Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data files for the examples in the book Geographic Data Science in R: Visualizing and Analyzing Environmental Change by Michael C. Wimberly.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
Facebook
TwitterXverumโs Point of Interest (POI) Data is a comprehensive dataset containing 230M+ verified locations across 5000 business categories. Our dataset delivers structured geographic data, business attributes, location intelligence, and mapping insights, making it an essential tool for GIS applications, market research, urban planning, and competitive analysis.
With regular updates and continuous POI discovery, Xverum ensures accurate, up-to-date information on businesses, landmarks, retail stores, and more. Delivered in bulk to S3 Bucket and cloud storage, our dataset integrates seamlessly into mapping, geographic information systems, and analytics platforms.
๐ฅ Key Features:
Extensive POI Coverage: โ 230M+ Points of Interest worldwide, covering 5000 business categories. โ Includes retail stores, restaurants, corporate offices, landmarks, and service providers.
Geographic & Location Intelligence Data: โ Latitude & longitude coordinates for mapping and navigation applications. โ Geographic classification, including country, state, city, and postal code. โ Business status tracking โ Open, temporarily closed, or permanently closed.
Continuous Discovery & Regular Updates: โ New POIs continuously added through discovery processes. โ Regular updates ensure data accuracy, reflecting new openings and closures.
Rich Business Insights: โ Detailed business attributes, including company name, category, and subcategories. โ Contact details, including phone number and website (if available). โ Consumer review insights, including rating distribution and total number of reviews (additional feature). โ Operating hours where available.
Ideal for Mapping & Location Analytics: โ Supports geospatial analysis & GIS applications. โ Enhances mapping & navigation solutions with structured POI data. โ Provides location intelligence for site selection & business expansion strategies.
Bulk Data Delivery (NO API): โ Delivered in bulk via S3 Bucket or cloud storage. โ Available in structured format (.json) for seamless integration.
๐Primary Use Cases:
Mapping & Geographic Analysis: ๐น Power GIS platforms & navigation systems with precise POI data. ๐น Enhance digital maps with accurate business locations & categories.
Retail Expansion & Market Research: ๐น Identify key business locations & competitors for market analysis. ๐น Assess brand presence across different industries & geographies.
Business Intelligence & Competitive Analysis: ๐น Benchmark competitor locations & regional business density. ๐น Analyze market trends through POI growth & closure tracking.
Smart City & Urban Planning: ๐น Support public infrastructure projects with accurate POI data. ๐น Improve accessibility & zoning decisions for government & businesses.
๐ก Why Choose Xverumโs POI Data?
Access Xverumโs 230M+ POI dataset for mapping, geographic analysis, and location intelligence. Request a free sample or contact us to customize your dataset today!
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
North America Geographic Information System Market Size 2025-2029
The geographic information system market size in North America is forecast to increase by USD 11.4 billion at a CAGR of 23.7% between 2024 and 2029.
The market is experiencing significant growth due to the increasing adoption of advanced technologies such as artificial intelligence, satellite imagery, and sensors in various industries. In fleet management, GIS software is being used to optimize routes and improve operational efficiency. In the context of smart cities, GIS solutions are being utilized for content delivery, public safety, and building information modeling. The demand for miniaturization of technologies is also driving the market, allowing for the integration of GIS into smaller devices and applications. However, data security concerns remain a challenge, as the collection and storage of sensitive information requires robust security measures. The insurance industry is also leveraging GIS for telematics and risk assessment, while the construction sector uses GIS for server-based project management and planning. Overall, the GIS market is poised for continued growth as these trends and applications continue to evolve.
What will be the Size of the market During the Forecast Period?
Request Free Sample
The Geographic Information System (GIS) market encompasses a range of technologies and applications that enable the collection, management, analysis, and visualization of spatial data. Key industries driving market growth include transportation, infrastructure planning, urban planning, and environmental monitoring. Remote sensing technologies, such as satellite imaging and aerial photography, play a significant role in data collection. Artificial intelligence and the Internet of Things (IoT) are increasingly integrated into GIS solutions for real-time location data processing and operational efficiency.
Applications span various sectors, including agriculture, natural resources, construction, and smart cities. GIS is essential for infrastructure analysis, disaster management, and land management. Geospatial technology enables spatial data integration, providing valuable insights for decision-making and optimization. Market size is substantial and growing, fueled by increasing demand for efficient urban planning, improved infrastructure, and environmental sustainability. Geospatial startups continue to emerge, innovating in areas such as telematics, natural disasters, and smart city development.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Component
Software
Data
Services
Deployment
On-premise
Cloud
Geography
North America
Canada
Mexico
US
By Component Insights
The software segment is estimated to witness significant growth during the forecast period.
The Geographic Information System (GIS) market encompasses desktop, mobile, cloud, and server software for managing and analyzing spatial data. In North America, industry-specific GIS software dominates, with some commercial entities providing open-source alternatives for limited functions like routing and geocoding. Despite this, counterfeit products pose a threat, making open-source software a viable option for smaller applications. Market trends indicate a shift towards cloud-based GIS solutions for enhanced operational efficiency and real-time location data. Spatial data applications span various sectors, including transportation infrastructure planning, urban planning, natural resources management, environmental monitoring, agriculture, and disaster management. Technological innovations, such as artificial intelligence, the Internet of Things (IoT), and satellite imagery, are revolutionizing GIS solutions.
Cloud-based GIS solutions, IoT integration, and augmented reality are emerging trends. Geospatial technology is essential for smart city projects, climate monitoring, intelligent transportation systems, and land management. Industry statistics indicate steady growth, with key players focusing on product innovation, infrastructure optimization, and geospatial utility solutions.
Get a glance at the market report of share of various segments Request Free Sample
Market Dynamics
Our North America Geographic Information System Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.
What are the key market drivers leading to the rise in the adoption of the North America Geographic Information System Market?
Rising applications of geographic
Facebook
TwitterAttribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
I wanted to make some geospatial visualizations to convey the current severity of COVID19 in different parts of the U.S..
I liked the NYTimes COVID dataset, but it was lacking information on county boundary shape data, population per county, new cases / deaths per day, and per capita calculations, and county demographics.
After a lot of work tracking down the different data sources I wanted and doing all of the data wrangling and joins in python, I wanted to open-source the final enriched data set in order to give others a head start in their COVID-19 related analytic, modeling, and visualization efforts.
This dataset is enriched with county shapes, county center point coordinates, 2019 census population estimates, county population densities, cases and deaths per capita, and calculated per day cases / deaths metrics. It contains daily data per county back to January, allowing for analyizng changes over time.
UPDATE: I have also included demographic information per county, including ages, races, and gender breakdown. This could help determine which counties are most susceptible to an outbreak.
Geospatial analysis and visualization - Which counties are currently getting hit the hardest (per capita and totals)? - What patterns are there in the spread of the virus across counties? (network based spread simulations using county center lat / lons) -county population densities play a role in how quickly the virus spreads? -how does a specific county/state cases and deaths compare to other counties/states? Join with other county level datasets easily (with fips code column)
See the column descriptions for more details on the dataset
COVID-19 U.S. Time-lapse: Confirmed Cases per County (per capita)
https://github.com/ringhilterra/enriched-covid19-data/blob/master/example_viz/covid-cases-final-04-06.gif?raw=true" alt="">-
Facebook
Twitter
According to our latest research, the global geospatial analytics AI market size reached USD 15.4 billion in 2024, driven by rapid technological advancements and increasing demand for location-based insights across industries. The market is expanding at a robust CAGR of 13.2% and is projected to attain USD 41.6 billion by 2033. This impressive growth is primarily fueled by the integration of artificial intelligence with geospatial data to deliver actionable intelligence for decision-making in sectors such as urban planning, disaster management, and transportation.
One of the key growth factors for the geospatial analytics AI market is the exponential increase in the volume and variety of geospatial data generated by satellites, drones, IoT devices, and mobile applications. Organizations are leveraging this data to gain real-time insights into spatial patterns, trends, and anomalies. The rise of smart cities and the need for efficient infrastructure management have significantly accelerated the adoption of geospatial analytics AI, as city planners and municipal authorities seek to optimize resource allocation, traffic flows, and emergency response strategies. Additionally, the integration of AI algorithms with geospatial data is enabling more accurate predictive modeling, which is essential for disaster preparedness and mitigation.
Another major driver is the growing application of geospatial analytics AI in environmental monitoring and sustainable resource management. As climate change and environmental degradation become increasingly pressing global issues, governments and organizations are investing heavily in advanced analytics solutions to monitor deforestation, track wildlife, assess water quality, and predict natural disasters. The ability of AI-powered geospatial tools to process massive datasets and generate timely, actionable insights is proving invaluable for environmental agencies and NGOs. Furthermore, the agricultural sector is adopting geospatial AI for precision farming, crop monitoring, and yield prediction, resulting in enhanced productivity and reduced operational costs.
The proliferation of cloud computing and advances in hardware capabilities are also propelling the market forward. Cloud-based deployment models are making geospatial analytics AI solutions more accessible and scalable, allowing organizations of all sizes to benefit from sophisticated spatial analysis without the need for extensive on-premises infrastructure. Enhanced hardware, including high-resolution sensors and edge computing devices, is facilitating the collection and processing of geospatial data in real time. These technological advancements are lowering barriers to entry and enabling a broader range of industries to harness the power of geospatial analytics AI for competitive advantage and operational efficiency.
Regionally, North America continues to dominate the geospatial analytics AI market, accounting for over 38% of the global revenue in 2024, owing to the presence of leading technology companies and robust investments in R&D. However, the Asia Pacific region is witnessing the fastest growth, with a projected CAGR of 15.7% through 2033, driven by rapid urbanization, government initiatives for smart city development, and increasing adoption of AI-driven technologies across various sectors. Europe, Latin America, and the Middle East & Africa are also experiencing steady growth, supported by digital transformation initiatives and infrastructural modernization.
The geospatial analytics AI market is segmented by component into software, hardware, and services. The software segment holds the largest share, accounting for nearly 52% of the total market revenue in 2024. This dominance is attributed to the proliferation of advanced analytics platforms, mapping tools, and AI-powered visualization solutions that enable organizations to derive actionable insights from complex geospatial datasets. Softw
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22121490%2F7189944f8fc292a094c90daa799d08ca%2FChatGPT%20Image%2015%20Kas%202025%2014_07_37.png?generation=1763204959770660&alt=media" alt="">
This synthetic dataset simulates 300 global cities across 6 major geographic regions, designed specifically for unsupervised machine learning and clustering analysis. It explores how economic status, environmental quality, infrastructure, and digital access shape urban lifestyles worldwide.
| Feature | Description | Range |
|---|---|---|
| 10 Features | Economic, environmental & social indicators | Realistically scaled |
| 300 Cities | Europe, Asia, Americas, Africa, Oceania | Diverse distributions |
| Strong Correlations | Income โ Rent (+0.8), Density โ Pollution (+0.6) | ML-ready |
| No Missing Values | Clean, preprocessed data | Ready for analysis |
| 4-5 Natural Clusters | Metropolitan hubs, eco-towns, developing centers | Pre-validated |
โ
Realistic Correlations: Income strongly predicts rent (+0.8), internet access (+0.7), and happiness (+0.6)
โ
Regional Diversity: Each region has distinct economic and environmental characteristics
โ
Clustering-Ready: Naturally separable into 4-5 lifestyle archetypes
โ
Beginner-Friendly: No data cleaning required, includes example code
โ
Documented: Comprehensive README with methodology and use cases
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Load and prepare
df = pd.read_csv('city_lifestyle_dataset.csv')
X = df.drop(['city_name', 'country'], axis=1)
X_scaled = StandardScaler().fit_transform(X)
# Cluster
kmeans = KMeans(n_clusters=5, random_state=42)
df['cluster'] = kmeans.fit_predict(X_scaled)
# Analyze
print(df.groupby('cluster').mean())
After working with this dataset, you will be able to: 1. Apply K-Means, DBSCAN, and Hierarchical Clustering 2. Use PCA for dimensionality reduction and visualization 3. Interpret correlation matrices and feature relationships 4. Create geographic visualizations with cluster assignments 5. Profile and name discovered clusters based on characteristics
| Cluster | Characteristics | Example Cities |
|---|---|---|
| Metropolitan Tech Hubs | High income, density, rent | Silicon Valley, Singapore |
| Eco-Friendly Towns | Low density, clean air, high happiness | Nordic cities |
| Developing Centers | Mid income, high density, poor air | Emerging markets |
| Low-Income Suburban | Low infrastructure, income | Rural areas |
| Industrial Mega-Cities | Very high density, pollution | Manufacturing hubs |
Unlike random synthetic data, this dataset was carefully engineered with: - โจ Realistic correlation structures based on urban research - ๐ Regional characteristics matching real-world patterns - ๐ฏ Optimal cluster separability (validated via silhouette scores) - ๐ Comprehensive documentation and starter code
โ Learn clustering without data cleaning hassles
โ Practice PCA and dimensionality reduction
โ Create beautiful geographic visualizations
โ Understand feature correlation in real-world contexts
โ Build a portfolio project with clear business insights
This dataset was designed for educational purposes in machine learning and data science. While synthetic, it reflects real patterns observed in global urban development research.
Happy Clustering! ๐
Facebook
TwitterThis dataset contains the road and plot data used for the geospatial analysis example showcased in "Fostering Open Science at WSL with the EnviDat Environmental Data Portal", a contribution to the 5th Open Source Geospatial Research and Education Symposium (OGRS), 2018. The example uses Jupyter Notebook to calculate road densities in the neighbourhood of sample plot locations with Python. Road data were extracted from OpenStreetMap, while the point data (sample plots) were generated manually.
Facebook
Twitter
According to our latest research, the global Geospatial Analytics as a Service market size reached USD 7.82 billion in 2024, driven by rapid technological advancements and increasing demand for location-based intelligence across industries. The market is set to grow at a robust CAGR of 18.7% from 2025 to 2033, with the forecasted market size expected to reach USD 38.65 billion by 2033. This strong growth trajectory is primarily fueled by the rising adoption of cloud-based geospatial solutions, enhanced integration of artificial intelligence and machine learning capabilities, and the expanding use of geospatial analytics in critical sectors such as urban planning, disaster management, and transportation. As per our latest research, the marketโs upward momentum is further supported by the increasing need for real-time data insights and the proliferation of IoT devices that generate geospatial data streams.
One of the primary growth factors propelling the Geospatial Analytics as a Service market is the exponential increase in geospatial data generation, largely attributed to the widespread deployment of IoT sensors, smart devices, and satellite imagery. Organizations across various sectors are leveraging this data to gain actionable insights, optimize operations, and enhance decision-making processes. The integration of advanced analytics tools with geospatial data has enabled real-time monitoring, predictive modeling, and trend analysis, which are crucial for applications such as disaster response, urban infrastructure management, and environmental monitoring. The growing emphasis on smart city initiatives worldwide has further accelerated the adoption of geospatial analytics solutions, as urban planners and government agencies seek to improve resource allocation, traffic management, and public safety through location-based intelligence. As a result, the demand for scalable, cloud-based geospatial analytics services continues to surge, driving market growth.
Another significant driver for the Geospatial Analytics as a Service market is the increasing recognition of its value proposition in the private sector, particularly within industries like transportation, logistics, retail, and agriculture. Companies are harnessing geospatial analytics to optimize supply chains, streamline logistics operations, and enhance customer experiences through personalized location-based services. In agriculture, for example, geospatial analytics is revolutionizing precision farming by enabling farmers to monitor crop health, predict yields, and manage resources more efficiently. Similarly, the BFSI sector is utilizing geospatial insights for risk assessment, fraud detection, and strategic expansion. The growing availability of robust APIs and easy-to-integrate platforms has democratized access to geospatial analytics, allowing organizations of all sizes to capitalize on the benefits of spatial intelligence without the need for extensive in-house expertise or infrastructure investment.
Furthermore, the ongoing advancements in artificial intelligence and machine learning are significantly enhancing the capabilities of geospatial analytics platforms. AI-powered geospatial analytics can process vast volumes of spatial data at unprecedented speeds, uncovering hidden patterns and delivering predictive insights that were previously unattainable. This technological leap is particularly valuable in disaster management and defense, where timely and accurate information can make a critical difference. The convergence of geospatial analytics with emerging technologies such as 5G, edge computing, and blockchain is also opening new avenues for innovation and market expansion. As regulatory frameworks around data privacy and security continue to evolve, vendors are investing in robust compliance measures, further boosting user confidence and accelerating adoption across both public and private sectors.
Regionally, North America remains the dominant market for Geospatial Analytics as a Service, accounting for the largest revenue share in 2024, followed closely by Europe and the Asia Pacific. The United States, in particular, has witnessed substantial investments in geospatial infrastructure, driven by strong government support and a thriving ecosystem of technology providers. Meanwhile, Asia Pacific is emerging as the fastest-growing region, fueled by rapid urbanization, expanding digital infrastructure, and increasing adoption of smart city solutions in countries like China, I
Facebook
TwitterOverview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.
The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Boundaries Database (GIS data, Geospatial data)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the GIS data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper provides an abstract analysis of parallel processing strategies for spatial and spatio-temporal data. It isolates aspects such as data locality and computational locality as well as redundancy and locally sequential access as central elements of parallel algorithm design for spatial data. Furthermore, the paper gives some examples from simple and advanced GIS and spatial data analysis highlighting both that big data systems have been around long before the current hype of big data and that they follow some design principles which are inevitable for spatial data including distributed data structures and messaging, which are, however, incompatible with the popular MapReduce paradigm. Throughout this discussion, the need for a replacement or extension of the MapReduce paradigm for spatial data is derived. This paradigm should be able to deal with the imperfect data locality inherent to spatial data hindering full independence of non-trivial computational tasks. We conclude that more research is needed and that spatial big data systems should pick up more concepts like graphs, shortest paths, raster data, events, and streams at the same time instead of solving exactly the set of spatially separable problems such as line simplifications or range queries in manydifferent ways.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Middle East Geospatial Analytics market is booming, projected to reach $2B+ by 2033 with an 8.15% CAGR. Driven by infrastructure development and smart city initiatives, this report analyzes market trends, key players (Esri, Autodesk), and segment growth across sectors like agriculture, defense, and utilities in Saudi Arabia, UAE, and other Middle Eastern nations. Recent developments include: June 2023: Autodesk and Esri's partnership accelerated innovations in AEC. Autodesk's InfoWater Pro and Esri's ArcGIS Pro were integrated to make this possible, and there are many more examples of how their partnership with Esri enables BIM and GIS data to flow between respective solutions seamlessly. The result is that project stakeholders can now visualize, understand, and analyze infrastructure within its real-world context., February 2023: Mercedes-Benz and Google announced a long-term strategic partnership to accelerate auto innovation and create the industry's next-generation digital luxury car experience. With this partnership, Mercedes-Benz will be the first automaker to build its branded navigation experience based on new in-car data and navigation capabilities from the Google Maps Platform. This will give the luxury automaker access to Google's leading geospatial offering, including detailed information about places, real-time and predictive traffic information, automatic rerouting, and more.. Key drivers for this market are: Increasing in Demand for Location Intelligence, Advancements of Big Data Analytics. Potential restraints include: Increasing in Demand for Location Intelligence, Advancements of Big Data Analytics. Notable trends are: Surface Analysis is Expected to Hold Significant Share of the Market.
Facebook
Twitter
According to our latest research, the global Drone Geospatial Analytics market size reached USD 7.1 billion in 2024, reflecting robust momentum in the adoption of drone-based spatial intelligence solutions. The market is growing at a compound annual growth rate (CAGR) of 18.2% and is forecasted to reach USD 34.6 billion by 2033. This impressive growth is primarily driven by the increasing integration of advanced analytics, artificial intelligence, and machine learning into drone systems, enabling more accurate and actionable geospatial insights across multiple industries.
The growth of the Drone Geospatial Analytics market is fundamentally propelled by rapid advancements in drone technology and sensor integration. The proliferation of high-resolution cameras, LiDAR, multispectral, and hyperspectral sensors has significantly enhanced the capability of drones to capture detailed spatial data. This technological evolution allows for precise mapping, real-time monitoring, and efficient data processing, which are critical for sectors like agriculture, construction, and environmental monitoring. Additionally, the integration of artificial intelligence and machine learning algorithms has enabled automated data analysis, reducing the time and expertise required to extract valuable insights from vast datasets. As a result, organizations are increasingly leveraging drone geospatial analytics to optimize operations, improve decision-making, and reduce costs.
Another key driver fueling the expansion of the Drone Geospatial Analytics market is the growing demand for efficient and cost-effective surveying and mapping solutions. Traditional methods of geospatial data collection are often labor-intensive, time-consuming, and expensive. Drones, however, offer a scalable and flexible alternative, capable of covering large and inaccessible areas with minimal human intervention. This is particularly beneficial in industries such as mining, energy, and utilities, where timely and accurate geospatial information is essential for resource management, infrastructure development, and regulatory compliance. The ability of drones to rapidly deploy and collect high-quality data has made them indispensable tools for organizations aiming to enhance productivity and maintain a competitive edge.
Furthermore, the increasing focus on disaster management and environmental monitoring is accelerating the adoption of drone geospatial analytics worldwide. Governments and humanitarian organizations are utilizing drones to assess damage, monitor environmental changes, and coordinate emergency response efforts in real-time. The ability to quickly gather and analyze geospatial data during natural disasters, such as floods, earthquakes, and wildfires, has proven invaluable in saving lives and minimizing property damage. As climate change intensifies the frequency and severity of such events, the reliance on drone-based analytics for proactive risk assessment and disaster preparedness is expected to grow, further stimulating market expansion.
Regionally, North America currently dominates the Drone Geospatial Analytics market, accounting for the largest share due to the presence of leading technology providers, supportive regulatory frameworks, and high adoption rates across various industries. However, the Asia Pacific region is anticipated to witness the fastest growth over the forecast period, driven by increasing investments in smart city projects, infrastructure development, and agricultural modernization. Europe also represents a significant market, characterized by stringent environmental regulations and a strong emphasis on sustainable development. Meanwhile, Latin America and the Middle East & Africa are gradually embracing drone geospatial analytics, particularly in sectors such as agriculture, mining, and oil & gas, as awareness of the technologyโs benefits continues to rise.
The component segment of the Drone Geospatial Analyt
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) software market size is projected to grow from USD 9.1 billion in 2023 to USD 18.5 billion by 2032, reflecting a compound annual growth rate (CAGR) of 8.5% over the forecast period. This growth is driven by the increasing application of GIS software across various sectors such as agriculture, construction, transportation, and utilities, along with the rising demand for location-based services and advanced mapping solutions.
One of the primary growth factors for the GIS software market is the widespread adoption of spatial data by various industries to enhance operational efficiency. In agriculture, for instance, GIS software plays a crucial role in precision farming by aiding in crop monitoring, soil analysis, and resource management, thereby optimizing yield and reducing costs. In the construction sector, GIS software is utilized for site selection, design and planning, and infrastructure management, making project execution more efficient and cost-effective.
Additionally, the integration of GIS with emerging technologies such as Artificial Intelligence (AI) and the Internet of Things (IoT) is significantly enhancing the capabilities of GIS software. AI-driven data analytics and IoT-enabled sensors provide real-time data, which, when combined with spatial data, results in more accurate and actionable insights. This integration is particularly beneficial in fields like smart city planning, disaster management, and environmental monitoring, further propelling the market growth.
Another significant factor contributing to the market expansion is the increasing government initiatives and investments aimed at improving geospatial infrastructure. Governments worldwide are recognizing the importance of GIS in policy-making, urban planning, and public safety, leading to substantial investments in GIS technologies. For example, the U.S. governmentรโs Geospatial Data Act emphasizes the development of a cohesive national geospatial policy, which in turn is expected to create more opportunities for GIS software providers.
Geographic Information System Analytics is becoming increasingly pivotal in transforming raw geospatial data into actionable insights. By employing sophisticated analytical tools, GIS Analytics allows organizations to visualize complex spatial relationships and patterns, enhancing decision-making processes across various sectors. For instance, in urban planning, GIS Analytics can identify optimal locations for new infrastructure projects by analyzing population density, traffic patterns, and environmental constraints. Similarly, in the utility sector, it aids in asset management by predicting maintenance needs and optimizing resource allocation. The ability to integrate GIS Analytics with other data sources, such as demographic and economic data, further amplifies its utility, making it an indispensable tool for strategic planning and operational efficiency.
Regionally, North America holds the largest share of the GIS software market, driven by technological advancements and high adoption rates across various sectors. Europe follows closely, with significant growth attributed to the increasing use of GIS in environmental monitoring and urban planning. The Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by rapid urbanization, infrastructure development, and government initiatives in countries like China and India.
The GIS software market is segmented into software and services, each playing a vital role in meeting the diverse needs of end-users. The software segment encompasses various types of GIS software, including desktop GIS, web GIS, and mobile GIS. Desktop GIS remains the most widely used, offering comprehensive tools for spatial analysis, data management, and visualization. Web GIS, on the other hand, is gaining traction due to its accessibility and ease of use, allowing users to access GIS capabilities through a web browser without the need for extensive software installations.
Mobile GIS is another crucial aspect of the software segment, providing field-based solutions for data collection, asset management, and real-time decision making. With the increasing use of smartphones and tablets, mobile GIS applications are becoming indispensable for sectors such as utilities, transportation, and
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
What will be the Size of the GIS Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.
The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.
How is this GIS Industry segmented?
The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.
The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.
Request Free Sample
The Software segment was valued at USD 5.06 billion in 2019 and sho
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.
Facebook
TwitterThe Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature class and its derivation is provided within the
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Nordics Geospatial Analytics Market size was valued at USD 1.34 Billion in 2024 and is projected to reach USD 3.22 Billion by 2032, growing at a CAGR of 11.7% from 2026-2032.
Nordics Geospatial Analytics Market: Definition/ Overview
Geospatial analytics refers to the process of gathering, examining, and interpreting geographic data through the use of technologies such as GIS, remote sensing, artificial intelligence, and satellite imaging.
It aids in resource management optimization, environmental change monitoring, and the visualization of spatial patterns. Urban planning, disaster relief, climate monitoring, and infrastructure construction are a few examples of applications.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover