https://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy
The Vietnam geospatial analytics market size is projected to exhibit a growth rate (CAGR) of 8.90% during 2024-2032. The increasing product utilization by government authorities in various sectors, various technological advancements in satellite technology, remote sensing, and data collection methods, and the rising development of smart cities represent some of the key factors driving the market.
Report Attribute
|
Key Statistics
|
---|---|
Base Year
| 2023 |
Forecast Years
| 2024-2032 |
Historical Years
|
2018-2023
|
Market Growth Rate (2024-2032) | 8.90% |
Geospatial analytics is a field of data analysis that focuses on the interpretation and analysis of geographic and spatial data to gain valuable insights and make informed decisions. It combines geographical information systems (GIS), advanced data analysis techniques, and visualization tools to analyze and interpret data with a spatial or geographic component. It also enables the collection, storage, analysis, and visualization of geospatial data. It provides tools and software for managing and manipulating spatial data, allowing users to create maps, perform spatial queries, and conduct spatial analysis. In addition, geospatial analytics often involves integrating geospatial data with other types of data, such as demographic data, environmental data, or economic data. This integration helps in gaining a more comprehensive understanding of complex phenomena. Moreover, geospatial analytics has a wide range of applications. For example, it can be used in urban planning to optimize transportation routes, in agriculture to manage crop yield and soil quality, in disaster management to assess and respond to natural disasters, in wildlife conservation to track animal migrations, and in business for location-based marketing and site selection.
The Vietnamese government has recognized the importance of geospatial analytics in various sectors, including urban planning, agriculture, disaster management, and environmental monitoring. Initiatives to develop and utilize geospatial data for public projects and policy-making have spurred demand for geospatial analytics solutions. In addition, Vietnam is experiencing rapid urbanization and infrastructure development. Geospatial analytics is critical for effective urban planning, transportation management, and infrastructure optimization. This trend is driving the adoption of geospatial solutions in cities and regions across the country. Besides, Vietnam's agriculture sector is a significant driver of its economy. Geospatial analytics helps farmers and agricultural businesses optimize crop management, soil health, and resource allocation. Consequently, precision farming techniques, enabled by geospatial data, are becoming increasingly popular, which is also propelling the market. Moreover, the development of smart cities in Vietnam relies on geospatial analytics for various applications, such as traffic management, public safety, and energy efficiency. Geospatial data is central to building the infrastructure needed for smart city initiatives. Furthermore, advances in satellite technology, remote sensing, and data collection methods have made geospatial data more accessible and affordable. This has lowered barriers to entry and encouraged the use of geospatial analytics in various sectors. Additionally, the telecommunications sector in Vietnam is expanding, and location-based services, such as navigation and advertising, rely on geospatial analytics. This creates opportunities for geospatial data providers and analytics solutions in the telecommunications industry.
IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the country level for 2024-2032. Our report has categorized the market based on component, type, technology, enterprise size, deployment mode, and vertical.
Component Insights:
https://www.imarcgroup.com/CKEditor/2e6fe72c-0238-4598-8c62-c08c0e72a138other-regions1.webp" style="height:450px; width:800px" />
The report has provided a detailed breakup and analysis of the market based on the component. This includes solution and services.
Type Insights:
A detailed breakup and analysis of the market based on the type have also been provided in the report. This includes surface and field analytics, network and location analytics, geovisualization, and others.
Technology Insights:
The report has provided a detailed breakup and analysis of the market based on the technology. This includes remote sensing, GIS, GPS, and others.
Enterprise Size Insights:
A detailed breakup and analysis of the market based on the enterprise size have also been provided in the report. This includes large enterprises and small and medium-sized enterprises.
Deployment Mode Insights:
The report has provided a detailed breakup and analysis of the market based on the deployment mode. This includes on-premises and cloud-based.
Vertical Insights:
A detailed breakup and analysis of the market based on the vertical have also been provided in the report. This includes automotive, energy and utilities, government, defense and intelligence, smart cities, insurance, natural resources, and others.
Regional Insights:
https://www.imarcgroup.com/CKEditor/bbfb54c8-5798-401f-ae74-02c90e137388other-regions6.webp" style="height:450px; width:800px" />
The report has also provided a comprehensive analysis of all the major regional markets, which include Northern Vietnam, Central Vietnam, and Southern Vietnam.
The market research report has also provided a comprehensive analysis of the competitive landscape in the market. Competitive analysis such as market structure, key player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided.
Report Features | Details |
---|---|
Base Year of the Analysis | 2023 |
Historical Period |
Geospatial Analytics Market Size 2024-2028
The geospatial analytics market size is forecast to increase by USD 127.2 billion at a CAGR of 18.68% between 2023 and 2028.
The market is experiencing significant growth due to the increasing adoption of geospatial data analytics in sectors such as healthcare and insurance. This trend is driven by the abundance of data being generated through emerging methods like remote sensing, IoT, and drones. However, data privacy and security concerns remain a challenge, as geospatial data can reveal sensitive information.
Organizations must implement robust security measures to protect this valuable information. In the US and North America, the market is expected to grow steadily, driven by the region's advanced technological infrastructure and increasing focus on data-driven decision-making. Companies in this space should stay abreast of emerging trends and address concerns related to data security to remain competitive.
What will be the Size of the Geospatial Analytics Market During the Forecast Period?
Request Free Sample
The market is experiencing significant growth due to the increasing demand for location intelligence in various industries, particularly Medium Scale Enterprises (MSEs). This market is driven by the integration of Artificial Intelligence (AI) and machine learning (ML), enabling advanced data analysis and prediction capabilities. The Internet of Things (IoT) is also fueling market growth, as real-time location data is collected and analyzed for various applications, including disaster risk reduction. Hexagon and Luciad are among the key players in this market, offering advanced geospatial analytics solutions. Big data analysis, digital globe imagery, and Pitney Bowes' location intelligence offerings are also contributing to market expansion.
The integration of AI, ML, and 5G technology is expected to further accelerate growth, with applications ranging from supply chain optimization to web-based GIS platforms built using JavaScript and HTML5.
How is this Geospatial Analytics Industry segmented and which is the largest segment?
The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2017-2022 for the following segments.
Technology
GPS
GIS
Remote sensing
Others
End-user
BFSI
Government and utilities
Telecom
Manufacturing and automotive
Others
Component
Software
Service
Type
Surface & Field Analytics
Network & Location Analytics
Geovisualization
Others
Geography
North America
Canada
US
Europe
Germany
UK
APAC
China
Middle East and Africa
South America
By Technology Insights
The GPS segment is estimated to witness significant growth during the forecast period. The market is driven by various sectors including Defense & Internal Security, Retail & Logistics, Energy & Utilities, Agriculture, Healthcare & Life Sciences, Infrastructure, and GIS. Among these, GPS, a satellite-based radio navigation system, was the largest segment in 2023. Operated by the US Space Force, GPS enables geolocation and time information transmission to receivers, facilitating georeferencing, positioning, navigation, and time and frequency control. This technology is widely used in industries such as logistics, transportation, and surveying, making it a significant contributor to the market's growth. The Energy & Utilities sector also leverages geospatial analytics for infrastructure planning, asset management, and maintenance, further fueling market expansion.
Get a glance at the share of various segments. Request Free Sample
The GPS segment was valued at USD 29.90 billion in 2018 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 36% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
For more insights on the market share of various regions, Request Free Sample
The North American region dominates the market due to the region's early adoption of advanced technologies and the maturity of industries, particularly in healthcare and the industrial sector. The healthcare industry's need for high-level analytics, driven by the COVID-19 pandemic, is a significant factor fueling market growth. In the industrial sector, the abundance of successful technology implementations leads to a faster rate of adoption. Geospatial analytics plays a crucial role in various applications. These applications provide valuable insights for businesses and governments, enabling informed decision-making and improving operational efficien
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
The U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region from 1993 to 2004. The mapped area is approximately 3,700 square km (1,100 square nm) in size and was subdivided into 18 quadrangles. Several series of sea floor maps of the region based on multibeam sonar surveys have been published. In addition, 2,628 seabed sediment samples were collected and analyzed and approximately 10,600 still photographs of the seabed were acquired during the project. These data provide the basis for scientists, policymakers, and managers for understanding the complex ecosystem of the sanctuary region and for monitoring and managing its economic and natural resources.
What is the GIS In Utility Industry Market Size?
The GIS market in the utility industry size is forecast to increase by USD 3.55 billion at a CAGR of 19.8% between 2023 and 2028. Market expansion hinges on various factors, such as the rising adoption of Geographic Information System (GIS) solutions in the utility sector, the convergence of GIS with Building Information Modeling, and the fusion of Augmented Reality with GIS technology. These elements collectively drive market growth, reflecting advancements in spatial data analytics and technological convergence. The increased adoption of GIS solutions in the utility industry underscores the importance of geospatial data in optimizing infrastructure management. Simultaneously, the integration of GIS with BIM signifies the synergy between spatial and building information for enhanced project planning and management. Additionally, the integration of AR with GIS technology highlights the potential for interactive and interactive visualization experiences in spatial data analysis. Thus, the interplay of these factors delineates the landscape for the anticipated expansion of the market catering to GIS and related technologies.
What will be the size of Market during the forecast period?
Request Free GIS In Utility Industry Market Sample
Market Segmentation
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019 - 2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Geography
North America
Canada
US
Europe
Germany
France
APAC
China
India
Japan
Middle East and Africa
South America
Brazil
Which is the largest segment driving market growth?
The software segment is estimated to witness significant growth during the forecast period. In the utility industry, the spatial context of geographic information systems (GIS) plays a pivotal role in site selection, land acquisition, planning, designing, visualizing, building, and project management. Utilities, including electricity, gas, water, and telecommunications providers, leverage GIS software to efficiently manage their assets and infrastructure. This technology enables the collection, management, analysis, and visualization of geospatial data, derived from satellite imaging, aerial photography, remote sensors, and artificial intelligence. Geospatial AI, sensor technology, and digital reality solutions are integral components of GIS, enhancing capabilities for smart city planning, urban planning, water management, mapping systems, grid modernization, transportation, and green buildings.
Get a glance at the market share of various regions. Download the PDF Sample
The software segment was valued at USD 541.50 million in 2018. Moreover, the geospatial industry continues to evolve, with startups and software solutions driving innovation in hardware, smart city planning, land use management, smart infrastructure planning, and smart utilities. GIS solutions facilitate 4D visualization, enabling stakeholders to overcome geospatial data barriers and make informed decisions. The utility industry's reliance on GIS extends to building information modeling, augmented reality, and smart urban planning, ultimately contributing to the growth of the geospatial technology market.
Which region is leading the market?
For more insights on the market share of various regions, Request Free Sample
North America is estimated to contribute 37% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
How do company ranking index and market positioning come to your aid?
Companies are implementing various strategies, such as strategic alliances, partnerships, mergers and acquisitions, geographical expansion, and product/service launches, to enhance their presence in the market.
AABSyS IT Pvt. Ltd. - The company offers GIS solutions such as remote sensing and computer aided design and drafting solutions for electric and gas utility.
Technavio provides the ranking index for the top 20 companies along with insights on the market positioning of:
AABSyS IT Pvt. Ltd.
Autodesk Inc.
Avineon Inc.
Bentley Systems Inc.
Blue Marble Geographics
Cadcorp Ltd.
Caliper Corp.
Environmental Systems Research Institute Inc.
General Electric Co.
Hexagon AB
Mapbox Inc.
Maxar Technologies Inc.
Mobile GIS Services Ltd.
NV5 Global Inc.
Orbital Insight Inc.
Pitney Bowes Inc.
Schneider Electric SE
SuperMap Software Co. Ltd.
Trimble Inc.
VertiGIS Ltd.
Explore our company rankings and market positioning. Request Free Sample
How can Technavio assist you in ma
This dataset contains open vector data for railways, forests and power lines, as well an open digital elevation model (DEM) for a small area around a sample forest range in Europe (Germany, Upper Bavaria, Kochel Forest Range, some 70 km south of München, at the edge of Bavarian Alps). The purpose of this dataset is to provide a documented sample dataset in order to demonstrate geospatial preprocessing at FOSS4G2019 based on open data and software. This sample has been produced based on several existing open data sources (detailed below), therefore documenting the sources for obtaining some data needed for computations related to forest accessibility and wood harvesting. For example, they can be used with the open methodology and QGIS plugin Seilaplan for optimising the geometric layout cable roads or with additional open software for computing the forest accessibility for wood harvesting. The vector data (railways, forests and power lines) was extracted from OpenStreetMap (data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org). The railways and forests were downloaded and extracted on 18.05.2019 using the open sources QGIS (https://www.qgis.org) with the QuickOSM plugin, while the power lines were downloaded a couple of days later on 23.05.2019.
Additional notes for vector data: Please note that OpenStreeMap data extracts such as forests, roads and railways (except power lines) can also be downloaded in a GIS friendly format (Shapefile) from http://download.geofabrik.de/ or using the QGIS built-in download function for OpenStreetMap data. The most efficient way to retrieve specific OSM tags (such as power=line) is to use the QuickOSM plugin for QGIS (using the Overpass API - https://wiki.openstreetmap.org/wiki/Overpass_API) or directly using overpass turbo (https://overpass-turbo.eu/). Finally, the digitised perimeter of the sample forest range is also made available for reproducibility purposes, although any perimeter or area can be digitised freely using the QGIS editing toolbar.
The DEM was originally adapted and modified also with QGIS (https://www.qgis.org) based on the elevation data available from two different sources, by reprojecting and downsampling datasets to 25m then selecting, for each individual raster cell, the elevation value that was closer to the average. These two different elevation sources are:
This methodology was chosen as a way of performing a basic quality check, by comparing the EU-DEM v.1.1 derived from globally available DEM data (such as SRTM) with more authoritative data for the randomly selected region, since using authoritative data is preferred (if open and available). For other sample regions, where authoritative open data is not available, such comparisons cannot longer be performed.
Additional notes DEM: a very good DEM open data source for Germany is the open data set collected and resampled by Sonny (sonnyy7@gmail.com) and made available on the Austrian Open Data Portal http://data.opendataportal.at/dataset/dtm-germany. In order to simplify end-to-end reproducibility of the paper planned for FOSS4G2019, we use and distribute an adapted (reprojected and resampled to 25 meters) sample of the above mentioned dataset for the selected forest range.
This sample dataset is accompanied by software in Python, as a Jupiter Notebook that generates harmonized output rasters with the same extent from the input data. The extent is given by the polygon vector dataset (Perimeter). These output rasters, such as obstacles, aspect, slope, forest cover, can serve as input data for later computations related to forest accessibility and wood harvesting questions. The obstacles output is obtained by transforming line vector datasets (railway lines, high voltage power lines) to raster. Aspect and slope are both derived from the sample digital elevation model.
Grant Report Template for reports with layer packages & GIS data
GIS In Telecom Sector Market Size 2024-2028
The GIS in telecom sector market size is forecast to increase by USD 1.91 billion at a CAGR of 14.68% between 2023 and 2028.
Geographic Information Systems (GIS) have gained significant traction In the telecom sector due to the increasing adoption of advanced technologies such as big data, sensors, drones, and LiDAR. The use of GIS enables telecom companies to effectively manage and analyze large volumes of digital data, including satellite and GPS information, to optimize infrastructure monitoring and antenna placement. In the context of smart cities, GIS plays a crucial role in enabling efficient communication between developers and end-users by providing real-time data on construction progress and infrastructure status. Moreover, the integration of LiDAR technology with drones offers enhanced capabilities for surveying and mapping telecom infrastructure, leading to improved accuracy and efficiency.
However, the implementation of GIS In the telecom sector also presents challenges, including data security concerns and the need for servers and computers to handle the large volumes of data generated by these technologies. In summary, the telecom sector's growing reliance on digital technologies such as GIS, big data, sensors, drones, and LiDAR is driving market growth, while the need for effective data management and security solutions presents challenges that must be addressed.
What will be the Size of the GIS In Telecom Sector Market During the Forecast Period?
Request Free Sample
The Geographic Information System (GIS) market In the telecom sector is experiencing significant growth due to the increasing demand for electronic information and visual representation of data in various industries. This market encompasses a range of hardware and software solutions, including GNSS/GPS antennas, Lidar, GIS collectors, total stations, imaging sensors, and more. Major industries such as agriculture, oil & gas, architecture, and infrastructure monitoring are leveraging GIS technology for data analysis and decision-making. The adoption rate of GIS In the telecom sector is driven by the need for efficient data management and analysis, as well as the integration of real-time data from various sources.
Data formats and sources vary widely, from satellite and aerial imagery to ground-based sensors and IoT devices. The market is also witnessing innovation from startups and established players, leading to advancements in data processing capabilities and integration with other technologies like 5G networks and AI. Applications of GIS In the telecom sector include smart urban planning, smart utilities, and smart public works, among others.
How is this GIS In Telecom Sector Industry segmented and which is the largest segment?
The GIS in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Geography
APAC
China
North America
Canada
US
Europe
UK
Italy
South America
Middle East and Africa
By Product Insights
The software segment is estimated to witness significant growth during the forecast period. The telecom sector's Global GIS market encompasses software solutions for desktops, mobiles, cloud, and servers, along with developers' platforms. companies provide industry-specific GIS software, expanding the growth potential of this segment. Telecom companies heavily utilize intelligent maps generated by GIS for informed decisions on capacity planning and enhancements, such as improved service and next-generation networks. This drives significant growth In the software segment. Commercial entities offer open-source GIS software to counteract the threat of counterfeit products.
GIS technologies are integral to telecom network management, spatial data analysis, infrastructure planning, location-based services, network coverage mapping, data visualization, asset management, real-time network monitoring, design, wireless network mapping, integration, maintenance, optimization, and geospatial intelligence. Key applications include 5G network planning, network visualization, outage management, geolocation, mobile network optimization, and smart infrastructure planning. The GIS industry caters to major industries, including agriculture, oil & gas, architecture, engineering, construction, mining, utilities, retail, healthcare, government, and smart city planning. GIS solutions facilitate real-time data management, spatial information, and non-spatial information, offering enterprise solutions and transportation applications.
Get a glance at the market report of share of variou
This project is a component of a broader effort focused on geothermal heating and cooling (GHC) with the aim of illustrating the numerous benefits of incorporating GHC and geothermal heat exchange (GHX) into community energy planning and national decarbonization strategies. To better assist private sector investment, it is currently necessary to define and assess the potential of low-temperature geothermal resources. For shallow GHC/GHX fields, there is no formal compilation of subsurface characteristics shared among industry practitioners that can improve system design and operations. Alaska is specifically noted in this work, because heretofore, it has not received a similar focus in geothermal potential evaluations as the contiguous United States. The methodology consists of leveraging relevant data to generate a baseline geospatial dataset of low-temperature resources (less than 150 degrees C) to compare and analyze information accessible to anyone trying to understand the potential of GHC/GHX and small-scale low-temperature geothermal power in Alaska (e.g., energy modelers, communities, planners, and policymakers). Importantly, this project identifies data related to (1) the evaluation of GHC/GHX in the shallow subsurface, and (2) the evaluation of low-temperature geothermal resource availability. Additionally, data is being compiled to assess repurposing of oil and gas wells to contribute co-produced fluids toward the geothermal direct use and heating and cooling resource potential. In this work we identified new data from three different datasets of isolated geothermal systems in Alaska and bottom-hole temperature data from oil and gas wells that can be leveraged for evaluation of low-temperature geothermal resource potential. The goal of this project is to facilitate future deployment of GHC/GHX analysis and community-led programs and update the low-temperature geothermal resources assessment of Alaska. A better understanding of shallow potential for GHX will improve design and operations of highly efficient GHC systems. The deployment and impact that can be achieved for low-temperature geothermal resources will contribute to decarbonization goals and facilitate widespread electrification by shaving and shifting grid loads.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Our final map product is a geographic information system (GIS) database of vegetation structure and composition across the Crater Lake National Park terrestrial landscape, including wetlands. The database includes photos we took at all relevé, validation, and accuracy assessment plots, as well as the plots that were done in the previous wetlands inventory. We conducted an accuracy assessment of the map by evaluating 698 stratified random accuracy assessment plots throughout the project area. We intersected these field data with the vegetation map, resulting in an overall thematic accuracy of 86.2 %. The accuracy of the Cliff, Scree & Rock Vegetation map unit was difficult to assess, as only 9% of this vegetation type was available for sampling due to lack of access. In addition, fires that occurred during the 2017 accuracy assessment field season affected our sample design and may have had a small influence on the accuracy. Our geodatabase contains the locations where particular associations are found at 600 relevé plots, 698 accuracy assessment plots, and 803 validation plots.
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
description: The Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature class and its derivation is provided within the
Databases (for SQLite SpatiaLite) were created from publicly available OpenStreetMap data for Poland (https://www.openstreetmap.org/copyright). The db_small database comprises data for the area of the city of Kraków in the Małopolskie Province. The db_medium database comprises data from the entire Małopolskie Province. The db_large database, in addition to the Małopolskie Province, covers the Podkarpackie and Dolnośląskie Provinces. The db_v_large database covers the entire country.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 16, using North American Datum of 1983 (NAD83). To produce a polygon vector layer for use in ArcGIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcGIS (Version 9.2, © 2006 Environmental Systems Research Institute, Redlands, California). In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer of INDU and immediate environs. At this stage, the map layer has only map attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map class names, physiognomic definitions, link to NVC association and alliance codes), we produced a feature class table along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature class layers produced from this project, including vegetation sample plots, accuracy assessment sites, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
This dataset contains the road and plot data used for the geospatial analysis example showcased in "Fostering Open Science at WSL with the EnviDat Environmental Data Portal", a contribution to the 5th Open Source Geospatial Research and Education Symposium (OGRS), 2018. The example uses Jupyter Notebook to calculate road densities in the neighbourhood of sample plot locations with Python. Road data were extracted from OpenStreetMap, while the point data (sample plots) were generated manually.
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth due to the integration of Building Information Modeling (BIM) software and GIS, enabling more accurate and efficient construction projects. The increasing adoption of GIS solutions in precision farming for soil and water management is another key trend, with farmers utilizing sensors, GPS, and satellite data to optimize fertilizer usage and crop yields. However, challenges persist, such as the lack of proper planning leading to implementation failures of GIS solutions. In the realm of smart cities, GIS plays a crucial role in managing data from various sources, including LIDAR, computer-aided design, and digital twin technologies. Additionally, public safety and insurance industries are leveraging GIS for server-based data analysis, while smartphones and antennas facilitate real-time data collection. Amidst this digital transformation, ensuring data security and privacy becomes paramount, making it a critical consideration for market participants.
What will be the Size of the GIS Market During the Forecast Period?
Request Free Sample
The Global Geographic Information System (GIS) market encompasses a range of software solutions and hardware components used to capture, manage, analyze, and visualize geospatial data. Key industries driving market growth include transportation, smart city planning, green buildings, architecture and construction, utilities, oil and gas, agriculture, and urbanization. GIS technology plays a pivotal role in various applications such as 4D GIS software for infrastructure project management, augmented reality platforms for enhanced visualization, and LIDAR and GNSS/GPS antenna for accurate location data collection. Cloud technology is transforming the GIS landscape by enabling real-time data access and collaboration. The transportation sector is leveraging GIS for route optimization, asset management, and predictive maintenance.
Urbanization and population growth are fueling the demand for GIS in city planning and disaster management. Additionally, GIS is increasingly being adopted in sectors like agriculture for precision farming and soil mapping, and in the construction industry for Building Information Modeling (BIM). The market is also witnessing the emergence of innovative applications in areas such as video games and natural disasters risk assessment. Mobile devices are further expanding the reach of GIS, making it accessible to a wider audience. Overall, the market is poised for significant growth, driven by the increasing need for data-driven decision-making and the integration of geospatial technology into various industries.
How is this GIS Industry segmented and which is the largest segment?
The gis industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
Canada
US
Europe
Germany
UK
France
APAC
China
Japan
South Korea
South America
Brazil
Middle East and Africa
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The market encompasses desktop, mobile, cloud, and server software solutions, catering to various industries. Open-source software with limited features poses a challenge due to the prevalence of counterfeit products. Yet, the market witnesses an emerging trend toward cloud-based GIS software adoption. However, standardization and interoperability concerns hinder widespread adoption. Geospatial technology is utilized extensively in sectors such as Transportation, Utilities, Oil and Gas, Agriculture, and Urbanization, driven by population growth, urban planning, and sustainable development. Key applications include smart city planning, green buildings, BIM, 4D GIS software, augmented reality platforms, GIS collectors, LIDAR, and GNSS/GPS antennas. Cloud technology, mobile devices, and satellite imaging are critical enablers.
Get a glance at the GIS Industry report of share of various segments Request Free Sample
The software segment was valued at USD 5.06 billion in 2019 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 38% to the growth of the global market during the forecast period.
Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during th
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the Asia Pacific GIS market was valued at USD XXX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 9.08% during the forecast period.Geographic Information Systems are very powerful tools for capturing, storing, analyzing, and visualizing geographic data. The technology integrates maps with databases that assist organizations in understanding spatial relationships, patterns, and trends. Applications can be found across a broad spectrum of industries, such as urban planning, environmental management, agriculture, and public health.Asia Pacific is growing most rapidly in the regions relevant to the global market for Asia Pacific GIS. Growth is encouraged by factors like increasing levels of urbanization, increased infrastructures investments, and growth levels of awareness about GIS and what benefits it can offer to any organization. Lately, with the advancement of GIS technology like GIS solutions offered both on cloud and mobile environment has made access and usabilities much easier to the organizations.The applications of GIS in solving problems such as disaster management and climate change in the Asia Pacific region have become incredibly extensive. Examples of using GIS include mapping flood-prone areas, monitoring deforestation, and improving transportation networks. The greater the environmental and social challenge that faces this developing region, the more GIS is going to play a significant role in the discovery of meaningful insights for the guidance of informed decisions. Recent developments include: February 2024 - John Deere announced a strategic partnership with Hexagon’s Leica Geosystems to accelerate the digital transformation of the heavy construction industry. John Deere and Hexagon joined forces to bring cutting-edge technologies and solutions to construction professionals worldwide., January 2024 - BlackSky Technology Inc. won a first-in-class contract to support the Indonesian Ministry of Defence (MoD), supplying Gen-3 earth observation satellites, ground station capabilities, and flight operations support. BlackSky also won a multi-year contract to support the MoD in the supply of assured subscription-based real-time imagery (RTI) and analytics services. The multi-year contract was won by BlackSky Technology Inc. in partnership with Alenia Space, a subsidiary of Thales Group, to supply Assured subscription-based RTI and analytics services to the Indonesian Ministry of Defense. The total value of the two contracts is approximately USD 50 million.. Key drivers for this market are: Ease of Convenience of Shoppers Elevated Through No Traveling and Simpler Access Across Global Borders, Higher Return on Investment. Potential restraints include: Incidents of Fraudulent Transactions and Cyber Crime, Opening of Physical Spaces, Galleries, and Auctions Impacting Online Sales. Notable trends are: Cloud Deployment Segment to Hold Significant Market Share.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: A Lisson, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 8Resource type: lessonSubject topic(s): gis, geographic thinkingRegion: united statesStandards: Minnesota Social Studies Standards
Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.Objectives: Students will be able to:
Xverum’s Point of Interest (POI) Data is a comprehensive dataset of 230M+ verified locations, covering businesses, commercial properties, and public places across 5000+ industry categories. Our dataset enables retailers, investors, and GIS professionals to make data-driven decisions for business expansion, location intelligence, and geographic analysis.
With regular updates and continuous POI discovery, Xverum ensures your mapping and business location models have the latest data on business openings, closures, and geographic trends. Delivered in bulk via S3 Bucket or cloud storage, our dataset integrates seamlessly into geospatial analysis, market research, and navigation platforms.
🔥 Key Features:
📌 Comprehensive POI Coverage ✅ 230M+ global business & location data points, spanning 5000+ industry categories. ✅ Covers retail stores, corporate offices, hospitality venues, service providers & public spaces.
🌍 Geographic & Business Location Insights ✅ Latitude & longitude coordinates for accurate mapping & navigation. ✅ Country, state, city, and postal code classifications. ✅ Business status tracking – Open, temporarily closed, permanently closed.
🆕 Continuous Discovery & Regular Updates ✅ New business locations & POIs added continuously. ✅ Regular updates to reflect business openings, closures & relocations.
📊 Rich Business & Location Data ✅ Company name, industry classification & category insights. ✅ Contact details, including phone number & website (if available). ✅ Consumer review insights, including rating distribution (optional feature).
📍 Optimized for Business & Geographic Analysis ✅ Supports GIS, navigation systems & real estate site selection. ✅ Enhances location-based marketing & competitive analysis. ✅ Enables data-driven decision-making for business expansion & urban planning.
🔐 Bulk Data Delivery (NO API) ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured formats (.csv, .json, .xml) for seamless integration.
🏆 Primary Use Cases:
📈 Business Expansion & Market Research 🔹 Identify key business locations & competitors for strategic growth. 🔹 Assess market saturation & regional industry presence.
📊 Geographic Intelligence & Mapping Solutions 🔹 Enhance GIS platforms & navigation systems with precise POI data. 🔹 Support smart city & infrastructure planning with location insights.
🏪 Retail Site Selection & Consumer Insights 🔹 Analyze high-traffic locations for new store placements. 🔹 Understand customer behavior through business density & POI patterns.
🌍 Location-Based Advertising & Geospatial Analytics 🔹 Improve targeted marketing with location-based insights. 🔹 Leverage geographic data for precision advertising & customer segmentation.
💡 Why Choose Xverum’s POI Data? - 230M+ Verified POI Records – One of the largest & most structured business location datasets available. - Global Coverage – Spanning 249+ countries, covering all major business categories. - Regular Updates & New POI Discoveries – Ensuring accuracy. - Comprehensive Geographic & Business Data – Coordinates, industry classifications & category insights. - Bulk Dataset Delivery (NO API) – Direct access via S3 Bucket or cloud storage. - 100% GDPR & CCPA-Compliant – Ethically sourced & legally compliant.
Access Xverum’s 230M+ POI Data for business location intelligence, geographic analysis & market research. Request a free sample or contact us to customize your dataset today!
Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.
Explore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.
EXPLORE TIMELAPSEThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.
EXPLORE DATASETSThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.
EXPLORE THE APIUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.
LEARN ABOUT THE CODE EDITORScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.
SEE CASE STUDIEShttps://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy
The Vietnam geospatial analytics market size is projected to exhibit a growth rate (CAGR) of 8.90% during 2024-2032. The increasing product utilization by government authorities in various sectors, various technological advancements in satellite technology, remote sensing, and data collection methods, and the rising development of smart cities represent some of the key factors driving the market.
Report Attribute
|
Key Statistics
|
---|---|
Base Year
| 2023 |
Forecast Years
| 2024-2032 |
Historical Years
|
2018-2023
|
Market Growth Rate (2024-2032) | 8.90% |
Geospatial analytics is a field of data analysis that focuses on the interpretation and analysis of geographic and spatial data to gain valuable insights and make informed decisions. It combines geographical information systems (GIS), advanced data analysis techniques, and visualization tools to analyze and interpret data with a spatial or geographic component. It also enables the collection, storage, analysis, and visualization of geospatial data. It provides tools and software for managing and manipulating spatial data, allowing users to create maps, perform spatial queries, and conduct spatial analysis. In addition, geospatial analytics often involves integrating geospatial data with other types of data, such as demographic data, environmental data, or economic data. This integration helps in gaining a more comprehensive understanding of complex phenomena. Moreover, geospatial analytics has a wide range of applications. For example, it can be used in urban planning to optimize transportation routes, in agriculture to manage crop yield and soil quality, in disaster management to assess and respond to natural disasters, in wildlife conservation to track animal migrations, and in business for location-based marketing and site selection.
The Vietnamese government has recognized the importance of geospatial analytics in various sectors, including urban planning, agriculture, disaster management, and environmental monitoring. Initiatives to develop and utilize geospatial data for public projects and policy-making have spurred demand for geospatial analytics solutions. In addition, Vietnam is experiencing rapid urbanization and infrastructure development. Geospatial analytics is critical for effective urban planning, transportation management, and infrastructure optimization. This trend is driving the adoption of geospatial solutions in cities and regions across the country. Besides, Vietnam's agriculture sector is a significant driver of its economy. Geospatial analytics helps farmers and agricultural businesses optimize crop management, soil health, and resource allocation. Consequently, precision farming techniques, enabled by geospatial data, are becoming increasingly popular, which is also propelling the market. Moreover, the development of smart cities in Vietnam relies on geospatial analytics for various applications, such as traffic management, public safety, and energy efficiency. Geospatial data is central to building the infrastructure needed for smart city initiatives. Furthermore, advances in satellite technology, remote sensing, and data collection methods have made geospatial data more accessible and affordable. This has lowered barriers to entry and encouraged the use of geospatial analytics in various sectors. Additionally, the telecommunications sector in Vietnam is expanding, and location-based services, such as navigation and advertising, rely on geospatial analytics. This creates opportunities for geospatial data providers and analytics solutions in the telecommunications industry.
IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the country level for 2024-2032. Our report has categorized the market based on component, type, technology, enterprise size, deployment mode, and vertical.
Component Insights:
https://www.imarcgroup.com/CKEditor/2e6fe72c-0238-4598-8c62-c08c0e72a138other-regions1.webp" style="height:450px; width:800px" />
The report has provided a detailed breakup and analysis of the market based on the component. This includes solution and services.
Type Insights:
A detailed breakup and analysis of the market based on the type have also been provided in the report. This includes surface and field analytics, network and location analytics, geovisualization, and others.
Technology Insights:
The report has provided a detailed breakup and analysis of the market based on the technology. This includes remote sensing, GIS, GPS, and others.
Enterprise Size Insights:
A detailed breakup and analysis of the market based on the enterprise size have also been provided in the report. This includes large enterprises and small and medium-sized enterprises.
Deployment Mode Insights:
The report has provided a detailed breakup and analysis of the market based on the deployment mode. This includes on-premises and cloud-based.
Vertical Insights:
A detailed breakup and analysis of the market based on the vertical have also been provided in the report. This includes automotive, energy and utilities, government, defense and intelligence, smart cities, insurance, natural resources, and others.
Regional Insights:
https://www.imarcgroup.com/CKEditor/bbfb54c8-5798-401f-ae74-02c90e137388other-regions6.webp" style="height:450px; width:800px" />
The report has also provided a comprehensive analysis of all the major regional markets, which include Northern Vietnam, Central Vietnam, and Southern Vietnam.
The market research report has also provided a comprehensive analysis of the competitive landscape in the market. Competitive analysis such as market structure, key player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided.
Report Features | Details |
---|---|
Base Year of the Analysis | 2023 |
Historical Period |