 model grid
    • dsm2_8_2_0_calibrated_reservoirs - The approximate locations of the reservoirs in DSM2
    • dsm2_8_2_0_calibrated_reservoir_connections - Lines showing connections from reservoirs to nodes in DSM2

    DSM2 v8.2.1, historical version:

    • DSM2 v8.2.1, historical version grid map release notes (PDF), updated 7/12/2022
    • DSM2 v8.2.1, historical version grid map, single zoom level (PDF)
    • DSM2 v8.2.1, historical version grid map, multiple zoom levels (PDF) - PDF grid map designed to be printed on 3 foot wide plotter paper.
    • DSM2 v8.2.1, historical version map package for ArcGIS Desktop: A map package for ArcGIS Desktop containing the grid map layers with symbology.
    • DSM2 v8.2.1, historical version grid map shapefiles (zip): A zip file containing the shapefiles used in the grid map.

    Change Log

    7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.

  2. Creating and georeferencing a 3D textured model of a historic building in...

    • zenodo.org
    csv, mp4, zip
    Updated Apr 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danilo Marco Campanaro; Danilo Marco Campanaro; Nicolò Dell'Unto; Nicolò Dell'Unto; Stefan Lindgren; Stefan Lindgren (2025). Creating and georeferencing a 3D textured model of a historic building in Reality Capture [Dataset]. http://doi.org/10.5281/zenodo.13946183
    Explore at:
    mp4, csv, zipAvailable download formats
    Dataset updated
    Apr 14, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Danilo Marco Campanaro; Danilo Marco Campanaro; Nicolò Dell'Unto; Nicolò Dell'Unto; Stefan Lindgren; Stefan Lindgren
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    This two-part video tutorial provides a comprehensive, step-by-step guide to creating and georeferencing a 3D textured model of a historic building using Reality Capture. It covers the entire process, from photo alignment and importing GPS data from a text file to identifying and using ground control points (GCPs) to improve the alignment of model components and accurately georeference the point cloud. The tutorial also demonstrates model creation, cleaning, simplification, and texturing. In the final steps, the model is exported and imported into ArcGIS Pro for geographic analysis and visualization.

  3. o

    Mawrth Vallis, Mars, classified using the NOAH-H deep-learning terrain...

    • ordo.open.ac.uk
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alex Barrett; Peter Fawdon; Elena Favaro; Matt Balme; Jack Wright (2023). Mawrth Vallis, Mars, classified using the NOAH-H deep-learning terrain classification system. Classified mosaics, Manually Mapped Aeolian Bedforms and derrived gridded density statistics. [Dataset]. http://doi.org/10.21954/ou.rd.22960412.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    The Open University
    Authors
    Alex Barrett; Peter Fawdon; Elena Favaro; Matt Balme; Jack Wright
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset description: This repository contains data pertaining to the manuscript "Mawrth Vallis, Mars, classified using the NOAH-H deep-learning terrain classification system." submitted to Journal of Maps. NOAH-H Mosaics: Mawrth_Vallis_NOAHH_Mosaic_DC_IG_25cm4bit_20230121_reclass.zip This folder contain mosaics of terrain classifications for Mawrth Vallis, Mars, made by the Novelty or Anomaly Hunter - HiRISE (NOAH-H) deep learning convolutional neural network developed for the European Space Agency (ESA) by SCISYS Ltd. In coordination with the Open University Planetary Environments Group. These folders contain the NOAH-H mosaics, as well as ancillary files needed to display the NOAH-H products in geographic information software (GIS). Included are two large raster datasets, containing the NOAH-H classification for the entire study area. One uses the 14 descriptive classes of the terrain, and the other with the five interpretative groups (Barrett et al., 2022). · Mawrth_Vallis_NOAHH_Mosaic_DC_25cm4bit_20230121_reclass.tif Contains the full 14 class “Descriptive Classes” (DC) dataset, reclassified so that pixel values reflect the original NOAH-H ontology, and not the priority rankings described in Wright et al., (2022) and Barrett et al., (2022b). It is accompanied by all auxiliary files required to view the data in GIS. · Mawrth_Vallis_NOAHH_Mosaic_IG_25cm4bit_20230121_reclass.tif Contains the 5 class “Interpretive Groups” (IG) dataset, reclassified so that pixel values reflect the original NOAH-H ontology, and not the priority rankings described in Wright et al., (2022) and Barrett et al., (2022b). It is accompanied by all auxiliary files required to view the data in GIS. Symbology layer files: NOAH-H_Symbology.zip This folder contains GIS layer file and colour map files for both the Descriptive Classes (DC) and interpretive Groups (IG) versions of the classification. These can be applied to the data using the symbology options in GIS. Georeferencing Control points: Mawrth_Vallis_Final_Control_Points.zip This file contains the control points used to georeferenced the 26 individual HiRISE images which make up the mosaic. These allow publicly available HiRISE images to be aligned to the terrain in Mawrth Vallis, and thus the NOAH-H Mosaic. Twenty-six 25 cm/pixel HiRISE images of Mawrth Vallis were used as input for NOAH-H. These are:

    PSP_002140_2025_RED

    PSP_002074_2025_RED

    ESP_057351_2020_RED

    ESP_053909_2025_RED

    ESP_053698_2025_RED

    ESP_052274_2025_RED

    ESP_051931_2025_RED

    ESP_051351_2025_RED

    ESP_051219_2030_RED

    ESP_050217_2025_RED

    ESP_046960_2025_RED

    ESP_046670_2025_RED

    ESP_046525_2025_RED

    ESP_046459_2025_RED

    ESP_046314_2025_RED

    ESP_045536_2025_RED

    ESP_045114_2025_RED

    ESP_044903_2025_RED

    ESP_043782_2025_RED

    ESP_043637_2025_RED

    ESP_038758_2025_RED

    ESP_037795_2025_RED

    ESP_037294_2025_RED

    ESP_036872_2025_RED

    ESP_036582_2025_RED

    ESP_035804_2025_RED NOAH-H produced corresponding 25 cm/pixel rasters where each pixel is assigned a terrain class based on the corresponding pixels in the input HiRISE image. To mosaic the NOAH-H rasters together, first the input HiRISE images were georeferenced to the HRSC basemap (HMC_11E10_co5) tile, using CTX images as an intermediate step. High order (spline, in ArcGIS Pro 3.0) transformations were used to make the HiRISE images georeference closely onto the target layers. Once the HiRISE images were georeferenced, the same control points and transformations were applied to the corresponding NOAH-H rasters. To mosaic the georeferenced NOAH-H rasters the pixel values for the classes needed to be changed so that more confidently identified, and more dangerous, classes made it into the mosaic (see dataset manuscript for details. To produce a HiRISE layer which fits the NOAH-H classification, download one of the listed HiRISE images from https://www.uahirise.org/, Select the corresponding control point file from this archive and apply a spline transformation through the GIS georeferencing toolbar. Manually Mapped Aeolian Bedforms: Mawrth_Manual_TARs.zip The manually mapped data was produced by Fawdon, independently of the NOAH-H project, as an assessment of “Aeolian Hazard” at Mawrth Vallis. This was done to inform the ExoMars landing site selection process. This file contains two GIS shape files, containing the manually mapped bedforms for both the entire mapping area, and the HiRISE image ESP_046459_2025_RED where the two datasets were compared on a pixel scale. The full manual map is offset slightly from the NOAH-H, since it was digitised from bespoke HiRISE orthomosaics, rather than from the publicly available HiRISE Red band images. It is suitable for comparison to the NOAH-H data with 100m-1km aggregation as in figure 8 of the associated paper. It is not suitable for pixel scale comparison. The map of ESP_046459_2025_RED was manually georeferenced to the NOAH-H mosaic, allowing for direct pixel to pixel comparisons, as presented in figure 6 of the associated paper. Two GIS shape files are included: · Mawrth_Manual_TARs_ESP_046459_2025.shp · Mawrth_Manual_TARs_all.shp Containing the high fidelity data for ESP_046459_2025, and the medium fidelity data for the entire area respectively. The are accompanied by ancillary files needed to view them in GIS. Gridded Density Statistics This dataset contains gridded density maps of Transverse Aeolian Ridges and Boulders, as classified by the Novelty or Anomaly Hunter – HiRISE (NOAH-H). The area covered is the runner up candidate ExoMars landing site in Mawrth Vallis, Mars. These are the data shown in figures; 7, 8, and S1. Files are presented for every classified ripple and boulder class, as well as for thematic groups. These are presented as .shp GIS shapefiles, along with all auxiliary files required to view them in GIS. Gridded Density stats are available in two zip folders, one for NOAH-H predicted density, and one for manually mapped density. NOAH-H Predicted Density: Mawrth_NOAHH_1km_Grid_TAR_Boulder_Density.zip Individual classes are found in the files: · Mawrth_NOAHH_1km_Grid_8TARs.shp · Mawrth_NOAHH_1km_Grid_9TARs.shp · Mawrth_NOAHH_1km_Grid_11TARs.shp · Mawrth_NOAHH_1km_Grid_12TARs.shp · Mawrth_NOAHH_1km_Grid_13TARs.shp · Mawrth_NOAHH_1km_Grid_Boulders.shp Where the text following Grid denotes the NOAH-H classes represented, and the landform classified. E.g. 8TARs = NOAH-H TAR class 8. The following thematic groups are also included: · Mawrth_NOAHH_1km_Grid_8_11continuousTARs.shp · Mawrth_NOAHH_1km_Grid_12_13discontinuousTARs · Mawrth_NOAHH_1km_Grid_8_10largeTARs.shp · Mawrth_NOAHH_1km_Grid_11_13smallTARs.shp · Mawrth_NOAHH_1km_Grid_8_13AllTARs.shp When the numbers denote the range of NOAH-H classes which were aggregated to produce the map, followed by a description of the thematic group: “continuous”, “discontinuous”, “large”, “small”, “all”. Manually Mapped Density Plots: Mawrth_Manual_1km_Grid.zip These GIS shapefiles have the same format as the NOAH-H classified ones. Three datasets are presented for all TARs (“_allTARs”), Continuous TARs (“_con”) and Discontinuous TARs (“_dis”) · Mawrth_Manual_1km_Grid_AllTARs.shp · Mawrth_Manual_1km_Grid_Con.shp · Mawrth_Manual_1km_Grid_Dis.shp Related public datasets: The HiRISE images discussed in this work are publicly available from https://www.uahirise.org/. and are credited to NASA/JPL/University of Arizona. HRSC images are credited to the European Space Agency; Mars Express mission team, German Aerospace Center (DLR), and the Freie Universität Berlin (FUB). They are available at the ESA Planetary Science Archive (PSA) https://www.cosmos.esa.int/web/psa/mars-express and are used under the Creative Commons CC BY-SA 3.0 IGO licence. SPATIAL DATA COORDINATE SYSTEM INFORMATION All NOAH-H files and derivative density plots have the same projected coordinate system: “Equirectangular Mars” - Projection: Plate Carree - Sphere radius: 3393833.2607584 m SOFTWARE INFORMATION All GIS workflows (georeferencing, mosaicking) were conducted in ArcGIS Pro 3.0. NOAH-H is a deep learning semantic segmentation software developed by SciSys Ltd for the European Space Agency to aid preparation for the ExoMars rover mission.

  4. Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • zenodo.org
    • data.niaid.nih.gov
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. http://doi.org/10.5281/zenodo.6432940
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Water Resources (2025). DSM2 Georeferenced Model Grid [Dataset]. https://data.cnra.ca.gov/dataset/dsm2-georeferenced-model-grid

DSM2 Georeferenced Model Grid

Explore at:
pdf(22679496), pdf(25962387), zip(158973), arcgis desktop map package(211110), zip(228604), pdf(22669649), zip(26881), arcgis pro map package(153901), zip(159621), pdf(20463896), arcgis desktop map package(300515), pdf(1443441), zip(140121), zip(149795)Available download formats
Dataset updated
Sep 12, 2025
Dataset authored and provided by
California Department of Water Resources
Description

ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.

Monitoring Stations - shapefile with approximate locations of monitoring stations.

DSM2 Grid 2025-05-28 Historical

FC_2023.01

DSM2 v8.2.0, calibrated version:

  • dsm2_8_2_grid_map_calibrated.mpkx - ArcGIS Pro map package containing all layers and symbology for the calibrated grid map.
  • dsm2_8_2_grid_map_calibrated.mpk - ArcGIS Desktop map package containing all layers and symbology for the calibrated grid map.
  • dsm2_8_2_0_calibrated_grid_map_qgis.zip - QGIS map package containing all layers and symbology for the calibrated grid map.
  • dsm2_8_2_0_calibrated_gridmap_shapefiles.zip - A zip file containing all the shapefiles used in the above map packages:
  • dsm2_8_2_0_calibrated_channels_centerlines - channel centerlines, follwing the path of CSDP centerlines
  • dsm2_8_2_0_calibrated_network_channels - channels represented by straight line segments which are connected the upstream and downstream nodes
  • dsm2_8_2_0_calibrated_nodes - DSM2 nodes
  • dsm2_8_2_0_calibrated_dcd_only_nodes - Nodes that are only used by DCD
  • dsm2_8_2_0_calibrated_and_dcd_nodes - Nodes that are shared by DSM2 and DCD
  • dsm2_8_2_0_calibrated_and_smcd_nodes - Nodes that are shared by DSM2 and SMCD
  • dsm2_8_2_0_calibrated_gates_actual_loc - The approximate actual locations of each gate in DSM2
  • dsm2_8_2_0_calibrated_gates_grid_loc - The locations of each gate in the DSM2 model grid
  • dsm2_8_2_0_calibrated_reservoirs - The approximate locations of the reservoirs in DSM2
  • dsm2_8_2_0_calibrated_reservoir_connections - Lines showing connections from reservoirs to nodes in DSM2

DSM2 v8.2.1, historical version:

  • DSM2 v8.2.1, historical version grid map release notes (PDF), updated 7/12/2022
  • DSM2 v8.2.1, historical version grid map, single zoom level (PDF)
  • DSM2 v8.2.1, historical version grid map, multiple zoom levels (PDF) - PDF grid map designed to be printed on 3 foot wide plotter paper.
  • DSM2 v8.2.1, historical version map package for ArcGIS Desktop: A map package for ArcGIS Desktop containing the grid map layers with symbology.
  • DSM2 v8.2.1, historical version grid map shapefiles (zip): A zip file containing the shapefiles used in the grid map.

Change Log

7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.

Search
Clear search
Close search
Google apps
Main menu