ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.
Monitoring Stations - shapefile with approximate locations of monitoring stations.
7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.
Tracking an animal's location from video has many applications, from providing information on health and welfare to validating sensor-based technologies. Typically, accurate location estimation from video is achieved using cameras with overhead (top-down) views, but structural and financial limitations may require mounting cameras at other angles. We describe a user-friendly solution to manually extract an animal's location from non-overhead video. Our method uses QGIS, an open-source geographic information system, to: (1) assign facility-based coordinates to pixel coordinates in non-overhead frames; 2) use the referenced coordinates to transform the non-overhead frames to an overhead view; and 3) determine facility-based x, y coordinates of animals from the transformed frames. Using this method, we could determine an object's facility-based x, y coordinates with an accuracy of 0.13 ± 0.09 m (mean ± SD; range: 0.01–0.47 m) when compared to the ground truth (coordinates manually recorded..., Please see the description in the associated research publication., Please see the included README file.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This document shows just the questions we asked the applicants who applied to participate in this Georeferencing for Research Use workshop. We used a Google Form to deliver these questions and collect responses. It is both an application and serves as our pre-workshop survey.
This dataset contains binary geotiff masks/classifications of six Arctic deltas for channels, lakes, land, and other small water bodies (see methods). Tiff files can be opened with any image viewer, but use of georeferencing data attached to the imagery will require a GIS platform (e.g., QGIS). Dataset includes individually classified scene masks for Colville (2014), Kolyma (2014), Lena (2016), Mackenzie (2014), Yenisei (2013), and Yukon (2014). We also provide .mat files for each delta that include a 2D array of the mosaicked images that is cropped to include only the area used in our analyses (see Piliouras and Rowland, 2020, Journal of Geophysical Research - Earth Surface), as well as the X (easting) and Y (northing) arrays for georeferencing, with coordinates in UTMs.
Georeferencing the "Atlas du plan général de la ville de Paris par Edme Verniquet" Géoréférencement de l'Atlas du plan général de la ville de Paris par Edme Verniquet This dataset contains the necessary data control points to georeference the "Atlas du plan général de la ville de Paris par Edme Verniquet" based on 2 different versions of the atlas: one digitized by the Bibliothèque nationale de France (BnF) and the other by The David Rumsey Historical Map Collection. The dataset contains the control points in QGIS format (.points files) and as Allmaps georeference annotations. It also contains the georeferenced map sheets as geotiff.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This document contains an annotated set of data quality checks that participants report they use when evaluating and cleaning datasets. These items outline how participants are judging if the data suits their purpose.
This dataset was generated by the TU Wien Department of Geodesy and Geoinformation. European Sentinel-1 forest type and tree cover density maps represent first continental-scale forest layers based on Sentinel-1 C-Band Synthetic Aperture Radar (SAR) backscatter data. For the year 2017 they cover the majority of European continent with 10 m and 100 m sampling for forest type and tree cover density, respectively. The maps were derived using the method described in https://www.tandfonline.com/doi/full/10.1080/01431161.2018.1479788. The forest type map shows the dominant forest type class (coniferous, broadleaf). Tree cover density map shows the percentage of forest canopy cover within the 100 m pixel. Please be referred to our peer-reviewed article at https://doi.org/10.3390/rs13030337 for details and accuracy assessment accross Europe. Dataset Record The forest type and tree cover density maps are sampled at 10 m and 100 m pixel spacing respectively, georeferenced to the Equi7Grid and divided into square tiles of 100km extent ("T1"-tiles). With this setup, the forest maps consist of 728 tiles over the European continent, with data volumes of 3.12 GB and 378.3 MB. The tiles' file-format is a LZW-compressed GeoTIFF holding 16-bit integer values, with tagged metadata on encoding and georeference. Compatibility with common geographic information systems as QGIS or ArcGIS, and geodata libraries as GDAL is given. In this repository, we provide each forest map as tiles, whereas two zipped dataset-collections are available for download below. Code Availability For the usage of the Equi7Grid we provide data and tools via the python package available on GitHub at https://github.com/TUW-GEO/Equi7Grid. More details on the grid reference can be found in https://www.sciencedirect.com/science/article/pii/S0098300414001629. Acknowledgements The computational results presented have been achieved using the Vienna Scientific Cluster (VSC).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset visualises the spatial distribution of the rental value in Amsterdam between 1647 and 1652. The source of rental value comes from the Verponding registration in Amsterdam. The verponding or the ‘Verpondings-quohieren van den 8sten penning’ was a tax in the Netherlands on the 8th penny of the rental value of immovable property that had to be paid annually. In Amsterdam, the citywide verponding registration started in 1647 and continued into the early 19th century. With the introduction of the cadastre system in 1810, the verponding came to an end.
The original tax registration is kept in the Amsterdam City Archives (Archief nr. 5044) and the four registration books transcribed in this dataset are Archief 5044, inventory 255, 273, 281, 284. The verponding was collected by districts (wijken). The tax collectors documented their collecting route by writing down the street or street-section names as they proceed. For each property, the collector wrote down the names of the owner and, if applicable, the renter (after ‘per’), and the estimated rental value of the property (in guilders). Next to the rental value was the tax charged (in guilders and stuivers). Below the owner/renter names and rental value were the records of tax payments by year.
This dataset digitises four registration books of the verponding between 1647 and 1652 in two ways. First, it transcribes the rental value of all real estate properties listed in the registrations. The names of the owners/renters are transcribed only selectively, focusing on the properties that exceeded an annual rental value of 300 guilders. These transcriptions can be found in Verponding1647-1652.csv. For a detailed introduction to the data, see Verponding1647-1652_data_introduction.txt.
Second, it geo-references the registrations based on the street names and the reconstruction of tax collectors’ travel routes in the verponding. The tax records are then plotted on the historical map of Amsterdam using the first cadaster of 1832 as a reference. Since the geo-reference is based on the street or street sections, the location of each record/house may not be the exact location but rather a close proximation of the possible locations based on the street names and the sequence of the records on the same street or street section. Therefore, this geo-referenced verponding can be used to visualise the rental value distribution in Amsterdam between 1647 and 1652. The preview below shows an extrapolation of rental values in Amsterdam. And for the geo-referenced GIS files, see Verponding_wijken.shp.
GIS specifications:
Coordination Reference System (CRS): Amersfoort/RD New (ESPG:28992)
Historical map tiles URL (From Amsterdam Time Machine)
NB: This verponding dataset is a provisional version. The georeferenced points and the name transcriptions might contain errors and need to be treated with caution.
Contributors
This layer shows soils in south Karamoja in 1959. The dataset is from the European Digital Archives of Soil Maps(EuDASM) 2005 at http://eusoils.jrc.ec.europa.eu/esdb_archive/eudasm/africa/images/maps/download/afr_ug3004_1so.jpg. The map was georeferenced using QGIS and reprojected to WGS84.
Polygon dataset showing the 6 counties of Northern Ireland e.g. County Armagh, County Tyrone etc which were the primary local government geography of Northern Ireland before the introduction of unitary authorities in 1972. A PNG map showing the Northern Ireland county boundaries was downloaded from wikipedia: http://en.wikipedia.org/wiki/File:Northern_Ireland_-_Counties.png The PNG was georeferenced in QGIS using control points with reference to an OGL dataset downloaded from the UK Data Service showing the Northern Ireland coastline. Internal county boundaries were digitised from the georeferenced PNG as a set of polylines. These polylines were then snapped to the coastline features and polygons were generated. A county name was then assigned to each polygon in the attribute table. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2014-02-24 and migrated to Edinburgh DataShare on 2017-02-22.
This layer shows soils in 1967. The dataset source is the European Digital Archives of Soil Maps at http://eusoils.jrc.ec.europa.eu/esdb_archive/eudasm/africa/images/maps/download/afr_ug2001so.jpg The map was georeferenced using QGIS, the projection is WGS84.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data sets include 10 scanned historical maps (Plan 1-9 and 11) from 1920 of the region of Grosses Moos in Switzerland. The maps have been drawn by different surveyors with the plane table principle in 1920 represented with a map including topographical information such as contour lines, water bodies and houses and other urban infrastructures. In addition, the original measurement points were marked with a grid of 20-30m spacing and additional points if needed. These individual points were digitized by first georeferencing the individual maps with QGIS and then digitising each single measurement point along with their respective recorded heights. 44319 points were digites in LV03 (Swiss coordinate system) with the corresponding height (stored in the file "HoehendatenPunktwolke_Ins_1920.geojson").
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
OC is outcome-cluster uniqueness and CR is cluster-range uniqueness.Performance Metrics When Predicting Infiltration & Drainage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ecosystems are rapidly degrading. Widely used approaches to monitor ecosystems to manage them effectively are both expensive and time consuming. The recent proliferation of publicly available imagery from satellites, Google Earth, and citizen-science platforms holds the promise to revolutionising ecological monitoring and optimising their efficiency. However, the potential of these platforms to detect species and track their population dynamics remains under-explored. We introduce a fast, inexpensive method for retrospective image analysis combining current ground-truth data with historical RGB imagery from Google Earth to extract long-term demographic data. We apply this method to three case studies involving two major Mediterranean invasive plant taxa with contrasting growth forms. This dataset contains the step-by-step protocol to perform retrospective image analysis using Google Earth Imagery, including writen protocols, videotutorials and the data. A ReadMe is found in the folder explaining all folder's contents, whereas a WatchMe has been recorded to perform an analogous function in the Youtube playlist including all videotutorials: https://www.youtube.com/playlist?list=PL_LKE-yTi9kBXfw_qDdJCQ3Sxu2fjGvDD Our pipeline opens new avenues for cost-effective, large-scale demographic monitoring by retrospectively harnessing open-access imagery. While demonstrated here with invasive plants, we discuss the broad applicability of our approach across taxa and ecosystems. The use of retrospective image analysis for long-term demography with Google Earth imagery has the potential to expedite conservation decisions, support effective restoration, and enable robust ecological forecasting in the Anthropocene.The repository contains 4 folders (Data, Code, Protocols and Videos), acompaigned by a ReadMe.txt file with further details about the contents.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset focuses on the historical mapping of the Greater Donaumoos fen region using old maps spanning the last 235 years. The main observations include the georeferencing of these historical maps and the subsequent vectorisation of the anthropogenic ditches and the Danube's surface area. The data collection encompasses maps spanning multiple centuries, providing temporal coverage that highlights landscape changes over significant historical periods. The data was collected to enhance archaeological, historical, and ecological research, offering insights into past landscapes and their transformations over time. The method involved digitising old maps and applying geospatial techniques to align them accurately with current geographical coordinates (Schmidt et al., 2024). This process was essential to create vector data representing the historical state of the ditches and the Danube river in this region. The purpose of this data collection is to provide a valuable resource for researchers studying historical land use, environmental changes, and regional development. The georeferencing and vectorisation processes were conducted using QGIS, ensuring precise alignment and accurate representation of historical features. The data generated from this project is crucial for understanding how the Greater Donaumoos fen region has evolved, offering a foundational dataset for further interdisciplinary studies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Georeferenced (to WGS1984) and cropped set of about 820 historic maps of Burma at a scale of 1 inch per mile (63,360) covering about 75% of the country. Those topographic maps, originally produced and published by the Great Trigonometrical Survey of India between 1899 and 1946, have been scanned and shared with the public as part of the "Old Survey Of India Maps” Community under a CC BY 4.0 International Licence. Many of these maps are reprints of earlier maps produced before the war. Most mapsheets are early editions (edition 1 or edition 2).
Each of the 820 map sheet scans was georeferenced using the Latitude-Longitude corner coordinates in Everest 1830 projection. Those map sheets were cropped, keeping only the map area - to allow a seamless mosaic without the mapframe overlapping adjacent map sheets when several map sheets are put together in a GIS. Those cropped map sheets were projected from Everest 1830 to WGS1984 (EPSG4326) - standard GPS - projection to make them easier to use and combine with other GIS data.
Those map sheets can be loaded directly in any GIS such as QGIS or ESRI ArcGIS as well as Google Earth.
All georeferenced map scans are based on maps shared by John Brown via Zenodo
The file naming convention is to first give the number of the 4 degree x 4 degree block followed by the letter (A to P) of the sixteen 1 degree x 1 degree blocks in each 4 degree block eg. 38 D, and this is followed by a number from 1 to 16 to indicate the number of the map in the 1 degree block.
This Number Letter Number designation is followed by the map series type either OI (contains a LCC grid) or OILatLon (only has a Lat-Lon grid), followed by the edition and year of the edition, followed by the date of publication/print. If the information is not available an "X" (for edition) or "0000" (for an unknown year) is used. A best-guess approach was used if the edition and print year and version information was ambiguous.
The files as shared via the "Old Survey Of India Maps" have been renamed to standardize the file naming, sometimes correcting them and to make them unique in the case several editions of the same map sheet were available.
A topographical index produced by the Survey of India is provided to assist the viewer in selecting a particular map of interest.
Para abrir y visualizar el proyecto, deben utilizar QGIS 3.38 y abrir el archivo "PampeanLakes.qgz". Geographic Information Systems (GIS) consists of data, software and hardware to generate, store, manage, analyse, and visualise georeferenced information. The use of GIS has increased in recent decades for three reasons: 1) public, free and high-quality georeferenced information is increasingly available, 2) free and powerful GIS software has been developed, and 3) georeferenced information has been incorporated into our daily life. Nowadays, GIS is an indispensable part of many fields and studies thanks to its ability to integrate and analyse large volumes of data with little effort and computational requirements. The development of GIS has led to a democratisation of the information created and visualised through them, a process we aim to contribute to. This GIS was developed for the book 'Pampean Lakes' using information from 13 of its chapters. The GIS includes lakes, wetlands, valley boundaries, paleochannels, streams, dunes, flooded areas, fault systems, salinas, orography, vegetation and aeolian units, archaeological sites, and weather stations. Additionally, we present a series of uses examples. Los sistemas de información geográfica (SIG) consisten en datos, software y hardware para generar, almacenar, gestionar, analizar y visualizar información georreferenciada. El uso de los SIG ha aumentado en las últimas décadas debido a tres motivos: 1) la disponibilidad de información georreferenciada pública, gratuita y de alta calidad es cada vez mayor, 2) el desarrollo de software SIG libre y poderoso, y 3) la incorporación de la información georreferenciada en nuestra vida cotidiana. Hoy en día, los SIG son una parte indispensable de muchos campos y estudios gracias a su capacidad para integrar y analizar grandes volúmenes de datos con poco esfuerzo y requisitos computacionales. El desarrollo de los SIG ha llevado a una democratización de la información creada y visualizada a través de ellos, un proceso al que queremos contribuir. Este SIG fue elaborado para el libro "Pampean Lakes" utilizando información de 13 de sus capítulos. El SIG incluye lagos, humedales, límites de valles, paleocanales, arroyos, dunas, áreas inundadas, sistemas de fallas, salinas, orografía, vegetación y unidades eólicas, sitios arqueológicos y estaciones meteorológicas. Además, presentamos una serie de ejemplos de usos.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.
Monitoring Stations - shapefile with approximate locations of monitoring stations.
7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.